Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = sestrin 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2157 KiB  
Article
Antioxidant, Osteogenic, and Neuroprotective Effects of Homotaurine in Aging and Parkinson’s Disease Models
by Arianna Minoia, Francesca Cristiana Piritore, Silvia Bolognin, João Pessoa, Bruno Bernardes de Jesus, Natascia Tiso, Maria Grazia Romanelli, Jens Christian Schwamborn, Luca Dalle Carbonare and Maria Teresa Valenti
Antioxidants 2025, 14(3), 249; https://doi.org/10.3390/antiox14030249 - 21 Feb 2025
Cited by 1 | Viewed by 1159
Abstract
Aging is associated with the accumulation of cellular damage due to oxidative stress and chronic low-grade inflammation, collectively referred to as “inflammaging”. This contributes to the functional decline in various tissues, including the brain and skeletal system, which closely interplay. Mesenchymal stem cells [...] Read more.
Aging is associated with the accumulation of cellular damage due to oxidative stress and chronic low-grade inflammation, collectively referred to as “inflammaging”. This contributes to the functional decline in various tissues, including the brain and skeletal system, which closely interplay. Mesenchymal stem cells (MSCs), known for their regenerative potential and ability to modulate inflammation, offer a promising therapeutic approach to counteract aging-related declines. In this study, we investigated the effects of homotaurine (a small molecule with neuroprotective properties) on MSCs and its effects on osteogenesis. We found that homotaurine treatment significantly reduced reactive oxygen species (ROS) levels, improved MSC viability, and modulated key stress response pathways, including the sestrin 1 and p21 proteins. Furthermore, homotaurine promoted osteogenesis and angiogenesis in zebrafish models by enhancing the expression of critical osteogenesis-associated genes, such as those coding for β-catenin and Runt-related transcription factor 2 (Runx2), and increasing the levels of the kinase insert domain receptor-like angiogenesis marker in aged zebrafish. In Parkinson’s disease models using patient-specific midbrain organoids with the leucine-rich repeat kinase 2 G2019S mutation, homotaurine treatment enhanced β-catenin expression and reduced ROS levels, highlighting its potential to counteract the oxidative stress and dysfunctional signaling pathways associated with neurodegeneration. Our findings suggest that homotaurine not only offers neuroprotective benefits but also holds promise as a dual-target therapeutic strategy for enhancing both neuronal and bone homeostasis in aging and neurodegenerative diseases. Full article
(This article belongs to the Special Issue Oxidative Stress in Age-Related Diseases)
Show Figures

Figure 1

17 pages, 3824 KiB  
Article
Developing a Tanshinone IIA Memetic by Targeting MIOS to Regulate mTORC1 and Autophagy in Glioblastoma
by Sonia Shinhmar, Judith Schaf, Katie Lloyd Jones, Olivier E. Pardo, Philip Beesley and Robin S. B. Williams
Int. J. Mol. Sci. 2024, 25(12), 6586; https://doi.org/10.3390/ijms25126586 - 14 Jun 2024
Cited by 1 | Viewed by 1527
Abstract
Tanshinone IIA (T2A) is a bioactive compound that provides promise in the treatment of glioblastoma multiforme (GBM), with a range of molecular mechanisms including the inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy. Recently, T2A has [...] Read more.
Tanshinone IIA (T2A) is a bioactive compound that provides promise in the treatment of glioblastoma multiforme (GBM), with a range of molecular mechanisms including the inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy. Recently, T2A has been demonstrated to function through sestrin 2 (SESN) to inhibit mTORC1 activity, but its possible impact on autophagy through this pathway has not been investigated. Here, the model system Dictyostelium discoideum and GBM cell lines were employed to investigate the cellular role of T2A in regulating SESN to inhibit mTORC1 and activate autophagy through a GATOR2 component MIOS. In D. discoideum, T2A treatment induced autophagy and inhibited mTORC1 activity, with both effects lost upon the ablation of SESN (sesn-) or MIOS (mios-). We further investigated the targeting of MIOS to reproduce this effect of T2A, where computational analysis identified 25 novel compounds predicted to strongly bind the human MIOS protein, with one compound (MIOS inhibitor 3; Mi3) reducing cell proliferation in two GBM cells. Furthermore, Mi3 specificity was demonstrated through the loss of potency in the D. discoideum mios- cells regarding cell proliferation and the induction of autophagy. In GBM cells, Mi3 treatment also reduced mTORC1 activity and induced autophagy. Thus, a potential T2A mimetic showing the inhibition of mTORC1 and induction of autophagy in GBM cells was identified. Full article
Show Figures

