Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = shallow S-wave velocity structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6064 KB  
Article
Distributed Acoustic Sensing of Urban Telecommunication Cables for Subsurface Tomography
by Yanzhe Zhang, Cai Liu, Jing Li and Qi Lu
Appl. Sci. 2025, 15(24), 13145; https://doi.org/10.3390/app152413145 - 14 Dec 2025
Viewed by 86
Abstract
With the continuous development of cities and the increasing utilization of underground space, ambient noise seismic imaging has become an essential approach for exploring and monitoring the urban subsurface. The integration of Distributed Acoustic Sensing (DAS) with ambient noise imaging offers a more [...] Read more.
With the continuous development of cities and the increasing utilization of underground space, ambient noise seismic imaging has become an essential approach for exploring and monitoring the urban subsurface. The integration of Distributed Acoustic Sensing (DAS) with ambient noise imaging offers a more convenient and effective solution for investigating shallow subsurface structures in urban environments. To overcome the limitations of conventional ambient noise seismic nodes, which are costly and incapable of achieving high-density data acquisition, this work makes use of existing urban telecommunication fibers to record ambient noise and perform sliding-window cross-correlation on it. Then the Phase-Weighted Stack (PWS) technique is applied to enhance the quality and stability of the cross-correlation signals, and fundamental-mode Rayleigh wave dispersion curves are extracted from the cross-correlation functions through the High-Resolution Linear Radon Transform (HRLRT). In the inversion stage, an adaptive regularization strategy based on automatic L-curve corner detection is introduced, which, in combination with the Preconditioned Steepest Descent (PSD) method, enables efficient and automated dispersion inversion, resulting in a well-resolved near-surface S-wave velocity structure. The results indicate that the proposed workflow can extract useful surface-wave dispersion information under typical urban noise conditions, achieving a feasible level of subsurface velocity imaging and providing a practical technical means for urban underground space exploration and utilization. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 8740 KB  
Article
Application of Multi-Station High-Frequency Microtremor Surface Wave Exploration in Coastal Engineering Research: A Case Study of Dongzhou Peninsula in Fujian Province
by Fei Cheng, Daicheng Peng, Daohuang Yang and Jiangping Liu
J. Mar. Sci. Eng. 2025, 13(12), 2364; https://doi.org/10.3390/jmse13122364 - 12 Dec 2025
Viewed by 160
Abstract
This study proposes a multi-station high-frequency microtremor surface-wave exploration method for high-resolution characterization of shallow subsurface structures in coastal engineering environments. Three representative layered geological models were established, and Rayleigh-wave theoretical dispersion curves were calculated using a fast vector transfer algorithm to analyze [...] Read more.
This study proposes a multi-station high-frequency microtremor surface-wave exploration method for high-resolution characterization of shallow subsurface structures in coastal engineering environments. Three representative layered geological models were established, and Rayleigh-wave theoretical dispersion curves were calculated using a fast vector transfer algorithm to analyze dispersion characteristics associated with different stratigraphic conditions. Five array geometries were then employed to acquire high-frequency ambient-noise data, and dispersion curves were extracted using the Extended Spatial Autocorrelation (ESPAC) method. Comparative analysis revealed that the rectangular, triangular, and circular arrays provided the most stable and accurate dispersion imaging, with mismatch errors below 0.5%, and their inverted S-wave velocity structures closely matched theoretical models. Field application on the Dongzhou Peninsula in Fujian Province further demonstrated the effectiveness of the proposed method. The inverted shear-wave (S-wave) velocity profiles from three survey lines successfully delineated the original and reclaimed coastlines, showing strong agreement with known geological boundaries. These results demonstrate that the proposed approach provides a non-invasive, cost-effective, and high-resolution tool for evaluating geological conditions in coastal engineering settings. It shows substantial potential for broader application in coastal site characterization and marine engineering development. Full article
(This article belongs to the Special Issue Advances in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

