Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = shear spring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6367 KiB  
Article
Finite Element Modeling and Performance Evaluation of a Novel 3D Isolation Bearing
by Jianjun Li, Lvhong Sun, Yanchao Wu, Yun Chen, Dengzhou Quan, Tuo Lei and Sansheng Dong
Buildings 2025, 15(14), 2553; https://doi.org/10.3390/buildings15142553 - 19 Jul 2025
Viewed by 229
Abstract
A numerical investigation is conducted to examine the mechanical properties of a novel three-dimensional (3D) isolation bearing. This device is primarily composed of a lead rubber bearing (LRB), disc springs, and U-shaped dampers. A finite element model is developed and validated against the [...] Read more.
A numerical investigation is conducted to examine the mechanical properties of a novel three-dimensional (3D) isolation bearing. This device is primarily composed of a lead rubber bearing (LRB), disc springs, and U-shaped dampers. A finite element model is developed and validated against the previous experimental results. Subsequently, comprehensive analyses are performed to evaluate the influence of vertical loadings, shear strains, and the number of U-shaped dampers on the horizontal behavior, as well as the effects of displacement amplitudes and the number of dampers on the vertical performance. Under horizontal loading conditions, the bearing demonstrates reliable energy dissipation capabilities. However, the small lead core design limits its energy dissipation capacity. Compared with the bearing without U-shaped dampers, the bearing’s energy dissipation capacity increases by 628%, 1300%, and 2581% when employing 1, 2, and 4 dampers on each side, respectively. Regarding vertical performance, the innovative disc spring group design effectively reduces the tensile displacement of the LRB under tension, thereby enhancing the overall tensile capacity of the bearing. Furthermore, in comparison to their contribution to horizontal energy dissipation, the U-shaped dampers play a relatively minor role in vertical energy dissipation. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