Graphical abstract

8 pages, 469 KiB  
Article
Evaluation of Serum Sestrin 2 Levels in Patients Diagnosed with Endometrial Polyps and Uterine Leiomyomas
by Teymur Bornaun, Selim Akkaya and Hamid Zafer Güven
J. Clin. Med. 2024, 13(12), 3413; https://doi.org/10.3390/jcm13123413 - 11 Jun 2024
Viewed by 1400
Abstract
Background/Objectives: This study investigates the correlation between the serum levels of Sestrin 2 and the presence of endometrial polyps or uterine leiomyomas, aiming to enhance the understanding of the pathophysiology underlying these gynecological conditions and evaluate the potential of Sestrin 2 as an [...] Read more.
Background/Objectives: This study investigates the correlation between the serum levels of Sestrin 2 and the presence of endometrial polyps or uterine leiomyomas, aiming to enhance the understanding of the pathophysiology underlying these gynecological conditions and evaluate the potential of Sestrin 2 as an early diagnostic biomarker. Methods: In a prospective case-control format, patients with preliminary diagnoses of endometrial polyps or uterine leiomyomas confirmed by histopathological analysis following surgery were included. This study analyzed serum Sestrin 2 levels across different patient groups, revealing significant variations that underscore the diagnostic value of Sestrin 2. Results: Elevated serum Sestrin 2 levels were observed in patients with endometrial polyps and uterine leiomyomas compared to the control group, suggesting its utility as a novel marker for early detection. Conclusions: The study indicates the promising role of serum Sestrin 2 levels as a valuable biomarker for early diagnosis of endometrial polyps and uterine leiomyomas, advocating for further research into its diagnostic and therapeutic potential. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

13 pages, 2341 KiB  
Article
Carnosic Acid against Lung Cancer: Induction of Autophagy and Activation of Sestrin-2/LKB1/AMPK Signalling
by Eric J. O’Neill, Newman Siu Kwan Sze, Rebecca E. K. MacPherson and Evangelia Tsiani
Int. J. Mol. Sci. 2024, 25(4), 1950; https://doi.org/10.3390/ijms25041950 - 6 Feb 2024
Cited by 9 | Viewed by 3023
Abstract
Non-small cell lung cancer (NSCLC) represents 80% of all lung cancer cases and is characterized by low survival rates due to chemotherapy and radiation resistance. Novel treatment strategies for NSCLC are urgently needed. Liver kinase B1 (LKB1), a tumor suppressor prevalently mutated in [...] Read more.
Non-small cell lung cancer (NSCLC) represents 80% of all lung cancer cases and is characterized by low survival rates due to chemotherapy and radiation resistance. Novel treatment strategies for NSCLC are urgently needed. Liver kinase B1 (LKB1), a tumor suppressor prevalently mutated in NSCLC, activates AMP-activated protein kinase (AMPK) which in turn inhibits mammalian target of rapamycin complex 1 (mTORC1) and activates unc-51 like autophagy activating kinase 1 (ULK1) to promote autophagy. Sestrin-2 is a stress-induced protein that enhances LKB1-dependent activation of AMPK, functioning as a tumor suppressor in NSCLC. In previous studies, rosemary (Rosmarinus officinalis) extract (RE) activated the AMPK pathway while inhibiting mTORC1 to suppress proliferation, survival, and migration, leading to the apoptosis of NSCLC cells. In the present study, we investigated the anticancer potential of carnosic acid (CA), a bioactive polyphenolic diterpene compound found in RE. The treatment of H1299 and H460 NSCLC cells with CA resulted in concentration and time-dependent inhibition of cell proliferation assessed with crystal violet staining and 3H-thymidine incorporation, and concentration-dependent inhibition of survival, assessed using a colony formation assay. Additionally, CA induced apoptosis of H1299 cells as indicated by decreased B-cell lymphoma 2 (Bcl-2) levels, increased cleaved caspase-3, -7, poly (ADP-ribose) polymerase (PARP), Bcl-2-associated X protein (BAX) levels, and increased nuclear condensation. These antiproliferative and proapoptotic effects coincided with the upregulation of sestrin-2 and the phosphorylation/activation of LKB1 and AMPK. Downstream of AMPK signaling, CA increased levels of autophagy marker light chain 3 (LC3), an established marker of autophagy; inhibiting autophagy with 3-methyladenine (3MA) blocked the antiproliferative effect of CA. Overall, these data indicate that CA can inhibit NSCLC cell viability and that the underlying mechanism of action of CA involves the induction of autophagy through a Sestrin-2/LKB1/AMPK signaling cascade. Future experiments will use siRNA and small molecule inhibitors to better elucidate the role of these signaling molecules in the mechanism of action of CA as well as tumor xenograft models to assess the anticancer properties of CA in vivo. Full article
(This article belongs to the Special Issue Anticancer Activity of Natural Products and Related Compounds)
Show Figures