17 pages, 4602 KB  
Article
Typhoon-Induced Wave–Current Coupling Dynamics in Intertidal Zones: Impacts on Protective Device of Ancient Forest Relics
by Lihong Zhao, Dele Guo, Chaoyang Li, Zhengfeng Bi, Yi Hu, Hongqin Liu and Tongju Han
J. Mar. Sci. Eng. 2025, 13(9), 1831; https://doi.org/10.3390/jmse13091831 - 22 Sep 2025
Viewed by 562
Abstract
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a [...] Read more.
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a semi-enclosed bay that hosts multiple ancient forest relics within its intertidal zone. A two-tier numerical modeling framework was developed, comprising a regional-scale hydrodynamic model and a localized high-resolution model centered on a protective structure. Validation data were obtained from in situ field observations. Three structural scenarios were tested: fully intact, bottom-blocked, and damaged. Results indicate that wave-induced radiation stress plays a dominant role in enhancing flow velocities when wind speeds exceed 6 m/s, with wave contributions approaching 100% across all water depths. However, the linear relationship between water depth and wave contribution observed under non-typhoon conditions breaks down under typhoon forcing. A critical depth range was identified, within which wave contribution peaked before declining with further increases in depth—highlighting its potential sensitivity to storm energy. Moreover, structural simulations revealed that bottom-blocked devices, although seemingly more enclosed, may be vulnerable to vertical pressure loading due to insufficient water exchange. In contrast, perforated designs facilitate an internal–external hydrodynamic balance, thereby enhancing protective effect. This study provides both theoretical and practical insights into intertidal structure design and paleo-heritage conservation under extreme hydrodynamic stress. Full article
(This article belongs to the Special Issue Advances in Storm Tide and Wave Simulations and Assessment)
Show Figures

Figure 1

13 pages, 12156 KB  
Article
The Mantle Structure of North China Craton and Its Tectonic Implications: Insights from Teleseismic P-Wave Tomography
by Weiqian Yu, Wei Wei, James O. S. Hammond, Cunrui Han, He Tan and Haoyu Hao
J. Mar. Sci. Eng. 2025, 13(4), 786; https://doi.org/10.3390/jmse13040786 - 15 Apr 2025
Viewed by 1158
Abstract
To study the mantle structure of the North China Craton (NCC) and its tectonic implications, in particular, the evolution of the rift systems in the Trans-North China Orogen (TNCO), we used teleseismic data recorded by 250 portable seismic stations to invert for the [...] Read more.
To study the mantle structure of the North China Craton (NCC) and its tectonic implications, in particular, the evolution of the rift systems in the Trans-North China Orogen (TNCO), we used teleseismic data recorded by 250 portable seismic stations to invert for the P-wave velocity (Vp) structures of the mantle beneath the NCC. Our results show a large-scale low-Vp anomaly in the shallow mantle and high-Vp anomalies in the deeper upper mantle beneath the eastern NCC, with fine-scale high-Vp anomalies at the lithosphere–asthenosphere boundary, indicating multi-stage lithospheric delamination during the Cenozoic. In the Yan Mountains (YanM), an east–west striking high-Vp anomaly between 60 to 200 km depths and low heat flow suggest the preservation of a thick mantle root. In the TNCO, high-Vp bodies in the upper mantle and the upper part of the mantle transition zone (MTZ) are imaged. The shallower high-Vp anomaly located beneath the Shanxi–Shaanxi Rift (SSR), along with an overlying local-scale low-Vp anomaly, indicates local hot material upwelling due to lithospheric root removal. The India–Eurasia collision’s far-field effects are proposed to cause lithospheric thickening, subsequent root delamination, and the formation and evolution of the SSR. Full article
(This article belongs to the Special Issue Advances in Ocean Plate Motion and Seismic Research)
Show Figures