17 pages, 3127 KiB  
Article
The Impact of Pile Diameter on the Performance of Single Piles: A Kinematic Analysis Based on the TBEC 2018 Guidelines
by Mehmet Hayrullah Akyıldız, Mehmet Salih Keskin, Senem Yılmaz Çetin, Sabahattin Kaplan and Gültekin Aktaş
Buildings 2025, 15(14), 2540; https://doi.org/10.3390/buildings15142540 - 19 Jul 2025
Viewed by 165
Abstract
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed [...] Read more.
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed under four different soil profiles—soft clay, stiff clay, very loose sand-A, and very loose sand-B. The methodology integrated nonlinear spring modeling (P-y, T-z, Q-z) for soil behavior, one-dimensional site response analysis using DEEPSOIL, and structural analysis with SAP2000. The simulation results showed that increasing the pile diameter led to a significant rise in internal forces: the maximum bending moment increased up to 4.0 times, and the maximum shear force increased 4.5 times from the smallest to the largest pile diameter. Horizontal displacements remained nearly constant, whereas vertical displacements decreased by almost 50%, indicating improved pile–soil stiffness interaction. The depth of the maximum moment shifted according to the soil stiffness, and stress concentrations were observed at the interfaces of stratified layers. The findings underline the importance of considering pile geometry and soil layering in seismic design. This study provides quantitative insights into the trade-off between displacement control and force demand in seismic pile design, contributing to safer foundation strategies in earthquake-prone regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 5338 KiB  
Article
Modulation of Spring Barents and Kara Seas Ice Concentration on the Meiyu Onset over the Yangtze–Huaihe River Basin in China
by Ziyi Song, Xuejie Zhao, Yuepeng Hu, Fang Zhou and Jiahao Lu
Atmosphere 2025, 16(7), 838; https://doi.org/10.3390/atmos16070838 - 10 Jul 2025
Viewed by 194
Abstract
Meiyu is a critical component of the summer rainy season over the Yangtze–Huaihe River Basin (YHRB) in China, and the Meiyu onset date (MOD), serving as a key indicator of Meiyu, has garnered substantial attention. This article demonstrates an in-phase relationship between MOD [...] Read more.
Meiyu is a critical component of the summer rainy season over the Yangtze–Huaihe River Basin (YHRB) in China, and the Meiyu onset date (MOD), serving as a key indicator of Meiyu, has garnered substantial attention. This article demonstrates an in-phase relationship between MOD and the preceding spring Barents–Kara Seas ice concentration (BKSIC) during 1979–2023. Specifically, the loss of spring BKSIC promotes an earlier MOD. Further analysis indicates that decreased spring BKSIC reduces the reflection of shortwave radiation, thereby enhancing oceanic solar radiation absorption and warming sea surface temperature (SST) in spring. The warming SST persists into summer and induces significant deep warming in the BKS through enhanced upward longwave radiation. The BKS deep warming triggers a wave train propagating southeastward to the East Asia–Northwest Pacific region, leading to a strengthened East Asian Subtropical Jet and an intensified Western North Pacific Subtropical High in summer. Under these conditions, the transport of warm and humid airflows into the YHRB is enhanced, promoting convective instability through increased low-level warming and humidity, combined with enhanced wind shear, which jointly contribute to an earlier MOD. These results may advance the understanding of MOD variability and provide valuable information for disaster prevention and mitigation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 12919 KiB  
Article
Vibration Control of Deepwater Offshore Platform Using Viscous Dampers Under Wind, Wave, and Earthquake
by Kaien Jiang, Huiyang Li, Guoer Lv, Lizhong Wang, Lilin Wang and Huafeng Yu
J. Mar. Sci. Eng. 2025, 13(7), 1197; https://doi.org/10.3390/jmse13071197 - 20 Jun 2025
Viewed by 277
Abstract
This study investigates the use of viscous dampers (VDs) to reduce the vibration of a deepwater offshore platform under joint wind, wave, and earthquake action. A finite element model was established based on the Opensees software (version 3.7.1), incorporating soil–structure interaction simulated by [...] Read more.
This study investigates the use of viscous dampers (VDs) to reduce the vibration of a deepwater offshore platform under joint wind, wave, and earthquake action. A finite element model was established based on the Opensees software (version 3.7.1), incorporating soil–structure interaction simulated by the nonlinear Winkler springs and simulating hydrodynamic loads via the Morison equation. Turbulent wind fields were generated using the von Kármán spectrum, and irregular wave profiles were synthesized from the JONSWAP spectrum. The 1995 Kobe earthquake record served as seismic input. The time-history dynamic response for the deepwater offshore platform was evaluated under two critical scenarios: isolated seismic excitation and the joint action of wind, wave, and seismic loading. The results demonstrate that VDs configured diagonally at each structural level effectively suppress platform vibrations under both isolated seismic and wind–wave–earthquake conditions. Under seismic excitation, the VD system reduced maximum deck acceleration, velocity, displacement, and base shear force by 9.95%, 22.33%, 14%, and 31.08%, respectively. For combined environmental loads, the configuration achieved 15.87%, 21.48%, 13.51%, and 34.31% reductions in peak deck acceleration, velocity, displacement, and base shear force, respectively. Moreover, VD parameter analysis confirms that increased damping coefficients enhance control effectiveness. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 9093 KiB  
Article
Numerical Investigation of the Pull-Out and Shear Mechanical Characteristics and Support Effectiveness of Yielding Bolt in a Soft Rock Tunnel
by Yan Zhu, Mingbo Chi, Yanyan Tan, Ersheng Zha and Yuwei Zhang
Appl. Sci. 2025, 15(12), 6933; https://doi.org/10.3390/app15126933 - 19 Jun 2025
Viewed by 312
Abstract
Conventional bolts frequently fail under large deformations due to stress concentration in soft rock tunnels. In contrast, yielding bolts incorporate energy-absorbing mechanisms to sustain controlled plastic deformation. This study employed FLAC3D to numerically investigate the pull-out, shear, and bending behaviors of yielding bolts, [...] Read more.
Conventional bolts frequently fail under large deformations due to stress concentration in soft rock tunnels. In contrast, yielding bolts incorporate energy-absorbing mechanisms to sustain controlled plastic deformation. This study employed FLAC3D to numerically investigate the pull-out, shear, and bending behaviors of yielding bolts, evaluating their support effectiveness in soft rock tunnels. Three-dimensional finite difference models incorporating nonlinear coupling springs and the Mohr–Coulomb criterion were developed to simulate bolt–rock interactions under multifactorial loading. Validation against experimental pull-out tests and field measurements confirmed the model accuracy. Under pull-out loading, the axial forces in yielding bolts decreased more rapidly along the bolt length, reducing stress concentration at the head. The central position of the maximum load-bearing capacity in conventional bolts fractured under tension, resulting in an hourglass-shaped axial force distribution. Conversely, the yielding bolts maintained yield strength for an extended period after reaching it, exhibiting a spindle-shaped axial force distribution. Parametric analyses reveal that bolt spacing exerts a greater influence on support effectiveness than length. This study bridges critical gaps in understanding yielding bolt behavior under combined loading and provides a validated framework for optimizing energy-absorbing support systems in soft rock tunnels. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

