Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = serpentinized peridotite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5802 KB  
Article
Chromite and Its Thin Kosmochlor and Cr-Omphacite Cortex in Amphibolite from the Myanmar Jadeite Deposits
by Yu Zhang, Guanghai Shi and Jiabao Wen
Crystals 2025, 15(1), 79; https://doi.org/10.3390/cryst15010079 - 15 Jan 2025
Cited by 3 | Viewed by 1488
Abstract
Chromite in the amphibolites of the Myanmar jadeite deposits has not been well studied. Mineralogical studies on chromite and related kosmochlor and Cr-omphacite in the amphibolite of the Myanmar jadeite deposits were conducted. Compared to the chromite in the adjacent serpentinized peridotite, the [...] Read more.
Chromite in the amphibolites of the Myanmar jadeite deposits has not been well studied. Mineralogical studies on chromite and related kosmochlor and Cr-omphacite in the amphibolite of the Myanmar jadeite deposits were conducted. Compared to the chromite in the adjacent serpentinized peridotite, the chromite had higher Cr2O3 (45.67–54.25 wt.%) and MnO (1.82–1.90 wt.%) but lower MgO (1.00–1.96 wt.%) and Al2O3 (1.05–15.09 wt.%), similar to the published chromite compositions in jadeitite. Serpentinite was derived from a highly depleted mantle peridotite. There were at least two stages of metasomatism during the transformation of serpentinite + chromite to magnesio-katophorite + chromite + thin kosmochlor (and/or Cr-omphacite cortex). The first stage was the Ca-rich metasomatism of serpentinite, resulting in sodic-calcic amphibole (magnesio-katophorite), which preceded the formation of jadeite. The second stage of Na-rich metasomatism was produced by the Na-Al-Si-rich fluids with the magnesio-katophorite + chromite (contemporaneous with the formation of jadeite). The composition of the fluid was altered by a reaction with magnesio-katophorite, increasing the Ca-Mg content and resulting in the formation of kosmochlor rich in Ca-Mg and/or peripheral Cr-omphacite. This kosmochlor–Cr-omphacite belongs to the Jd-Kos-Di ternary join, which differs from the kosmochlor–Cr-jadeite (which belongs to the Jd-Kos join in jadeitite). The formation of jadeitite with chromite + kosmochlor + Cr-jadeite occurs when large amounts of Na-Al-Si-rich fluids have wrapped the pieces of chromite-bearing amphibolite. This also explains the proverbial “moss spray green” given that amphibole (with chromite) brings out the green color in jadeitite. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

29 pages, 7954 KB  
Article
The Evolution of Neoproterozoic Mantle Peridotites Beneath the Arabian–Nubian Shield: Evidence from Wadi Sodmein Serpentinites, Central Eastern Desert, Egypt
by Khaled M. Abdelfadil, Asran M. Asran, Hafiz U. Rehman, Mabrouk Sami, Alaa Ahmed, Ioan V. Sanislav, Mohammed S. Fnais and Moustafa M. Mogahed
Minerals 2024, 14(11), 1157; https://doi.org/10.3390/min14111157 - 15 Nov 2024
Cited by 5 | Viewed by 1860
Abstract
Serpentinites make up one of the most significant rock units associated with primary suture zones throughout the ophiolite sequence of the Arabian–Nubian Shield. Wadi Sodmein serpentinites (WSSs) represent dismembered parts of the oceanic supra-subduction system in the central Eastern Desert of Egypt. In [...] Read more.
Serpentinites make up one of the most significant rock units associated with primary suture zones throughout the ophiolite sequence of the Arabian–Nubian Shield. Wadi Sodmein serpentinites (WSSs) represent dismembered parts of the oceanic supra-subduction system in the central Eastern Desert of Egypt. In this context, we present whole-rock major, trace, and rare earth elements (REE) analyses, as well as mineral chemical data, to constrain the petrogenesis and geotectonic setting of WSS. Antigorite represents the main serpentine mineral with minor amounts of chrysotile. The predominance of antigorite implies the formation of WSS under prograde metamorphism, similar to typical metamorphic peridotites of harzburgitic protolith compositions. The chemistry of serpentinites points to their refractory composition with notably low Al2O3, CaO contents, and high Mg# (90–92), indicating their origin from depleted supra-subduction zone harzburgites that likely formed in a forearc mantle wedge setting due to high degrees of hydrous partial melting and emplaced owing to the collision of the intra–oceanic arc with Meatiq Gneisses. Spinels of WSS generally exhibit pristine compositions that resemble those of residual mantle peridotites and their Cr# (0.625–0.71) and TiO2 contents (<0.05 wt%) similar to forearc peridotite spinels. Moreover, WSS demonstrates a significant excess of fluid mobile elements (e.g., Th, U, Pb), compared to high-field strength elements (e.g., Ti, Zr, Nb, Ta), implying an interaction between mantle peridotites and fluids derived from the oceanic subducted-slab. The distinct U-shaped REE patterns coupled with high Cr# of spinel from WSS reflect their evolution from mantle wedge harzburgite protolith that underwent extensive melt extraction and re-fertilized locally. Full article
(This article belongs to the Special Issue Mineralogy, Chemistry, Weathering and Application of Serpentinite)
Show Figures