Figure 1

19 pages, 49838 KB  
Article
Common-Reflection-Surface Stack with Global Simultaneous Multi-Parameter Velocity Analysis—A Fit for Shallow Seismics
by Zeno Heilmann and Gian Piero Deidda
Appl. Sci. 2024, 14(15), 6748; https://doi.org/10.3390/app14156748 - 2 Aug 2024
Viewed by 1852
Abstract
In many regions, particularly coastal areas, population growth, overuse of water, and climate change have put quality and availability of water under threat. While accurate, predictive groundwater flow models are essential for effective water resource management, the precision of these models relies on [...] Read more.
In many regions, particularly coastal areas, population growth, overuse of water, and climate change have put quality and availability of water under threat. While accurate, predictive groundwater flow models are essential for effective water resource management, the precision of these models relies on the ability to determine the geometries of geological structures and hydrogeologic systems accurately. In complex geological settings or with deep aquifers, the drilling of observation wells becomes too costly and shallow seismic surveys become the method of choice. Common-Reflection-Surface stacking is being used by major oil companies for hydrocarbon exploration but can serve also as an advanced imaging method for near-surface seismic data. Its spatial stacking aperture covers a whole group of neighboring common midpoint gathers and, as such, a multitude of traces contribute to every single stacking process. Since the level of noise suppression is proportional to the number of contributing traces, Common-Reflection-Surface stacking generates a large increase in signal-to-noise ratio. In addition, the data-driven velocity analysis is a statistical process and is, as such, the more stable the more input traces it has. At the beginning, however, the spatial operator was only used for stacking, not for velocity analysis, since limiting computational demand was mandatory to obtain results within a reasonable time frame. Today’s computing facilities are thousands of times faster and even large efficiency gains do not justify the loss of effectiveness anymore that comes with a truncated velocity analysis. We show that this is particularly true for near-surface data with low signal-to-noise ratio and modest common midpoint fold. For the spatial velocity analysis, we present two options: (1) as reference, a global search of all three parameters of the Common-Reflection-Surface operator, and (2) as a quicker solution, a strategy that uses the two-parameter Common-Diffraction-Surface operator to obtain initial values for a local three-parameter optimization. For shallow P-wave data from a hydrogeological survey, we show that the computational cost of option (2) is one order of magnitude smaller than the cost of option (1), while the stack and corresponding normal-moveout velocities are very similar. Comparing the results of the spatial velocity analysis to those of preceding, computationally lighter, strategies, we find a significant improvement, both in stack section resolution and stacking parameter accuracy. Full article
(This article belongs to the Special Issue Recent Advances in Exploration Geophysics)
Show Figures

Figure 1

19 pages, 6586 KB  
Article
Geophysical Characterization and Attenuation Correction Applied for Hydrate Bearing Sediments in Japan Sea
by Luiz Alberto Santos, Ryo Matsumoto, Fernanda Darcle Silva Freitas and Marco Antonio Cetale Santos
Minerals 2023, 13(5), 655; https://doi.org/10.3390/min13050655 - 10 May 2023
Cited by 5 | Viewed by 2069
Abstract
Estimation of rock properties from seismic data is important for exploration and production activities in the petroleum industry. Considering the compressional velocity—the speed of propagating body waves in formations—and the quality factor (Q)—a measure of the frequency-selective energy losses of waves propagating through [...] Read more.
Estimation of rock properties from seismic data is important for exploration and production activities in the petroleum industry. Considering the compressional velocity—the speed of propagating body waves in formations—and the quality factor (Q)—a measure of the frequency-selective energy losses of waves propagating through formations—both properties are usually estimated from multichannel seismic data. Velocity is estimated during multichannel processing of seismic reflection data in either the time or depth domain. In marine seismic acquisition, Q can be estimated from the following sources: Vertical Seismic Profile (VSP) surveys, where sources are located near the sea surface and geophones are distributed at depth along a borehole; and multichannel reflection data, where sources are also located near the sea surface and receivers are distributed either at the sea surface (conventional seismic survey with streamers) or on the sea floor (use of nodes or Ocean Bottom Cables (OBC)). The aforementioned acquisition devices, VSP, conventional streamers, nodes, and OBCs are much more expensive than single-channel acquisition with one receiver per shot due to the cost of operation. There are numerous old and new datasets from academia and the oil industry that have been acquired with single-channel acquisition devices. However, there is a paucity of work addressing the estimation of velocity and Q from this type of equipment. We investigate the estimation of Q and velocity from single-channel seismic data. Using the windowed discrete Fourier transform for a single seismic trace, we calculate the peak and dominant frequency that changes with time. In the geologic environment, higher frequencies are attenuated at shallow depths (time), while lower frequencies remain at deeper positions. From the rate at which higher frequencies are attenuated with time, we estimate the effective quality factor (Qeff). However, when using Kirchhoff migration to process single-channel seismic data, events far from the vertical projection of the receiver contribute to the trace at a given time. Then, an underestimation of the effective quality factor occurs. To compensate for the effects of more distant events with lower-frequency content contaminating the shorter events, we propose a linear equation to correct the effective quality factor estimated from migrated seismic data. Effective Q and its correction are estimated in five single-channel seismic lines surveyed along the Joetsu Knoll, a SW-NE anticline structure on the eastern margin of the Sea of Japan. These results are linked to geomorphological and geological features and the velocity field. Joetsu Knoll is a known site of massive gas hydrates (GH), which occur in the first hundred metres of Neogene sediments and, together with gas chimneys, play an important role in seismic wave absorption. Qeff estimated from migrated seismic data maintains the spatial relationship between high and low Q regions. The region of low Q, which is below 124 and has an average value of 57, occurs near the anticlinal hinge and tends to coincide with the region in which the Bottom Simulating Reflector (BSR) resides. The coexistence of GH and free gas coincides with the very low P velocity gradient of 0.225 s−1. BSR occurrence, Qeff and the geometry of the Joetsu anticline testify to progressive gas hydrate depletion northward along the dome. Full article
Show Figures