Graphical abstract

15 pages, 9555 KiB  
Article
Tyrosine Is a Booster of Leucine-Induced Muscle Anabolic Response
by Kotaro Tamura, Hidefumi Kitazawa, Satoshi Sugita, Kohjiro Hashizume, Masazumi Iwashita, Takaaki Ishigami, Yoshihiko Minegishi, Akira Shimotoyodome and Noriyasu Ota
Nutrients 2024, 16(1), 84; https://doi.org/10.3390/nu16010084 - 26 Dec 2023
Cited by 1 | Viewed by 3156
Abstract
Leucine (Leu), an essential amino acid, is known to stimulate protein synthesis in the skeletal muscle via mTOR complex 1 (mTORC1) activation. However, the intrinsic contribution of other amino acids to Leu-mediated activation of mTORC1 signaling remains unexplored. This study aimed to identify [...] Read more.
Leucine (Leu), an essential amino acid, is known to stimulate protein synthesis in the skeletal muscle via mTOR complex 1 (mTORC1) activation. However, the intrinsic contribution of other amino acids to Leu-mediated activation of mTORC1 signaling remains unexplored. This study aimed to identify amino acids that can promote mTORC1 activity in combination with Leu and to assess the effectiveness of these combinations in vitro and in vivo. We found that tyrosine (Tyr) enhanced Leu-induced phosphorylation of S6 kinase (S6K), an indicator of mTORC1 activity, although it exerted no such effect individually. This booster effect was observed in C2C12 cells, isolated murine muscle, and the skeletal muscles of mice orally administered the amino acids. To explore the molecular mechanisms underlying this Tyr-mediated booster effect, the expression of the intracellular Leu sensors, Sestrin1 and 2, was suppressed, and the cells were treated with Leu and Tyr. This suppression enabled Tyr alone to induce S6K phosphorylation and enhanced the booster effect, suggesting that Tyr possibly contributes to mTORC1 activation when Sestrin-GAP activity toward Rags 2 (GATOR2) is dissociated through Sestrin knockdown or the binding of Sestrins to Leu. Collectively, these results indicate that Tyr is a key regulator of Leu-mediated protein synthesis. Full article
(This article belongs to the Special Issue Protein, Amino Acids, and Healthspan)
Show Figures

Figure 1

14 pages, 2171 KiB  
Review
The Important Role of Protein Kinases in the p53 Sestrin Signaling Pathway
by Karsten Gülow, Deniz Tümen and Claudia Kunst
Cancers 2023, 15(22), 5390; https://doi.org/10.3390/cancers15225390 - 13 Nov 2023
Cited by 7 | Viewed by 2470
Abstract
p53, a crucial tumor suppressor and transcription factor, plays a central role in the maintenance of genomic stability and the orchestration of cellular responses such as apoptosis, cell cycle arrest, and DNA repair in the face of various stresses. Sestrins, a group of [...] Read more.
p53, a crucial tumor suppressor and transcription factor, plays a central role in the maintenance of genomic stability and the orchestration of cellular responses such as apoptosis, cell cycle arrest, and DNA repair in the face of various stresses. Sestrins, a group of evolutionarily conserved proteins, serve as pivotal mediators connecting p53 to kinase-regulated anti-stress responses, with Sestrin 2 being the most extensively studied member of this protein family. These responses involve the downregulation of cell proliferation, adaptation to shifts in nutrient availability, enhancement of antioxidant defenses, promotion of autophagy/mitophagy, and the clearing of misfolded proteins. Inhibition of the mTORC1 complex by Sestrins reduces cellular proliferation, while Sestrin-dependent activation of AMP-activated kinase (AMPK) and mTORC2 supports metabolic adaptation. Furthermore, Sestrin-induced AMPK and Unc-51-like protein kinase 1 (ULK1) activation regulates autophagy/mitophagy, facilitating the removal of damaged organelles. Moreover, AMPK and ULK1 are involved in adaptation to changing metabolic conditions. ULK1 stabilizes nuclear factor erythroid 2-related factor 2 (Nrf2), thereby activating antioxidative defenses. An understanding of the intricate network involving p53, Sestrins, and kinases holds significant potential for targeted therapeutic interventions, particularly in pathologies like cancer, where the regulatory pathways governed by p53 are often disrupted. Full article
(This article belongs to the Special Issue Protein Kinases and Pseudokinases in Cancers)
Show Figures