Figure 1

17 pages, 5439 KB  
Article
Chemical and Thermal Changes in Mg3Si2O5 (OH)4 Polymorph Minerals and Importance as an Industrial Material
by Ahmet Şaşmaz, Ayşe Didem Kılıç and Nevin Konakçı
Appl. Sci. 2024, 14(22), 10298; https://doi.org/10.3390/app142210298 - 8 Nov 2024
Cited by 4 | Viewed by 2066
Abstract
Serpentine (Mg3Si2O5(OH)4), like quartz, dolomite and magnesite minerals, is a versatile mineral group characterized by silica and magnesium silicate contents with multiple polymorphic phases. Among the phases composed of antigorite, lizardite, and chrysotile, lizardite and [...] Read more.
Serpentine (Mg3Si2O5(OH)4), like quartz, dolomite and magnesite minerals, is a versatile mineral group characterized by silica and magnesium silicate contents with multiple polymorphic phases. Among the phases composed of antigorite, lizardite, and chrysotile, lizardite and chrysotile are the most prevalent phases in the serpentinites studied here. The formation process of serpentinites, which arise from the hydrothermal alteration of peridotites, influences the ratio of light rare earth elements (LREE) to heavy rare earth elements (HREE). In serpentinites, the ratio of light rare earth elements (LREE)/heavy rare earth elements (HREE) provides insights into formation conditions, geochemical evolution, and magmatic processes. The depletion of REE compositions in serpentinites indicates high melting extraction for fore-arc/mantle wedge serpentinites. The studied serpentinites show a depletion in REE concentrations compared to chondrite values, with HREE exhibiting a lesser degree of depletion compared to LREE. The high ΣLREE/ΣHREE ratios of the samples are between 0.16 and 4 ppm. While Ce shows a strong negative anomaly (0.1–12), Eu shows a weak positive anomaly (0.1–0.3). This indicates that fluid interacts significantly with rock during serpentinization, and highly incompatible elements (HIEs) gradually become involved in the serpentinization process. While high REE concentrations indicate mantle wedge serpentinites, REE levels are lower in mid-ocean ridge serpentinites. The enrichment of LREE in the analyzed samples reflects melt/rock interaction with depleted mantle and is consistent with rock–water interaction during serpentinization. The gradual increase in highly incompatible elements (HIEs) suggests that they result from fluid integration into the system and a subduction process. The large differential thermal analysis (DTA) peak at 810–830 °C is an important sign of dehydration, transformation reactions and thermal decomposition, and is compatible with H2O phyllosilicates in the mineral structure losing water at this temperature. In SEM images, chrysotile, which has a fibrous structure, and lizardite, which has a flat appearance, transform into talc as a result of dehydration with increasing temperature. Therefore, the sudden temperature drop observed in DTA graphs is an indicator of crystal form transformation and CO2 loss. In this study, the mineralogical and structural properties and the formation of serpentinites were examined for the first time using thermo-gravimetric analysis methods. In addition, the mineralogical and physical properties of serpentinites can be recommended for industrial use as additives in polymers or in the adsorption of organic pollutants. As a result, the high refractory nature of examined serpentine suggests that it is well-suited for applications involving high temperatures. This includes industries such as metallurgy and steel production, glass manufacturing, ceramic production, and the chemical industry. Full article
Show Figures