Figure 1

19 pages, 15068 KB  
Article
Seismic Monitoring at the Farnsworth CO2-EOR Field Using Time-Lapse Elastic-Waveform Inversion of 3D-3C VSP Data
by Xuejian Liu, Lianjie Huang, Kai Gao, Tom Bratton, George El-Kaseeh, William Ampomah, Robert Will, Paige Czoski, Martha Cather, Robert Balch and Brian McPherson
Energies 2023, 16(9), 3939; https://doi.org/10.3390/en16093939 - 6 May 2023
Cited by 2 | Viewed by 2676
Abstract
During the Development Phase of the U.S. Southwest Regional Partnership on Carbon Sequestration, supercritical CO2 was continuously injected into the deep oil-bearing Morrow B formation of the Farnsworth Unit in Texas for Enhanced Oil Recovery (EOR). The project injected approximately 94 kilotons [...] Read more.
During the Development Phase of the U.S. Southwest Regional Partnership on Carbon Sequestration, supercritical CO2 was continuously injected into the deep oil-bearing Morrow B formation of the Farnsworth Unit in Texas for Enhanced Oil Recovery (EOR). The project injected approximately 94 kilotons of CO2 to study geologic carbon storage during CO2-EOR. A three-dimensional (3D) surface seismic dataset was acquired in 2013 to characterize the subsurface structures of the Farnsworth site. Following this data acquisition, the baseline and three time-lapse three-dimensional three-component (3D-3C) vertical seismic profiling (VSP) data were acquired at a narrower surface area surrounding the CO2 injection and oil/gas production wells between 2014 and 2017 for monitoring CO2 injection and migration. With these VSP datasets, we inverted for subsurface velocity models to quantitatively monitor the CO2 plume within the Morrow B formation. We first built 1D initial P-wave (Vp) and S-wave (Vs) velocity models by upscaling the sonic logs. We improved the deep region of the Vp and Vs models by incorporating the deep part of a migration velocity model derived from the 3D surface seismic data. We improved the shallow region of 3D Vp and Vs models using 3D traveltime tomography of first arrivals of VSP downgoing waves. We further improved the 3D baseline velocity models using elastic-waveform inversion (EWI) of the 3D baseline VSP upgoing data. Our advanced EWI method employs alternative tomographic and conventional gradients and total-variation-based regularization to ensure the high-fidelity updates of the 3D baseline Vp and Vs models. We then sequentially applied our 3D EWI method to the three time-lapse datasets to invert for spatiotemporal changes of Vp and Vs in the reservoir. Our inversion results reveal the volumetric changes of the time-lapse Vp and Vs models and show the evolution of the CO2 plume from the CO2 injection well to the oil/gas production wells. Full article
(This article belongs to the Special Issue Forecasting CO2 Sequestration with Enhanced Oil Recovery II)
Show Figures