Figure 1

20 pages, 66915 KiB  
Article
Empagliflozin Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats by Modulating Sesn2/AMPK/Nrf2 Signaling and Targeting Ferroptosis and Autophagy
by Hemat El-Sayed El-Horany, Marwa Mohamed Atef, Muhammad Tarek Abdel Ghafar, Mohamed. H. Fouda, Nahla Anas Nasef, Islam Ibrahim Hegab, Duaa S. Helal, Walaa Elseady, Yasser Mostafa Hafez, Rasha Youssef Hagag, Monira Abdelmoaty Seleem, Mai Mahmoud Saleh, Doaa A. Radwan, Amal Ezzat Abd El-Lateef and Rania Nagi Abd-Ellatif
Int. J. Mol. Sci. 2023, 24(11), 9481; https://doi.org/10.3390/ijms24119481 - 30 May 2023
Cited by 41 | Viewed by 6013
Abstract
Pulmonary fibrosis (PF) is a life-threatening disorder that severely disrupts normal lung architecture and function, resulting in severe respiratory failure and death. It has no definite treatment. Empagliflozin (EMPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has protective potential in PF. However, the mechanisms [...] Read more.
Pulmonary fibrosis (PF) is a life-threatening disorder that severely disrupts normal lung architecture and function, resulting in severe respiratory failure and death. It has no definite treatment. Empagliflozin (EMPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has protective potential in PF. However, the mechanisms underlying these effects require further elucidation. Therefore, this study aimed to evaluate the ameliorative effect of EMPA against bleomycin (BLM)-induced PF and the potential mechanisms. Twenty-four male Wister rats were randomly divided into four groups: control, BLM treated, EMPA treated, and EMPA+BLM treated. EMPA significantly improved the histopathological injuries illustrated by both hematoxylin and eosin and Masson’s trichrome-stained lung tissue sections, as confirmed by electron microscopic examination. It significantly reduced the lung index, hydroxyproline content, and transforming growth factor β1 levels in the BLM rat model. It had an anti-inflammatory effect, as evidenced by a decrease in the inflammatory cytokines’ tumor necrosis factor alpha and high mobility group box 1, inflammatory cell infiltration into the bronchoalveolar lavage fluid, and the CD68 immunoreaction. Furthermore, EMPA mitigated oxidative stress, DNA fragmentation, ferroptosis, and endoplasmic reticulum stress, as evidenced by the up-regulation of nuclear factor erythroid 2-related factor expression, heme oxygenase-1 activity, glutathione peroxidase 4 levels, and a decrease in C/EBP homologous protein levels. This protective potential could be explained on the basis of autophagy induction via up-regulating lung sestrin2 expression and the LC3 II immunoreaction observed in this study. Our findings indicated that EMPA protected against BLM-induced PF-associated cellular stress by enhancing autophagy and modulating sestrin2/adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2/heme oxygenase 1 signaling. Full article
Show Figures