Figure 1

26 pages, 11780 KB  
Review
Peridotite Weathering and Ni Redistribution in New Caledonian Laterite Profiles: Influence of Climate, Hydrology, and Structure
by Michel Cathelineau, Yoram Teitler, Jean-Louis Grimaud, Sylvain Favier, Fabrice Golfier, Erick Ramanaidou, Sylvain Grangeon, Yohann Kerreveur, Julie Jeanpert, Samuel Étienne, Manuel Muñoz and Marc Ulrich
Minerals 2024, 14(11), 1082; https://doi.org/10.3390/min14111082 - 27 Oct 2024
Cited by 2 | Viewed by 1859
Abstract
The peridotite massifs of New Caledonia are characterised by complex hydrodynamics influenced by intense inherited fracturing, uplift, and erosion. Following the formation of the erosion surfaces and alteration processes, these processes drive chemical redistribution during weathering; particularly lateritisation and saprolitisation. Magnesium, silica, and [...] Read more.
The peridotite massifs of New Caledonia are characterised by complex hydrodynamics influenced by intense inherited fracturing, uplift, and erosion. Following the formation of the erosion surfaces and alteration processes, these processes drive chemical redistribution during weathering; particularly lateritisation and saprolitisation. Magnesium, silica, and trace elements such as nickel and cobalt—released as the dissolution front advances—are redistributed through the system. New observations and interpretations reveal how lateritic paleo-land surfaces evolved, and their temporal relationship with alteration processes since the Oligocene. Considering the geometry of discontinuity networks ranging from micro-fractures to faults, the transfers occur in dual-permeability environments. Olivine dissolution rates are heterogeneously due to differential solution renewal caused by erosion and valley deepening. Differential mass transfer occurs between mobile regions of highly transmissive faults, while immobile areas correspond to the rock matrix and the secondary fracture network. The progression of alteration fronts controls the formation of boulders and the distribution of nickel across multiple scales. In the saprolite, nickel reprecipitates mostly in talc-like phases, as well as minor nontronite and goethite with partial diffusion in inherited serpentine. The current nickel distribution results from a complex interplay of climatic, hydrological and structural factors integrated into a model across different scales and times. Full article
(This article belongs to the Special Issue Chemical Weathering Studies)
Show Figures

Figure 1

25 pages, 10774 KB  
Article
Recycling of Au during Serpentinization of Ultramafic Rocks: A Case Study from Neoproterozoic Forearc Ophiolites, Egypt
by Basem Zoheir, Astrid Holzheid, Aliaa Diab, Azza Ragab, Fatma Deshesh and Amr Abdelnasser
Minerals 2024, 14(9), 916; https://doi.org/10.3390/min14090916 - 6 Sep 2024
Viewed by 2550
Abstract
Gold, along with other highly siderophile elements, is hosted by Fe-Ni sulfide phases within peridotites and mantle melts. In this context, the lithospheric mantle emerges as a principal reservoir, providing materials crucial for the inception, augmentation, conveyance, and genesis of auriferous CO2 [...] Read more.
Gold, along with other highly siderophile elements, is hosted by Fe-Ni sulfide phases within peridotites and mantle melts. In this context, the lithospheric mantle emerges as a principal reservoir, providing materials crucial for the inception, augmentation, conveyance, and genesis of auriferous CO2-rich mantle fluids. EPMA and laser ablation ICP-MS data, integrated with petrographic and SEM studies, were used to assess the transfer of base and precious metals into the Earth’s crust, discerning between inputs from subduction-related processes and post-formation metasomatism. The study focuses on sulfide minerals in serpentinized peridotites of the Abu Dahr ophiolite in the Eastern Desert of Egypt. Originating in a supra-subduction setting during the Neoproterozoic era, the Abu Dahr peridotites underwent serpentinization and contain discrete sulfide minerals, including pentlandite, nickeloan pyrrhotite, millerite, chalcopyrite, and violarite. The uneven distribution of calcite ± magnesite ± serpentine veins throughout the host ophiolitic rocks reflects the intricate interplay of serpentinization and carbonation, as fO2 and fCO2 conditions fluctuated. Geochemical data of the host rocks reveal a progressive geochemical evolution marked by concurrent silicification and carbonate alteration, driven by the interaction of ultramafic rocks with hydrothermal fluids, ultimately leading to the extensive silicification and formation of birbirite. The ICP-MS data show that pentlandite contains up to 6.11 ppm of Au, pyrrhotite up to 0.41 ppm, millerite 0.34 ppm, and violarite 0.12 ppm. The gold concentration in pentlandite is significantly higher than in pyrrhotite, millerite, and violarite, which exhibit lower but detectable levels of Au. Desulfurization reactions of sulfide minerals during progressive serpentinization triggered the release and redistribution of Au as well as base metals and highly siderophile elements. Published thermodynamic modeling at temperatures below 300 °C and pressures of 50 MPa closely replicates the mineral assemblage observed in the Abu Dahr ophiolites, including sulfide assemblages and variations in major elements such as Mg and Fe. This suggests that the serpentinization process, along with associated hydrothermal fluids, played a crucial role in the mobilization and redistribution of gold, particularly affecting its incorporation into secondary sulfides. The mobilization of Au and other highly siderophile elements during serpentinization occurred in an environment marked by strong oxidation, as indicated by the presence of acicular antigorite, magnetite, millerite, and goethite intergrowths. Full article
Show Figures