Figure 1

19 pages, 4938 KB  
Article
Seismic Interferometry Method Based on Hierarchical Frequency Fusion and Its Application in Microtremor Survey
by Xingang Mou, Xingyuan Wan, Hongyue Liu, Jinhuo Zheng, Xiao Zhou and Bin Zhou
Appl. Sci. 2023, 13(8), 4840; https://doi.org/10.3390/app13084840 - 12 Apr 2023
Viewed by 1908
Abstract
Site velocity structure determination and stratigraphic division are important purposes of microtremor survey, and the precision of dispersion curves is an important factor affecting the accuracy of microtremor survey. In order to obtain more accurate dispersion curve and S-wave velocity structure, this paper [...] Read more.
Site velocity structure determination and stratigraphic division are important purposes of microtremor survey, and the precision of dispersion curves is an important factor affecting the accuracy of microtremor survey. In order to obtain more accurate dispersion curve and S-wave velocity structure, this paper proposed a dispersion curve processing method based on hierarchical frequency fusion of seismic interferometry. Analysis was performed on the link between station pair spacing and frequency component of the collected microtremor signal dependability and exploration depth. A mathematical model of station distances and reliable frequencies of the dispersion curves were achieved through a hierarchical relationship between station distances. Then, a fusion criterion was proposed to determine the fusion boundary based on the reliable frequency, and the dispersion curves of station pairs with different distances were fused to obtain the final dispersion curve. Finally, a more accurate velocity structure was obtained through s-wave velocity conversion from shallow layers to deep ones. The method was applied to the microtremor survey of the proposed high-rise building site in Xiamen. The rectangular observation array was arranged, and the dispersion curves were extracted and processed using hierarchical frequency fusion and traditional superimposed averaging method, and the S-wave velocity and stratigraphic structure were obtained. The experimental results show that the S-wave velocity and stratigraphic structure obtained using the hierarchical frequency fusion method are in better agreement with the borehole results than the superimposed averaging method, which shows its effectiveness and application prospect. Full article
(This article belongs to the Special Issue State-of-the-Art Earth Sciences and Geography in China)
Show Figures

Figure 1

25 pages, 6911 KB  
Article
Quantitative Characterization of Shallow Marine Sediments in Tight Gas Fields of Middle Indus Basin: A Rational Approach of Multiple Rock Physics Diagnostic Models
by Muhammad Ali, Umar Ashraf, Peimin Zhu, Huolin Ma, Ren Jiang, Guo Lei, Jar Ullah, Jawad Ali, Hung Vo Thanh and Aqsa Anees
Processes 2023, 11(2), 323; https://doi.org/10.3390/pr11020323 - 18 Jan 2023
Cited by 18 | Viewed by 3766
Abstract
For the successful discovery and development of tight sand gas reserves, it is necessary to locate sand with certain features. These features must largely include a significant accumulation of hydrocarbons, rock physics models, and mechanical properties. However, the effective representation of such reservoir [...] Read more.
For the successful discovery and development of tight sand gas reserves, it is necessary to locate sand with certain features. These features must largely include a significant accumulation of hydrocarbons, rock physics models, and mechanical properties. However, the effective representation of such reservoir properties using applicable parameters is challenging due to the complicated heterogeneous structural characteristics of hydrocarbon sand. Rock physics modeling of sandstone reservoirs from the Lower Goru Basin gas fields represents the link between reservoir parameters and seismic properties. Rock physics diagnostic models have been utilized to describe the reservoir sands of two wells inside this Middle Indus Basin, including contact cement, constant cement, and friable sand. The results showed that sorting the grain and coating cement on the grain’s surface both affected the cementation process. According to the models, the cementation levels in the reservoir sands of the two wells ranged from 2% to more than 6%. The rock physics models established in the study would improve the understanding of characteristics for the relatively high Vp/Vs unconsolidated reservoir sands under study. Integrating rock physics models would improve the prediction of reservoir properties from the elastic properties estimated from seismic data. The velocity–porosity and elastic moduli-porosity patterns for the reservoir zones of the two wells are distinct. To generate a rock physics template (RPT) for the Lower Goru sand from the Early Cretaceous period, an approach based on fluid replacement modeling has been chosen. The ratio of P-wave velocity to S-wave velocity (Vp/Vs) and the P-impedance template can detect cap shale, brine sand, and gas-saturated sand with varying water saturation and porosity from wells in the Rehmat and Miano gas fields, both of which have the same shallow marine depositional characteristics. Conventional neutron-density cross-plot analysis matches up quite well with this RPT’s expected detection of water and gas sands. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery)
Show Figures