Figure 1

14 pages, 6061 KiB  
Article
SESN2 Could Be a Potential Marker for Diagnosis and Prognosis in Glioma
by Lingdan Xu, Zelin Liu, Huihui Wang, Jiyuan Lu, Jia Xu, Yucheng Meng, Ke Huang and Bin Liu
Genes 2023, 14(3), 701; https://doi.org/10.3390/genes14030701 - 12 Mar 2023
Cited by 6 | Viewed by 2833
Abstract
(1) Background: Glioma is among the most common brain tumors, and is difficult to eradicate with current therapeutic strategies due to its highly invasive and aggressive characteristics. Sestrin2 (SESN2) is an autophagy inducer. The effect of SESN2 on glioma is controversial [...] Read more.
(1) Background: Glioma is among the most common brain tumors, and is difficult to eradicate with current therapeutic strategies due to its highly invasive and aggressive characteristics. Sestrin2 (SESN2) is an autophagy inducer. The effect of SESN2 on glioma is controversial and unclear. (2) Methods: We downloaded related RNA-seq data from the TCGA and GTEx databases. Bioinformatic analyses including differential gene expression analysis, KM survival curve analysis, univariate and multivariate Cox regression analyses, nomogram analysis, ROC curve analysis, gene function enrichment analysis, and immune cell infiltration analysis were conducted. In addition, data from the Human Protein Atlas (HPA) database were collected to validate SESN2 expression in glioma. (3) Results: In comparison with normal tissue, expression of SESN2 in glioma tissue was higher, and those with higher expressions had significantly lower overall survival rates. The results of univariate Cox regression analyses showed that SESN2 can be a disadvantageous factor in poor glioma prognosis. Both nomograms and ROC curves confirmed these findings. Meanwhile, according to gene function analysis, SESN2 may be involved in immune responses and the tumor microenvironment (TME). Based on the HPA database results, SESN2 is localized in the cytosol and shows high expression in glioma. (4) Conclusions: The expression of SESN2 in gliomas was positively relevant to a poorer prognosis, suggesting that SESN2 could be used as a prognostic gene. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 1291 KiB  
Article
Weighted Single-Step GWAS Identifies Genes Influencing Fillet Color in Rainbow Trout
by Ridwan O. Ahmed, Ali Ali, Rafet Al-Tobasei, Tim Leeds, Brett Kenney and Mohamed Salem
Genes 2022, 13(8), 1331; https://doi.org/10.3390/genes13081331 - 26 Jul 2022
Cited by 12 | Viewed by 3544
Abstract
The visual appearance of the fish fillet is a significant determinant of consumers’ purchase decisions. Depending on the rainbow trout diet, a uniform bright white or reddish/pink fillet color is desirable. Factors affecting fillet color are complex, ranging from the ability of live [...] Read more.
The visual appearance of the fish fillet is a significant determinant of consumers’ purchase decisions. Depending on the rainbow trout diet, a uniform bright white or reddish/pink fillet color is desirable. Factors affecting fillet color are complex, ranging from the ability of live fish to accumulate carotenoids in the muscle to preharvest environmental conditions, early postmortem muscle metabolism, and storage conditions. Identifying genetic markers of fillet color is a desirable goal but a challenging task for the aquaculture industry. This study used weighted, single-step GWAS to explore the genetic basis of fillet color variation in rainbow trout. We identified several SNP windows explaining up to 3.5%, 2.5%, and 1.6% of the additive genetic variance for fillet redness, yellowness, and whiteness, respectively. SNPs are located within genes implicated in carotenoid metabolism (β,β-carotene 15,15′-dioxygenase, retinol dehydrogenase) and myoglobin homeostasis (ATP synthase subunit β, mitochondrial (ATP5F1B)). These genes are involved in processes that influence muscle pigmentation and postmortem flesh coloration. Other identified genes are involved in the maintenance of muscle structural integrity (kelch protein 41b (klh41b), collagen α-1(XXVIII) chain (COL28A1), and cathepsin K (CTSK)) and protection against lipid oxidation (peroxiredoxin, superoxide dismutase 2 (SOD2), sestrin-1, Ubiquitin carboxyl-terminal hydrolase-10 (USP10)). A-to-G single-nucleotide polymorphism in β,β-carotene 15,15′-dioxygenase, and USP10 result in isoleucine-to-valine and proline-to-leucine non-synonymous amino acid substitutions, respectively. Our observation confirms that fillet color is a complex trait regulated by many genes involved in carotenoid metabolism, myoglobin homeostasis, protection against lipid oxidation, and maintenance of muscle structural integrity. The significant SNPs identified in this study could be prioritized via genomic selection in breeding programs to improve fillet color in rainbow trout. Full article
(This article belongs to the Special Issue Functional Genomics in Aquaculture)
Show Figures