Figure 1

17 pages, 7084 KB  
Article
Asbestos Hazard in Serpentinite Rocks: Influence of Mineralogical and Structural Characteristics on Fiber Potential Release
by Lorenzo Marzini, Marco Iannini, Giovanna Giorgetti, Filippo Bonciani, Paolo Conti, Riccardo Salvini and Cecilia Viti
Geosciences 2024, 14(8), 210; https://doi.org/10.3390/geosciences14080210 - 5 Aug 2024
Cited by 3 | Viewed by 3827
Abstract
Naturally occurring asbestos (NOA) represents a matter of social and environmental concern due to its potential release in the atmosphere during rock excavation and grinding in quarry and road tunnel activities. In most cases, NOA occurs in serpentinites, i.e., rocks deriving from low-grade [...] Read more.
Naturally occurring asbestos (NOA) represents a matter of social and environmental concern due to its potential release in the atmosphere during rock excavation and grinding in quarry and road tunnel activities. In most cases, NOA occurs in serpentinites, i.e., rocks deriving from low-grade metamorphic hydration of mantle peridotites. The potential release of asbestos fibers from serpentinite outcrops depends on several features, such as serpentinization degree, rock deformation, weathering, and abundance of fibrous veins. In this study, we selected a set of serpentinite samples from a representative outcrop in Tuscany (Italy), and we analyzed them by Optical, Scanning, and Transmission Electron Microscopies. The samples were treated by grinding tests following the Italian guidelines Decrees 14/5/96 and 152/2006 for the determination of the Release Index (RI), i.e., the fiber amount released through controlled crushing tests. The fine-grained powder released during the tests was analyzed by quantitative Fourier transform infrared spectroscopy (FTIR) to determine the variety and the amount of released fibers and to assess the potential hazard of the different serpentinite samples. Results indicate that the amount of released fibers is mostly related to serpentinite deformation, with the highest RI values for cataclastic and foliated samples, typically characterized by widespread occurrence of fibrous veins. Conversely, massive pseudomorphic serpentinite revealed a very low RI, even if their actual chrysotile content is up to 20–25%. Based on our original findings from the RI results, a preliminary investigation of the outcrop at the mesoscale would be of primary importance to obtain a reliable hazard assessment of NOA sites, allowing the primary distinction among the different serpentinites lithotypes and the effective fiber release. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

24 pages, 11811 KB  
Article
In Situ Geochemical Evaluation of Retrograde Hydration Effects in the Peri-Siberian Forearc Mantle (Khara-Nur and Alag-Khadny Peridotite Complexes)
by Anas A. Karimov, Marina A. Gornova, Vasiliy A. Belyaev, Sergei Yu. Skuzovatov, Alexander Ya. Medvedev and Nikolay V. Bryanskiy
Minerals 2024, 14(5), 457; https://doi.org/10.3390/min14050457 - 26 Apr 2024
Cited by 3 | Viewed by 1495
Abstract
In order to assess the geochemical effects of retrograde metamorphic rehydration, fluid metasomatism, and the fluid-mobile elements (FMEs) budget in the case of oceanic and continental subduction, we report the petrography, bulk, and in situ LA-ICP-MS trace-element data for the two poorly studied [...] Read more.
In order to assess the geochemical effects of retrograde metamorphic rehydration, fluid metasomatism, and the fluid-mobile elements (FMEs) budget in the case of oceanic and continental subduction, we report the petrography, bulk, and in situ LA-ICP-MS trace-element data for the two poorly studied ophiolites in the northern (Khara-Nur, Eastern Sayan, Russia) and central (Alag-Khadny accretionary wedge, SW Mongolia) parts of the peri-Siberian orogenic framing. Both complexes are relics of the ancient oceanic mantle, which was subjected to processes of partial melting, metasomatism, and retrograde metamorphism. Typical mineral assemblages include olivine + orthopyroxene + chlorite + tremolite ± secondary olivine (640–800 °C), olivine + antigorite ± secondary clinopyroxene (<640 °C), and olivine + chrysotile ± secondary clinopyroxene (<250 °C) and are stable at pressures up to 2 GPa. Hydration and partial serpentinization of mantle peridotites lead to tremolite formation after orthopyroxene, followed by olivine replacement by antigorite. Serpentine-group minerals (antigorite and chrysotile) were distinguished by Raman spectroscopy, and the contents of incompatible elements (mobile and immobile in fluids) in metamorphic minerals (tremolite, antigorite, and chrysotile) were examined in situ by LA-ICP-MS. The behavior of conservative HFSE (Zr, Nb, Ta, and Ti) and—in part—HREE does not distinguish between the two types (oceanic and continental) of subduction environments. Different patterns of FMEs (Cs, Rb, Ba, U, Sb, Pb, Sr, and LREE) enrichment in metaperidotites reflect variations in the slab fluid composition, which was primarily governed by the contrasting nature of subducted lithologies. The affinity of Alag-Khadny to the subduction of a continental margin is recorded by increased FME contents and selective enrichment by some moderately mobile elements, such as U, Th, and LREE, with respect to the oceanic-type subduction environment of Khara-Nur. Distinct patterns of FME enrichment in tremolite and antigorite from two complexes indicate different sequences of fluid-induced replacement, which was controlled by Opx composition. We demonstrate that evaluation of the initial composition of precursor minerals affected by multi-stage melting and melt metasomatism should be considered with care to estimate the differential fluid overprint and associated elemental uptake from subduction fluids. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