Figure 1

15 pages, 4609 KB  
Article
Estimation of Shallow Shear Velocity Structure in a Site with Weak Interlayer Based on Microtremor Array
by Cong Jin, Song Lin, Jing Wang, Hongwei Zhou and Miao Cheng
Appl. Sci. 2023, 13(1), 185; https://doi.org/10.3390/app13010185 - 23 Dec 2022
Cited by 1 | Viewed by 1945
Abstract
A site condition survey is extremely important for the seismic fortification of major projects. The distribution of underlying weak interlayer in sites is extremely harmful to buildings. However, it is a technical problem to find out the distribution of weak interlayer in the [...] Read more.
A site condition survey is extremely important for the seismic fortification of major projects. The distribution of underlying weak interlayer in sites is extremely harmful to buildings. However, it is a technical problem to find out the distribution of weak interlayer in the overburden. The shallow velocity structure can directly reflect the change characteristics of a stratigraphic structure. In this paper, acquisition of background noise is conducted using a microtremor linear array method, and the distribution characteristics of two typical stratigraphic structures in Wuhan, Hubei Province, are obtained through an inversion of the apparent S-wave velocity; meanwhile, the equivalent shear-wave velocity and the overburden thickness are estimated, which provides a basis for site classification. The research results are as follows: (1) The two-dimensional profile of the apparent S-wave velocity obtained by the microtremor linear array method can be used for fine imaging of the stratum with weak interlayer, and its distribution form and velocity structure characteristics are highly consistent with those of the drilling data. (2) Compared to the borehole data obtained through in situ test, the error of the overburden thickness and the equivalent shear-wave velocity estimated by the inversion of the apparent S-wave velocity is only about 10%, and the estimated parameters can be directly used for site classification. These results can provide important parameters for seismic fortification of major projects, and also provide reference for the exploration of unfavorable geological bodies, such as weak interlayer in complex urban areas, in the future, which can have good scientific significance and popularization value. Full article
(This article belongs to the Special Issue State-of-the-Art Earth Sciences and Geography in China)
Show Figures

Figure 1

20 pages, 11182 KB  
Article
Vs30 Structure of Almeria City (SE Spain) Using SPAC and MASW Methods and Proxy Correlations
by Fernando López, Manuel Navarro, Pedro Martínez-Pagán, Antonio García-Jerez, Jaruselsky Pérez-Cuevas and Takahisa Enomoto
Geosciences 2022, 12(11), 403; https://doi.org/10.3390/geosciences12110403 - 31 Oct 2022
Cited by 5 | Viewed by 2921
Abstract
The topographic slope method is an innovative, fast and very low-cost technique for estimating the average S-wave velocity in the upper 30 m (Vs30) based on the relationship between this quantity and the slope of the ground, obtained using a Digital [...] Read more.
The topographic slope method is an innovative, fast and very low-cost technique for estimating the average S-wave velocity in the upper 30 m (Vs30) based on the relationship between this quantity and the slope of the ground, obtained using a Digital Elevation Model (DEM). The method is based on the good linear correlations log(Vs30)–log(slope) found experimentally, which, ideally, should be determined for each region. If measured Vs30 data are not available to carry out this fitting for the study area, correlations from other areas could be used, although the reliability of the estimated Vs30 results would be lower. In this article, Vs30 observations are made for the city of Almeria, using Spatial Autocorrelation Surveys (SPAC) and Multichannel Analysis of Surface Waves (MASW), obtaining two types of fitting: (a) linear relationship log(Vs30)–log(slope); and (b) considering additional dependence on geological units. The reliability, evaluated by Multiple R-Squared (MRS), varies between 79.2% in the first case and 87.0% in the second, lowering the mean absolute values of the residuals at the observation points in the first case from 40.0 m/s to 29.0 m/s. Using a more generic correlation obtained for other areas of the world, the mean absolute residuals increase to 74.7 m/s. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