Figure 1

11 pages, 1980 KiB  
Article
Hypertrophy of Rat Skeletal Muscle Is Associated with Increased SIRT1/Akt/mTOR/S6 and Suppressed Sestrin2/SIRT3/FOXO1 Levels
by Zoltan Gombos, Erika Koltai, Ferenc Torma, Peter Bakonyi, Attila Kolonics, Dora Aczel, Tamas Ditroi, Peter Nagy, Takuji Kawamura and Zsolt Radak
Int. J. Mol. Sci. 2021, 22(14), 7588; https://doi.org/10.3390/ijms22147588 - 15 Jul 2021
Cited by 13 | Viewed by 4606
Abstract
Despite the intensive investigation of the molecular mechanism of skeletal muscle hypertrophy, the underlying signaling processes are not completely understood. Therefore, we used an overload model, in which the main synergist muscles (gastrocnemius, soleus) of the plantaris muscle were surgically removed, to cause [...] Read more.
Despite the intensive investigation of the molecular mechanism of skeletal muscle hypertrophy, the underlying signaling processes are not completely understood. Therefore, we used an overload model, in which the main synergist muscles (gastrocnemius, soleus) of the plantaris muscle were surgically removed, to cause a significant overload in the remaining plantaris muscle of 8-month-old Wistar male rats. SIRT1-associated pro-anabolic, pro-catabolic molecular signaling pathways, NAD and H2S levels of this overload-induced hypertrophy were studied. Fourteen days of overload resulted in a significant 43% (p < 0.01) increase in the mass of plantaris muscle compared to sham operated animals. Cystathionine-β-synthase (CBS) activities and bioavailable H2S levels were not modified by overload. On the other hand, overload-induced hypertrophy of skeletal muscle was associated with increased SIRT1 (p < 0.01), Akt (p < 0.01), mTOR, S6 (p < 0.01) and suppressed sestrin 2 levels (p < 0.01), which are mostly responsible for anabolic signaling. Decreased FOXO1 and SIRT3 signaling (p < 0.01) suggest downregulation of protein breakdown and mitophagy. Decreased levels of NAD+, sestrin2, OGG1 (p < 0.01) indicate that the redox milieu of skeletal muscle after 14 days of overloading is reduced. The present investigation revealed novel cellular interactions that regulate anabolic and catabolic processes in the hypertrophy of skeletal muscle. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 2595 KiB  
Article
Pharmacokinetic Analysis of Carnosic Acid and Carnosol in Standardized Rosemary Extract and the Effect on the Disease Activity Index of DSS-Induced Colitis
by Jacob P. Veenstra, Bhaskar Vemu, Restituto Tocmo, Mirielle C. Nauman and Jeremy J. Johnson
Nutrients 2021, 13(3), 773; https://doi.org/10.3390/nu13030773 - 27 Feb 2021
Cited by 25 | Viewed by 4688
Abstract
Rosemary extract (RE) is an approved food preservative in the European Union and contains dietary phytochemicals that are beneficial for gastrointestinal health. This study investigated the effects of RE on dextran sodium sulfate (DSS)-induced colitis and also determined the pharmacokinetics of dietary phytochemicals [...] Read more.
Rosemary extract (RE) is an approved food preservative in the European Union and contains dietary phytochemicals that are beneficial for gastrointestinal health. This study investigated the effects of RE on dextran sodium sulfate (DSS)-induced colitis and also determined the pharmacokinetics of dietary phytochemicals administered to mice via oral gavage. Individual components of rosemary extract were separated and identified by LC–MS/MS. The pharmacokinetics of two major diterpenes from RE, carnosic acid (CA) and carnosol (CL), administered to mice via oral gavage were determined. Then, the effect of RE pre-treatment on the disease activity index (DAI) of DSS-induced colitis in mice was investigated. The study determined that 100 mg/kg RE significantly improved DAI in DSS-induced colitis compared to negative control. Sestrin 2 protein expression, which increased with DSS exposure, was reduced with RE treatment. Intestinal barrier integrity was also shown to improve via fluorescein isothiocyanate (FITC)–dextran administration and Western blot of zonula occludens-1 (ZO-1), a tight junction protein. Rosemary extract was able to improve the DAI of DSS-induced colitis in mice at a daily dose of 100 mg/kg and showed improvement in the intestinal barrier integrity. This study suggests that RE can be an effective preventative agent against IBD. Full article
(This article belongs to the Special Issue Bioactive Compounds and Chronic Inflammation)
Show Figures