17 pages, 7608 KB  
Article
The Properties of Magnesium Silicate Hydrate Prepared from the Magnesium Silicate Minerals in the Earth’s Crust
by Qiang Song, Qian He, Jiao Nie, Tiantian Song, Hong Zhou, Yaru Hu, Yanxin Chen, Yang Deng and Fuan Cheng
Buildings 2024, 14(5), 1188; https://doi.org/10.3390/buildings14051188 - 23 Apr 2024
Cited by 5 | Viewed by 3119
Abstract
In order to explore a wider range and lower cost of raw materials for the preparation of magnesium silicate hydrate (M-S-H), an acid-leaching method was employed to extract and separate high-purity magnesium hydroxide (Mg(OH)2) with a purity higher than 97% and [...] Read more.
In order to explore a wider range and lower cost of raw materials for the preparation of magnesium silicate hydrate (M-S-H), an acid-leaching method was employed to extract and separate high-purity magnesium hydroxide (Mg(OH)2) with a purity higher than 97% and amorphous silica with a purity higher than 90% from four types of natural silicate minerals (serpentine, peridotite, zeolite, and montmorillonite). These two intermediate products, which are amorphous silica and magnesium hydroxide, were used to prepare M-S-H, and the influence of curing at two temperatures, 50 °C and 80 °C, on the properties of M-S-H was investigated. The results showed that with the increase in curing temperature, the bound water content, tetrahedral polymerization degree, and Mg(OH)2 content increased. There was a good correlation between the increase in strength and the bound water content of M-S-H. This work provides a possible technological route for expanding the raw materials for preparing magnesium silicate hydrate cementitious materials and utilizing the abundant magnesium silicate minerals in the Earth’s crust. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 9303 KB  
Article
Formation of Natural Magnesium Silica Hydrate (M-S-H) and Magnesium Alumina Silica Hydrate (M-A-S-H) Cement
by Håkon Austrheim, Depan Hu, Ole Ivar Ulven and Niels H. Andersen
Materials 2024, 17(5), 994; https://doi.org/10.3390/ma17050994 - 21 Feb 2024
Cited by 2 | Viewed by 2247
Abstract
Occurrences of natural magnesium alumina silicate hydrate (M-(A)-S-H) cement are present in Feragen and Leka, in eastern and western Trøndelag Norway, respectively. Both occurrences are in the subarctic climate zone and form in glacial till and moraine material deposited on ultramafic rock during [...] Read more.
Occurrences of natural magnesium alumina silicate hydrate (M-(A)-S-H) cement are present in Feragen and Leka, in eastern and western Trøndelag Norway, respectively. Both occurrences are in the subarctic climate zone and form in glacial till and moraine material deposited on ultramafic rock during the Weichselian glaciation. Weathering of serpentinized peridotite dissolves brucite and results in an alkaline fluid with a relatively high pH which subsequently reacts with the felsic minerals of the till (quartz, plagioclase, K-feldspar) to form a cement consisting of an amorphous material or a mixture of nanocrystalline Mg-rich phyllosilicates, including illite. The presence of plagioclase in the till results in the enrichment of alumina in the cement, i.e., forms M-A-S-H instead of the M-S-H cement. Dissolution of quartz results in numerous etch pits and negative quartz crystals filled with M-A-S-H cement. Where the quartz dissolution is faster than the cement precipitation, a honeycomb-like texture is formed. Compositionally, the cemented till (tillite) contains more MgO and has a higher loss of ignition than the till, suggesting that the cement is formed by a MgO fluid that previously reacted with the peridotite. The M-(A)-S-H cemented till represents a new type of duricrust, coined magsilcrete. The study of natural Mg cement provides information on peridotites as a Mg source for Mg cement and as a feedstock for CO2 sequestration. Full article
Show Figures