15 pages, 917 KiB  
Article
Effects of Cover Crop Mixtures on Soil Health and Spring Oat Productivity
by Aušra Marcinkevičienė, Lina Marija Butkevičienė, Lina Skinulienė and Aušra Rudinskienė
Sustainability 2025, 17(12), 5566; https://doi.org/10.3390/su17125566 - 17 Jun 2025
Viewed by 342
Abstract
Growing cover crop mixtures is a sustainable agriculture tool that helps to reduce fertilizer use and, at the same time, ensures lower environmental pollution. The aim of this research is to assess the biomass of the aboveground part of cover crop mixtures and [...] Read more.
Growing cover crop mixtures is a sustainable agriculture tool that helps to reduce fertilizer use and, at the same time, ensures lower environmental pollution. The aim of this research is to assess the biomass of the aboveground part of cover crop mixtures and the nutrients accumulated in it and to determine their influence on the soil properties and productivity of spring oats (Avena sativa L.). The biomass of the aboveground part of cover crop mixtures of different botanical compositions varied from 2.33 to 2.67 Mg ha−1. As the diversity of plant species in cover crop mixtures increased, the accumulation of nutrients in the aboveground part biomass increased, and the risk of nutrient leaching was reduced. The post-harvest cover crop mixture TGS GYVA 365, consisting of eight short-lived and two perennial plant species, significantly reduced the mineral nitrogen content in the soil in spring and had the strongest positive effect on organic carbon content. Post-harvest cover crop mixtures TGS GYVA 365 and TGS D STRUKT 1 did not affect the content of available potassium in the soil but significantly reduced the content of available phosphorus. All tested cover crop mixtures, including the undersown TGS BIOM 1 and the post-harvest mixtures TGS D STRUKT 1 and TGS GYVA 365, reduced soil shear strength and improved soil structure, although the reduction was not statistically significant for TGS D STRUKT 1. Cover crop mixtures left on the soil surface as mulch had a positive effect on the chlorophyll concentration in oat leaves, number of grains per panicle, and oat grain yield. A significant positive correlation was found between oat grain yield and several yield components, including crop density, plant height, number of grains per panicle, and grain mass per panicle. These findings highlight the potential of diverse cover crop mixtures to reduce fertilizer dependency and improve oat productivity under temperate climate conditions. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

18 pages, 6692 KiB  
Article
Ballistic Testing of an Aerogel/Starch Composite Designed for Use in Wearable Protective Equipment
by John LaRocco, Taeyoon Eom, Tanush Duggisani, Ian Zalcberg, Jinyi Xue, Ekansh Seth, Nicolas Zapata, Dheeraj Anksapuram, Nathaniel Muzumdar and Eric Zachariah
Technologies 2025, 13(5), 199; https://doi.org/10.3390/technologies13050199 - 14 May 2025
Viewed by 1036
Abstract
Concussion is a costly healthcare issue affecting sports, industry, and the defense sector. The financial impacts, however, extend beyond acute medical expenses, affecting an individual’s physical and cognitive abilities, as well as increasing the burden on coworkers, family members, and caregivers. More effective [...] Read more.
Concussion is a costly healthcare issue affecting sports, industry, and the defense sector. The financial impacts, however, extend beyond acute medical expenses, affecting an individual’s physical and cognitive abilities, as well as increasing the burden on coworkers, family members, and caregivers. More effective personal protective equipment may greatly reduce the risk of concussion and injury. Notably, aerogels are light, but traditionally fragile, non-Newtonian fluids, such as shear-thickening fluids, which generate more resistance when compressive force is applied. Herein, a composite material was developed by baking a shear-thickening fluid (i.e., starch) and combining it with a commercially available aerogel foam, thus maintaining a low cost. The samples were tested through the use of a ballistic pendulum system, using a spring-powered launcher and a gas-powered cannon, followed by ballistic penetration testing, using two electromagnetic accelerators and two different projectiles. During the cannon tests without a hardhat, the baked composite only registered 31 ± 2% of the deflection height observed for the pristine aerogel. The baked composite successfully protected the hygroelectric devices from coilgun projectiles, whereas the projectiles punctured the pristine aerogel. Leveraging the low-cost design of this new composite, personal protective equipment can be improved for various sporting, industrial, and defense applications. Full article
(This article belongs to the Section Innovations in Materials Processing)
Show Figures