18 pages, 11710 KB  
Article
Frequency-Bessel Transform Based Microtremor Survey Method and Its Engineering Application
by Zhiwei You, Peifen Xu, Jing Qian, Lianpeng Cao, Yanan Du and Qiang Fu
Int. J. Environ. Res. Public Health 2022, 19(20), 13484; https://doi.org/10.3390/ijerph192013484 - 18 Oct 2022
Cited by 7 | Viewed by 2938
Abstract
The development and utilization of urban underground space depend heavily on an understanding of urban geological conditions. The microtremor survey method is essential in urban geological surveys due to its quickness, convenience, non-destructiveness, and interference resistance. Since only the fundamental dispersion curves of [...] Read more.
The development and utilization of urban underground space depend heavily on an understanding of urban geological conditions. The microtremor survey method is essential in urban geological surveys due to its quickness, convenience, non-destructiveness, and interference resistance. Since only the fundamental dispersion curves of Rayleigh waves can be obtained by utilizing the spatial autocorrelation method, the inversion results have multiple solutions. To improve the accuracy of the microtremor survey, this study employed the frequency-Bessel transform to extract the fundamental and higher modes of dispersion information of Rayleigh waves from the microtremor data array and verified the effectiveness of this method by synthesizing theoretical microtremor signals. Additionally, taking into account the order identification challenges brought on by mode jumps or missing modes in the dispersion curve, this study processed a multi-mode dispersion curve based on the newly proposed inversion objective function coupled with a genetic algorithm to obtain a shallow surface S-wave velocity structure. Compared to the traditional inversion objective function, the new function presented in this study could address mode misidentification more effectively and improved the accuracy of inversion calculations. Finally, the applicability and dependability of the frequency-Bessel-transform-based microtremor survey method were evaluated in a practical engineering case. Full article
Show Figures

Figure 1

15 pages, 2901 KB  
Article
Seismic Imaging of Complex Velocity Structures by 2D Pseudo-Viscoelastic Time-Domain Full-Waveform Inversion
by Niloofar Alaei, Mehrdad Soleimani Monfared, Amin Roshandel Kahoo and Thomas Bohlen
Appl. Sci. 2022, 12(15), 7741; https://doi.org/10.3390/app12157741 - 1 Aug 2022
Cited by 11 | Viewed by 3138
Abstract
In the presented study, multi-parameter inversion in the presence of attenuation is used for the reconstruction of the P- and the S- wave velocities and the density models of a synthetic shallow subsurface structure that contains a dipping high-velocity layer near the surface [...] Read more.
In the presented study, multi-parameter inversion in the presence of attenuation is used for the reconstruction of the P- and the S- wave velocities and the density models of a synthetic shallow subsurface structure that contains a dipping high-velocity layer near the surface with varying thicknesses. The problem of high-velocity layers also complicates selection of an appropriate initial velocity model. The forward problem is solved with the finite difference, and the inverse problem is solved with the preconditioned conjugate gradient. We used also the adjoint wavefield approach for computing the gradient of the misfit function without explicitly build the sensitivity matrix. The proposed method is capable of either minimizing the least-squares norm of the data misfit or use the Born approximation for estimating partial derivative wavefields. It depends on which characteristics of the recorded data—such as amplitude, phase, logarithm of the complex-valued data, envelope in the misfit, or the linearization procedure of the inverse problem—are used. It showed that by a pseudo-viscoelastic time-domain full-waveform inversion, structures below the high-velocity layer can be imaged. However, by inverting attenuation of P- and S- waves simultaneously with the velocities and mass density, better results would be obtained. Full article
(This article belongs to the Special Issue Advancing Complexity Research in Earth Sciences and Geography)
Show Figures