Figure 1

23 pages, 21239 KB  
Article
Geochemistry and Mineralogy of the Clay-Type Ni-Laterite Deposit of San Felipe (Camagüey, Cuba)
by Esperança Tauler, Salvador Galí, Cristina Villanova-de-Benavent, Alfonso Chang-Rodríguez, Kenya Núñez-Cambra, Giorgi Khazaradze and Joaquín Antonio Proenza
Minerals 2023, 13(10), 1281; https://doi.org/10.3390/min13101281 - 29 Sep 2023
Cited by 3 | Viewed by 2654
Abstract
The Ni-laterite deposit at the San Felipe plateau, located 30 km northwest of Camagüey, in central Cuba, is the best example of a clay-type deposit in the Caribbean region. San Felipe resulted from the weathering of mantle peridotites of the Cretaceous Camagüey ophiolites. [...] Read more.
The Ni-laterite deposit at the San Felipe plateau, located 30 km northwest of Camagüey, in central Cuba, is the best example of a clay-type deposit in the Caribbean region. San Felipe resulted from the weathering of mantle peridotites of the Cretaceous Camagüey ophiolites. In this study, a geochemical and mineralogical characterization of two profiles (83 and 84) from the San Felipe deposit has been performed by XRF, ICP-MS, quantitative XRPD, oriented aggregate mount XRD, SEM, FE-SEM, and EMPA. Core 83, with a length of 23 m and drilled in the central part of the plateau, presents a notable concentration of cryptocrystalline quartz fragments and a rather poor content of NiO, averaging 0.87 wt.%. Core 84, which is 12 m long and drilled at the border of the plateau, lacks silica fragments and presents a higher NiO content, averaging 1.79 wt.%. The smectite structural formulae reveal that they evolve from trioctahedral to dioctahedral towards the top of the laterite profiles. Quantitative XRD analyses indicate that smectite is a dominant Ni-bearing phase, accompanied by serpentine and minor chlorite. Serpentine, as smectite, is enriched in the less soluble elements Fe3+, Al, and Ni towards the top of the profiles. Core 83 seems to have been affected by collapses and replenishments, whereas core 84 may have remained undisturbed. Full article
(This article belongs to the Special Issue Geochemistry and Mineralogy of Ni-Co Laterite Deposits)
Show Figures

Figure 1

20 pages, 7915 KB  
Article
Coexisting High-Al and High-Cr Chromitites in the Dingqing Ophiolite (SE Tibet): Inferences to Compositional Heterogeneity in the Tethyan Upper Mantle
by Boyang Zhang, Basem Zoheir, Chenjie Zhang, Xiaoping Mu, Xiangzhen Xu, Tian Qiu and Fahui Xiong
Minerals 2023, 13(9), 1234; https://doi.org/10.3390/min13091234 - 21 Sep 2023
Cited by 3 | Viewed by 2062
Abstract
The Dingqing ophiolite represents a significant allochthonous ophiolite nappe in the eastern segment of the Bangong–Nujiang suture zone in southeastern Tibet. The microanalytical data of associated podiform chromitites classify them into two distinct varieties: high-Al and high-Cr. The coexistence of both high-Cr and [...] Read more.
The Dingqing ophiolite represents a significant allochthonous ophiolite nappe in the eastern segment of the Bangong–Nujiang suture zone in southeastern Tibet. The microanalytical data of associated podiform chromitites classify them into two distinct varieties: high-Al and high-Cr. The coexistence of both high-Cr and high-Al chromitites in the Dingqing ophiolite suggests a complex or multistage evolutionary history of the host rocks. New petrological and geochemical analyses are used herein to unravel the interrelationships between the chromitite ores and host rocks and assess the mechanism of formation. The Dingqing ophiolitic nappe is made up mainly of harzburgite, dunite, and less abundant pyroxenite and gabbro. Several small lens-shaped bodies of chromitite ore are mostly confined to the harzburgite rocks, with ore textures varying from massive to sparsely disseminated chromite. In addition to magnesiochromite, the orebodies contain minor amounts of olivine, amphibole, and serpentine. The textural relationships provide compelling evidence of plastic deformation and partial melting of the associated peridotites. Detailed examination of the Cr-spinel grains reveals a wide range of composition, spanning from high-Al (Cr# = 3.18–59.5) to high-Cr (Cr# 60.3–87.32). The abundances of the platinum-group element (PGE) in chromitites are significantly variable (93 to 274 ppb). Formation of the Dingqing peridotites most likely took place in a mid-ocean ridge (MOR) setting, and subsequent modifications by supra-subduction zone (SSZ) melts resulted in heterogenous or mixed geochemical characteristics of these rocks. Chemistry of the spinel–olivine–clinopyroxene assemblage demonstrates multiple stages of partial melting of the source mantle rocks, including an early phase of restricted partial melting (~20%–30%) and a later phase of extensive partial melting (>40%). The formation of the high-Al chromitite type was associated with the early phase (constrained melting), whereas extensive partial melting in the late stages likely led to the accumulation of high-Cr podiform chromitite bodies. Full article
(This article belongs to the Special Issue Mineralogical and Geochemical Characteristics of Chromitites)
Show Figures