Figure 1

9 pages, 3305 KiB  
Article
Impact of East Pacific La Niña on Caribbean Climate
by Mark R. Jury
Atmosphere 2025, 16(4), 485; https://doi.org/10.3390/atmos16040485 - 21 Apr 2025
Viewed by 525
Abstract
Statistical cluster analysis applied to monthly 1–100 m ocean temperatures reveals El Niño–Southern Oscillation (ENSO) dipole patterns with a leading mode having opposing centers of action across the dateline and tropical east Pacific. We focus on the La Niña cold phase and study [...] Read more.
Statistical cluster analysis applied to monthly 1–100 m ocean temperatures reveals El Niño–Southern Oscillation (ENSO) dipole patterns with a leading mode having opposing centers of action across the dateline and tropical east Pacific. We focus on the La Niña cold phase and study its impact on the Caribbean climate over the period of 1980–2024. East dipole time scores are used to identify composite years, and anomaly patterns are calculated for Jan-Jun and Jul-Dec. Convective responses over the Caribbean exhibit seasonal contrasts: dry winter–spring and wet summer–autumn. Trade winds and currents across the southern Caribbean weaken and lead to anomalous warming of upper ocean temperatures. Sustained coastal upwelling off Peru and Ecuador during east La Niña is teleconnected with easterly wind shear and tropical cyclogenesis over the Caribbean during summer, leading to costly impacts. This ocean–atmosphere coupling is quite different from the more common central Pacific ENSO dipole. Full article
Show Figures

Figure 1

26 pages, 4598 KiB  
Article
Investigation of Interface Behavior Between Offshore Pipe Pile and Sand Using a Newly Modified Shearing Apparatus
by Wenbo Du, Xuguang Chen, Shanshan Zhang and Bin Huang
Buildings 2025, 15(8), 1308; https://doi.org/10.3390/buildings15081308 - 16 Apr 2025
Viewed by 418
Abstract
With the rapid development of marine engineering, large−diameter steel pipe piles are increasingly used in infrastructure construction, such as bridges, docks, and offshore wind power projects. Therefore, studying the shear behavior of the sand–steel interface is of great importance. In this study, the [...] Read more.
With the rapid development of marine engineering, large−diameter steel pipe piles are increasingly used in infrastructure construction, such as bridges, docks, and offshore wind power projects. Therefore, studying the shear behavior of the sand–steel interface is of great importance. In this study, the traditional vane shear apparatus was improved by utilizing its torsional shear actuator, adding an overlying pressure fixing device, and applying lateral pressure through a compressive spring. The original cross plate was replaced with a cylindrical steel rod to simulate the shear behavior of the large−diameter pile–sand interface under different stress states. Experimental results show that this apparatus effectively solves the problem of soil loss due to the shear gap in both the ring shear and direct shear tests under smooth interface conditions. As the shear rate (2°/min, 4°/min, 6°/min) increased, the peak and residual shear stresses decreased, while the shear stress increased with vertical confinement pressure, accompanied by significant residual stress. As the relative density of sand increased from 27.4% to 72.2%, the shear behavior transitioned from contraction to dilation. Regarding surface roughness, the experiment identified a critical threshold: when roughness is below this threshold, it significantly affects the peak shear strength; when above this threshold, the effect is smaller, and failure shifts to the internal sand body. This study provides valuable insights into the mechanics of the sand–steel interface and contributes to optimizing the foundation design for marine infrastructure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 1487 KiB  
Review
Type IV Pili in Thermophilic Bacteria: Mechanisms and Ecological Implications
by Naoki A. Uemura and Daisuke Nakane
Biomolecules 2025, 15(4), 459; https://doi.org/10.3390/biom15040459 - 21 Mar 2025
Cited by 1 | Viewed by 876
Abstract
Type IV pili (T4P) machinery is critical for bacterial surface motility, protein secretion, and DNA uptake. This review highlights the ecological significance of T4P-dependent motility in Thermus thermophilus, a thermophilic bacterium isolated from hot springs. Unlike swimming motility, the T4P machinery enables [...] Read more.
Type IV pili (T4P) machinery is critical for bacterial surface motility, protein secretion, and DNA uptake. This review highlights the ecological significance of T4P-dependent motility in Thermus thermophilus, a thermophilic bacterium isolated from hot springs. Unlike swimming motility, the T4P machinery enables bacteria to move over two-dimensional surfaces through repeated cycles of extension and retraction of pilus filaments. Notably, T. thermophilus exhibits upstream-directed migration under shear stress, known as rheotaxis, which appears to represent an adaptive strategy unique to thermophilic bacteria thriving in rapid water flows. Furthermore, T4P contributes to the capture of DNA and phages, indicating their multifunctionality in natural environments. Understanding the T4P dynamics provides insights into bacterial survival and evolution in extreme habitats. Full article
Show Figures