Figure 1

18 pages, 3714 KiB  
Article
Transcriptome Analysis of Caco-2 Cells upon the Exposure of Mycotoxin Deoxynivalenol and Its Acetylated Derivatives
by Yuyun He, Xiaoyao Yin, Jingjing Dong, Qing Yang, Yongning Wu and Zhiyong Gong
Toxins 2021, 13(2), 167; https://doi.org/10.3390/toxins13020167 - 22 Feb 2021
Cited by 23 | Viewed by 4089
Abstract
Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) are type B trichothecenes; one of the major pollutants in food and feed products. Although the toxicity of DON has been well documented, information on the toxicity of its acetylated derivative remains incomplete. To acquire more [...] Read more.
Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) are type B trichothecenes; one of the major pollutants in food and feed products. Although the toxicity of DON has been well documented, information on the toxicity of its acetylated derivative remains incomplete. To acquire more detailed insight into 3-ADON and 15-ADON, Caco-2 cells under 0.5 µM DON, 3-ADON and 15-ADON treatment for 24 h were subjected to RNA-seq analysis. In the present study, 2656, 3132 and 2425 differentially expressed genes (DEGs) were selected, respectively, and were enriched utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) database. The upregulation of ataxia-telangiectasia mutated kinase (ATM), WEE1 homolog 2 (WEE2) and downregulation of proliferating cell nuclear antigen (PCNA), minichromosome maintenance (MCMs), cyclin dependent kinase (CDKs), and E2Fs indicate that the three toxins induced DNA damage, inhibition of DNA replication and cell cycle arrest in Caco-2 cells. Additionally, the upregulation of sestrin (SENEs) and NEIL1 implied that the reason for DNA damage may be attributable to oxidative stress. Our study provides insight into the toxic mechanism of 3-ADON and 15-ADON. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

16 pages, 2443 KiB  
Article
miR-378a-3p Participates in Metformin’s Mechanism of Action on C2C12 Cells under Hyperglycemia
by Ivo F. Machado, João S. Teodoro, Ana C. Castela, Carlos M. Palmeira and Anabela P. Rolo
Int. J. Mol. Sci. 2021, 22(2), 541; https://doi.org/10.3390/ijms22020541 - 7 Jan 2021
Cited by 10 | Viewed by 3519
Abstract
Metformin is the most used biguanide drug for the treatment of type 2 diabetes mellitus. Despite being mostly known for its hepatic anti-gluconeogenic effect, it is also known to modulate microRNAs (miRNAs, miRs) associated with metabolic diseases. The latter mechanism could be relevant [...] Read more.
Metformin is the most used biguanide drug for the treatment of type 2 diabetes mellitus. Despite being mostly known for its hepatic anti-gluconeogenic effect, it is also known to modulate microRNAs (miRNAs, miRs) associated with metabolic diseases. The latter mechanism could be relevant for better understanding metformin’s mechanisms underlying its biological effects. In the current work, we found that metformin increases miR-378a-3p expression (p < 0.002) in C2C12 myoblasts previously exposed to hyperglycemic conditions. While the inhibition of miR-378a-3p was shown to impair metformin’s effect in ATP production, PEPCK activity and the expression of Tfam. Finally, mitophagy, an autophagic process responsible for the selective degradation of mitochondria, was found to be induced by miR-378a-3p (p < 0.04). miR-378a-3p stimulated mitophagy through a process independent of sestrin-2 (SESN2), a stress-responsible protein that has been recently demonstrated to positively modulate mitophagy. Our findings provide novel insights into an alternative mechanism of action of metformin involving miR-378a-3, which can be used in the future for the development of improved therapeutic strategies against metabolic diseases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 1656 KiB  
Article
Sirtuin 1: Endocan and Sestrin 2 in Different Biological Samples in Patients with Asthma. Does Severity Make the Difference?
by Zoe Tsilogianni, Jonathan R Baker, Anastasia Papaporfyriou, Andrianna I Papaioannou, Evgenia Papathanasiou, Nikolaos G Koulouris, Leah Daly, Kazuhiro Ito, Georgios Hillas, Spyridon Papiris, Petros Bakakos and Stelios Loukides
J. Clin. Med. 2020, 9(2), 473; https://doi.org/10.3390/jcm9020473 - 9 Feb 2020
Cited by 11 | Viewed by 2887
Abstract
Background: Sestrin 2, Endocan, and Sirtuin 1 are distinct molecules with some biologic actions associated with asthma pathophysiology. The aim of the present study was to determine the molecular level differences attributable to underlying asthma severity. Methods: We initially recruited 85 asthmatics with [...] Read more.
Background: Sestrin 2, Endocan, and Sirtuin 1 are distinct molecules with some biologic actions associated with asthma pathophysiology. The aim of the present study was to determine the molecular level differences attributable to underlying asthma severity. Methods: We initially recruited 85 asthmatics with a wide spectrum of severity. All of the patients were optimally treated according to current guidelines. Demographics, test results of lung function, and treatment regimes of all patients were recorded. Sestrin 2, Endocan, and Sirtuin 1 were measured in different biological samples (sputum with two processing methods and serum). Results: A total of 60 patients (35 with severe asthma) were analyzed, since 25 patients failed to produce an adequate sample of sputum. Patients with severe asthma showed significantly higher values for Sestrin 2 [pg/mL], measured in both sputum supernatant and cell pellet, compared to those with mild to moderate asthma [9524 (5696, 12,373) vs. 7476 (4265, 9273) p = 0.029, and 23,748 (15,280, 32,742) vs. 10,084 (3349, 21,784), p = 0.008, respectively]. No other significant differences were observed. No significant associations were observed between biomarkers, inflammatory cells, and lung function. Conclusion: Sestrin 2 is increased in patients with severe asthma as part of a mechanism that may modify structural alterations through the imbalance between oxidative stress and antioxidant activity. Full article
(This article belongs to the Special Issue New Frontiers in Asthma Treatment & Management)
Show Figures