Figure 1

21 pages, 10898 KB  
Article
Zircon U–Pb Geochronology, Geochemistry and Geological Significance of the Santaishan–Yingjiang Ultramafic Rocks in Western Yunnan, China
by Huimin Liu, Yongqing Chen and Zhi Shang
Minerals 2023, 13(4), 536; https://doi.org/10.3390/min13040536 - 12 Apr 2023
Cited by 5 | Viewed by 2618
Abstract
The study of ultramafic rocks in Western Yunnan is of great significance for an understanding of the tectonic evolution of the Neo-Tethys Ocean. The zircon U–Pb data indicated that the Santaishan serpentinized pyroxene peridotite (SSPP) was formed 186–190 Ma, and the Yingjiang hornblende [...] Read more.
The study of ultramafic rocks in Western Yunnan is of great significance for an understanding of the tectonic evolution of the Neo-Tethys Ocean. The zircon U–Pb data indicated that the Santaishan serpentinized pyroxene peridotite (SSPP) was formed 186–190 Ma, and the Yingjiang hornblende pyroxenite (YHP) was formed 182–183 Ma. The content of MgO in the SSPP is relatively high, but the SiO2, Al2O3, CaO and TiO2 content and ΣREE are low, while the YHP has opposite characteristics. The samples from the SSPP and YHP have similar distribution patterns of trace elements, both being enriched in large ion lithophile elements (LILEs) such as Rb, Ba and Th and depleted in high field strength elements (HFSEs) such as Ti, P and Nb. These characteristics are consistent with the supra-subduction zone (SSZ) type and mid-ocean ridge basalt (MORB) type of ophiolite in the Bangong–Nujiang suture zone. The SSPP rocks have relatively high (87Sr/86Sr)i ratios (0.7091–0.7131) and positive Hf(t) values (11.2–13.8), with εNd(t) values varying from −1.1 to 9.4. The YHP has relatively low εHf(t) values (3.5 to 6.9), with the Nd–Hf isotopic model ages ranging from 610 to 942 Ma. The signatures of Sr–Nd and Lu–Hf isotopes indicate that the SSPP and YHP were derived from the depleted mantle, and the crustal material in the magma source may have originated from the Neoproterozoic Rodinia supercontinent. In the early Middle Jurassic (190 Ma), the Tengchong Block was in the setting of an active continental margin induced by the subduction of the Bangong–Nujiang Ocean, where the SSZ-type SSPP with ophiolite characteristics was formed. With the continuous subduction of the Bangong–Nujiang Ocean, the slab retreated and induced mantle convection, which resulted in the gradual thinning of the continental crust. Meanwhile, the Yingjiang back-arc basin was formed 183 Ma. Under the influence of the upwelling of the asthenosphere and the mixture of crustal materials, the MORB-type YHP was formed. Full article
Show Figures

Figure 1

29 pages, 9294 KB  
Article
Petrogenesis and Tectonic Evolution of Kab Amiri Ophiolites and Island-Arc Assemblages, Central Eastern Desert, Egypt: Petrological and Geochemical Constraints
by Sherif A. Taalab, Ahmed M. Abdel-Rahman, Hamada El-Awny, Hamdy A. Awad, Hesham M. H. Zakaly, Wael Fahmy and Antoaneta Ene
Minerals 2023, 13(4), 528; https://doi.org/10.3390/min13040528 - 9 Apr 2023
Cited by 9 | Viewed by 2725
Abstract
The Kab Amiri area in the Central Eastern Desert (CED) of Egypt comprises ophiolitic rocks, island arc metasediments, and granitic rocks. This study deals with the petrography and geochemistry of the ophiolitic and island arc rocks to understand their petrogenesis and geodynamic evolution [...] Read more.
The Kab Amiri area in the Central Eastern Desert (CED) of Egypt comprises ophiolitic rocks, island arc metasediments, and granitic rocks. This study deals with the petrography and geochemistry of the ophiolitic and island arc rocks to understand their petrogenesis and geodynamic evolution of the CED ophiolitic belt. The Kab Amiri ophiolite is dismembered, comprising serpentinites and metabasalt (spilite). Serpentinites have low contents of Al2O3 (1.14 wt%) and CaO (0.65 wt%), suggesting they are depleted peridotite protoliths (e.g., depleted harzburgites to dunites). The high L.O.I. value (13.7 wt%) of serpentinite rocks indicates intense hydration and serpentinization during alteration processes. Petrographic and geochemical studies suggest that serpentinites were likely formed after depleted peridotites in a supra-subduction zone (SSZ) setting (e.g., a fore-arc setting). Spilitic basalt shows a tholeiitic affinity of the depleted mantle source. The arc-related metasediments are represented mainly by schists and slate. Many samples of metasediments are relatively low in alumina (Al2O3 < 15%), suggesting a low clay content and formation in an island arc setting. In contrast, protoliths of island-arc metabasalts and meta-andesites crystallized from calc-alkaline magmas in the immature oceanic arcs. Full article
Show Figures