Figure 1

19 pages, 7188 KiB  
Article
Study on Shear Resistance of Composite Interface of Steel Truss Ceramsite Concrete and Finite Element Simulation
by Zaihua Zhang, Yuqing Xiao and Guohui Cao
Buildings 2025, 15(6), 981; https://doi.org/10.3390/buildings15060981 - 20 Mar 2025
Viewed by 376
Abstract
This study investigates the shear behavior of steel truss ceramsite concrete composite interfaces through double-sided direct shear tests and finite element simulations. The results reveal three distinct shear response phases: elastic deformation, plastic softening, and full yielding. The interfacial shear capacity arises from [...] Read more.
This study investigates the shear behavior of steel truss ceramsite concrete composite interfaces through double-sided direct shear tests and finite element simulations. The results reveal three distinct shear response phases: elastic deformation, plastic softening, and full yielding. The interfacial shear capacity arises from synergistic contributions of bond strength, friction, and truss reinforcement action. Comparative analysis of design codes identifies Eurocode 2 as providing an optimal alignment with the experimental data. An ABAQUS-based finite element model incorporating a cohesive spring composite interface mechanism confirms the model’s reliability. The findings validate Eurocode 2 for ceramsite concrete interface design and propose single-row truss configurations as economically efficient solutions for lightweight high-strength composite structures. The research results are aimed at providing a theoretical basis for the design optimization and code revision of ceramsite concrete composite structures, and promoting the wide application of lightweight high-strength concrete in sustainable buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

32 pages, 7060 KiB  
Article
Vibration Analysis of Functionally Graded Material (FGM) Double-Layered Cabin-like Structure by the Spectro-Geometric Method
by Dongze He, Rui Zhong, Qingshan Wang and Bin Qin
Materials 2025, 18(6), 1231; https://doi.org/10.3390/ma18061231 - 10 Mar 2025
Viewed by 680
Abstract
This study presents a spectro-geometric vibration model for analyzing free as well as forced vibration properties for FGM cylindrical double-walled shells with internal structures. The boundary conditions and coupling effects are modeled using an artificial virtual spring approach, which allows for the simulation [...] Read more.
This study presents a spectro-geometric vibration model for analyzing free as well as forced vibration properties for FGM cylindrical double-walled shells with internal structures. The boundary conditions and coupling effects are modeled using an artificial virtual spring approach, which allows for the simulation of arbitrary boundary and coupling conditions by varying the elastic spring stiffness coefficients. The spectral geometry method is employed to represent the displacement variables of the FGM substructure, overcoming the discontinuity phenomenon commonly observed when traditional Fourier series are used. The dynamic equations of the FGM cylindrical double-walled shell with an internal structure are derived using the first-order shear deformation assumption and the Rayleigh–Ritz method, and the corresponding vibration solutions are computed. The model’s reliability and prediction accuracy are confirmed through convergence checks and numerical comparisons. Additionally, parametric studies are conducted to examine the influence of material constants, position parameters, and geometric parameters on the shell’s inherent characteristics and steady-state response. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Composite Materials and Structures)
Show Figures

Figure 1

18 pages, 12446 KiB  
Article
Dynamic Behavior of Carbon Nanotube-Reinforced Polymer Composite Ring-like Structures: Unraveling the Effects of Agglomeration, Porosity, and Elastic Coupling
by Hossein Mottaghi T., Moein A. Ghandehari and Amir R. Masoodi
Polymers 2025, 17(5), 696; https://doi.org/10.3390/polym17050696 - 5 Mar 2025
Viewed by 816
Abstract
This research examines the free vibration characteristics of composite ring-like structures enhanced with carbon nanotubes (CNTs), taking into account the effects of CNT agglomeration. The structural framework comprises two concentric composite rings linked by elastic springs, creating a coupled beam ring (CBR) system. [...] Read more.
This research examines the free vibration characteristics of composite ring-like structures enhanced with carbon nanotubes (CNTs), taking into account the effects of CNT agglomeration. The structural framework comprises two concentric composite rings linked by elastic springs, creating a coupled beam ring (CBR) system. The first-order shear deformation theory (FSDT) is applied to account for transverse shear deformation, while Hamilton’s principle is employed to formulate the governing equations of motion. The effective mechanical properties of the composite material are assessed with regard to CNT agglomeration, which has a significant impact on the elastic modulus and the overall dynamic behavior of the structure. The numerical analysis explores the influence of porosity distribution, boundary conditions (BCs), and the stiffness of the springs on the natural vibration frequencies (NVFs). The results demonstrate that an increase in CNT agglomeration leads to a reduction in the stiffness of the composite, consequently decreasing the NVFs. Furthermore, asymmetric porosity distributions result in nonlinear fluctuations in NVFs due to irregularities in mass and stiffness, whereas uniform porosity distributions display a nearly linear relationship. This study also emphasizes the importance of boundary conditions and elastic coupling in influencing the vibrational response of CBR systems. These findings offer significant insights for the design and optimization of advanced composite ring structures applicable in aerospace, nanotechnology, and high-performance engineering systems. Full article
Show Figures