Figure 1

18 pages, 2428 KiB  
Article
Docosahexaenoic Acid Enhances Oxaliplatin-Induced Autophagic Cell Death via the ER Stress/Sesn2 Pathway in Colorectal Cancer
by Soyeon Jeong, Dae Yeong Kim, Sang Hee Kang, Hye Kyeong Yun, Jung Lim Kim, Bo Ram Kim, Seong Hye Park, Yoo Jin Na, Min Jee Jo, Yoon A. Jeong, Bu Gyeom Kim, Dae-Hee Lee and Sang Cheul Oh
Cancers 2019, 11(7), 982; https://doi.org/10.3390/cancers11070982 - 14 Jul 2019
Cited by 41 | Viewed by 8438
Abstract
Oxaliplatin is an anticancer drug administered to colorectal cancer (CRC) patients in combination with 5-fluorouracil and antibodies (bevacizumab and cetuximab), thereby significantly improving the survival rate of CRC. However, due to various side effects associated with the above treatment strategy, the need for [...] Read more.
Oxaliplatin is an anticancer drug administered to colorectal cancer (CRC) patients in combination with 5-fluorouracil and antibodies (bevacizumab and cetuximab), thereby significantly improving the survival rate of CRC. However, due to various side effects associated with the above treatment strategy, the need for combinatorial therapeutic strategies has emerged. Based on the demand for new combinatorial therapies and the known antitumor effects of the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), we investigated the Oxaliplatin and DHA combination for its effect. Our results indicated that DHA further enhanced Oxaliplatin-induced cell viability and autophagic cell death, in vitro and in vivo. Oxaliplatin and DHA also increased the expression of Sestrin 2 (SESN2) and endoplasmic reticulum (ER) stress related C/EBP homologous protein (CHOP). Additionally, treatment with Oxaliplatin and DHA enhanced the binding of CHOP to the promotor region of SESN2, increasing SESN2 expression. These results suggested that DHA enhanced Oxaliplatin-induced reduction in cell viability and increase in autophagy via activating SESN2 and increasing ER stress. Thus, SESN2 may be an effective preclinical target for CRC treatment. Full article
(This article belongs to the Special Issue Cell Death in Cancer)
Show Figures

Graphical abstract

Back to TopTop