Figure 1

17 pages, 53665 KB  
Article
Shallow Crustal Structure of S-Wave Velocities in the Coastal Area of South China Constrained by Receiver Function Amplitudes
by Xin Zhang, Yinping Qian, Xuzhang Shen, He Huang and Haibin Chai
Remote Sens. 2022, 14(12), 2760; https://doi.org/10.3390/rs14122760 - 8 Jun 2022
Cited by 3 | Viewed by 2596
Abstract
As a traditional method, passive seismic exploration is used to construct the body-wave velocity structure of the upper crust, but it is cost-ineffective and depth-limited when applied to large areas. In this study, we use another more economical method to determine the S-wave [...] Read more.
As a traditional method, passive seismic exploration is used to construct the body-wave velocity structure of the upper crust, but it is cost-ineffective and depth-limited when applied to large areas. In this study, we use another more economical method to determine the S-wave velocity (SWV) of the upper crust based on the principle that the amplitude of the direct P-wave on the teleseismic receiver function is sensitive to the upper crust. Using the amplitudes of the massive receiver functions from permanent broadband seismic stations, the SWV structure of the upper crust is obtained in the coastal area of South China (CASC). A pattern of high to low SWVs is exhibited across the study area, with SWVs varying about 2.5–3.7 km/s from west to east. In the profile parallel to the coastline, lateral variations in the SWV correspond to the fault zone, indicating that the cutting depth of most coastal faults is approximately 10 km. Referring to previous studies, we deduce that the low SWV in most sub-areas can be interpreted as the joint effect of the sedimentary layer of the alluvial plain and the accumulation of underground heat flows, in addition to multistage fracturing tectonism. Moreover, the gradual change in the SWV in each profile from the surface to approximately 10 km is correlated with multiple invasions and the coverage of volcanic rocks, to a certain extent. Full article
Show Figures

Figure 1

12 pages, 35566 KB  
Article
Internal Solitary Wave Activities near the Indonesian Submarine Wreck Site Inferred from Satellite Images
by Tongxin Wang, Xiaodong Huang, Wei Zhao, Shihao Zheng, Yunchao Yang and Jiwei Tian
J. Mar. Sci. Eng. 2022, 10(2), 197; https://doi.org/10.3390/jmse10020197 - 1 Feb 2022
Cited by 36 | Viewed by 4185
Abstract
In the early morning of 21 April 2021 local time, the Indonesian Navy submarine KRI nanggala-402 crashed in the Bali Sea (BS). As internal solitary waves (ISWs) are a great threat to submarine navigation, this paper analyzes the characteristics of ISWs in the [...] Read more.
In the early morning of 21 April 2021 local time, the Indonesian Navy submarine KRI nanggala-402 crashed in the Bali Sea (BS). As internal solitary waves (ISWs) are a great threat to submarine navigation, this paper analyzes the characteristics of ISWs in the BS by surveying satellite remote sensing images collected from 12–21 April 2021. The satellite images revealed active ISWs in the BS near the submarine wreck site with crest lengths approaching 200 km. Originating from the Lombok Strait (LS), the waves travelled northwestward across the BS deep basin, passed through the submarine wreck site, and shoaled onto the continental shelf west of the Kangean Islands, during which process, the propagation speed reached 2.69 m/s in the deep basin and 0.71 m/s in the shallow water. Based on the satellite images, the wave amplitude near the wreck site was reconstructed to be 41 m, and the reconstructed underwater wave structure showed a maximum vertical velocity of 10 cm/s. Satellite images also demonstrated the near-source evidence of ISWs near the Nusa Penida sill of the LS, and their generation were estimated to be related to the southward tidal current troughs. Full article
Show Figures

Figure 1

Back to TopTop