Figure 1

17 pages, 5550 KiB  
Article
Groundwater Tracer Tests as a Supporting Method for Interpreting the Complex Hydrogeological Environment of the Urbas Landslide in NW Slovenia
by Luka Serianz and Mitja Janža
Appl. Sci. 2025, 15(5), 2707; https://doi.org/10.3390/app15052707 - 3 Mar 2025
Viewed by 822
Abstract
This study investigates groundwater flow patterns in a landslide area above the settlement of Koroška Bela in NW Slovenia using a series of tracer tests with sodium chloride (NaCl) and fluorescein (uranine). The tracer experiments, using a combination of pumping tests and continuous [...] Read more.
This study investigates groundwater flow patterns in a landslide area above the settlement of Koroška Bela in NW Slovenia using a series of tracer tests with sodium chloride (NaCl) and fluorescein (uranine). The tracer experiments, using a combination of pumping tests and continuous groundwater observations, reveal two distinct groundwater flow horizons within the landslide body: a prevailing shallower flow within highly permeable gravel layers and a slower deep flow in the weathered low-permeability clastic layers. Uranine injections suggest longer retentions, indicating complex hydrogeological conditions. Groundwater is recharged by the infiltration of precipitation and subsurface inflow from the upper-lying carbonate rocks. In the upper landslide, highly permeable gravel layers accelerate flow, especially during heavy rainfall, while downstream interactions between permeable gravel and less permeable clastic materials create local aquifers and springs. These groundwater dynamics significantly influence landslide stability, as rapid infiltration during intense precipitation events can lead to transient increases in pore water pressure, reducing shear strength and potentially triggering slope movement. Meanwhile, slow deep flows contribute to prolonged saturation of critical failure surfaces, which may weaken the landslide structure over time. The study emphasizes the region’s geological heterogeneity and landslide stability, providing valuable insights into the groundwater dynamics of this challenging environment. By integrating hydrogeological assessments with engineering measures, the study provides supportive information for mitigating landslide risks and improving groundwater management strategies. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 3194 KiB  
Article
Ritz Solution of Vibration Analysis of Functionally Graded Porous Elliptic Shells and Panels Under Various Arbitrary Boundary Types
by Qingtao Gong, Tao Liu, Yao Teng, Binjie Ma and Xin Li
Materials 2025, 18(5), 1101; https://doi.org/10.3390/ma18051101 - 28 Feb 2025
Viewed by 570
Abstract
This paper seeks to establish a generalized numerical model to examine the free vibration behavior of functionally graded porous (FGP) elliptical shells and panels with various boundary types. The model is built on first-order shear deformation theory (FSDT) to express structural displacements. A [...] Read more.
This paper seeks to establish a generalized numerical model to examine the free vibration behavior of functionally graded porous (FGP) elliptical shells and panels with various boundary types. The model is built on first-order shear deformation theory (FSDT) to express structural displacements. A segmentation technique is used to maintain continuity between shell elements, and virtual spring boundary techniques are employed to simulate arbitrary boundaries. Variable-coefficient Jacobi polynomials are introduced as admissible functions for displacement. Finally, the Ritz variational method, combined with the least-squares weighted residual method (LSWRM), is used for constructing the energy functional and solving the energy equations. Validation of the numerical model against finite element and literature results confirms its reliability and convergence properties. This study also explores the effects of geometric parameters and boundary conditions on FG elliptical shells and panels, providing a theoretical basis for future research. Full article
(This article belongs to the Special Issue Numerical Analysis of Sandwich and Laminated Composites)
Show Figures

Figure 1

Back to TopTop