Figure 1

26 pages, 12238 KB  
Article
Pseudo-Karst Silicification Related to Late Ni Reworking in New Caledonia
by Michel Cathelineau, Marie-Christine Boiron, Jean-Louis Grimaud, Sylvain Favier, Yoram Teitler and Fabrice Golfier
Minerals 2023, 13(4), 518; https://doi.org/10.3390/min13040518 - 6 Apr 2023
Cited by 4 | Viewed by 2106
Abstract
Silicification in New Caledonian pseudo-karsts developed on peridotite was assessed using δ18O and δ30Si pairs on quartz cements. The objective was to document the chronology of pseudo-karst development and cementation relative to geomorphic evolution. The latter began at the [...] Read more.
Silicification in New Caledonian pseudo-karsts developed on peridotite was assessed using δ18O and δ30Si pairs on quartz cements. The objective was to document the chronology of pseudo-karst development and cementation relative to geomorphic evolution. The latter began at the end of the Eocene with the supergene alteration of peridotites and the subsequent formation of extended lateritic weathering profiles. Neogene uplift favoured the dismantling of these early lateritic profiles and valley deepening. The river incision resulted in (i) the stepping of a series of lateritic paleo-landforms and (ii) the development of a pseudo-karst system with subvertical dissolution pipes preferentially along pre-existing serpentine faults. The local collapse of the pipes formed breccias, which were then cemented by white quartz and Ni-rich talc-like (pimelite). The δ30Si of quartz, ranging between −5‰ and −7‰, are typical of silcretes and close to the minimum values recorded worldwide. The estimated δ18O of −6 to −12‰ for the fluids are lower than those of tropical rainfall typical of present-day and Eocene–Oligocene climates. Evaporation during drier climatic episodes is the main driving force for quartz and pimelite precipitation. The silicification presents similarities with silcretes from Australia, which are considered predominantly middle Miocene in age. Full article
(This article belongs to the Special Issue Geochemistry and Mineralogy of Ni-Co Laterite Deposits)
Show Figures

Figure 1

33 pages, 7382 KB  
Article
Geochemistry of Waziristan Ophiolite Complex, Pakistan: Implications for Petrogenesis and Tectonic Setting
by Raham Jalil, Olivier Alard, Bruce Schaefer, Liaqat Ali, Muhammad Sajid, Mohamed Zaki Khedr, Mohammad Tahir Shah and Muhammad Naveed Anjum
Minerals 2023, 13(3), 311; https://doi.org/10.3390/min13030311 - 23 Feb 2023
Cited by 9 | Viewed by 6840
Abstract
The Waziristan ophiolite complex (WOC), a segment of paleo-suture zone between the Indo-Pakistan plate to the south-east and the Afghan microplate to the north-west, is primarily composed of serpentinized dunites and serpentinites after harzburgites, crosscut by pyroxenites. The crustal portion dominantly comprises basalts [...] Read more.
The Waziristan ophiolite complex (WOC), a segment of paleo-suture zone between the Indo-Pakistan plate to the south-east and the Afghan microplate to the north-west, is primarily composed of serpentinized dunites and serpentinites after harzburgites, crosscut by pyroxenites. The crustal portion dominantly comprises basalts and dolerites, with less abundant plagiogranites. Whole-rock XRF and trace element ICP-MS analyses were undertaken to determine the degree of melt extraction and subsequent geochemical depletion or enrichment of peridotite protoliths. The investigated peridotites are extremely refractory and show high Mg# values (0.88–0.92), low Al2O3 (0.19–0.96 wt%), total alkali values (0.02 < Na2O + K2O ≤ 0.20 wt%), CaO (0.04–0.73 wt%), and TiO2 (0.001–0.017 wt%), but are rich in Cr (up to 3550 ppm) and Ni (up to 2340 ppm). Bulk REE modelling suggests that Waziristan peridotites underwent a high degree (15%–25% melting) of melt extraction in the closed system of spinel-bearing peridotite facies at shallow depths above a subduction zone and, in their chemistry (Sc, REE, Al2O3, and MgO), resemble Izu-Bonin-Mariana (IBM) forearc peridotites. Their U-shaped REE patterns and trace elements resemble peridotites derived from supra-subduction zone (SSZ) settings, especially a forearc setting, and also reflect metasomatism by slab-derived fluids. The ultramafic rocks preserve depletion in REE content (0.03 < ΣREECN < 0.60), indicating the highly depleted nature of refractory peridotites. The basalts (Mg#, 0.48-0.68) are similar in composition to typical boninite and show low to moderate MgO (6.2–13.0 wt%), low total alkali content (0.01–4.45 wt%) and TiO2 (0.13–0.17 wt%), but are higher in Al2O3 (≈11.9 wt%). They show a sub-alkaline affinity and possess geochemical signatures that are transitional from island arc basalt (IAB) magmas to boninitic magmas due to the changes from an extensional to a compressional regime during the initiation of subduction. These geochemical signatures suggest the formation of basalts from melts, resulting from the re-melting of the depleted mantle during intra-oceanic subduction initiation. The higher Th/Nb and V/Ti ratios of the studied basalts further confirm their generation in an SSZ setting characterized by subduction-derived fluids under higher oxidizing conditions. The mafic-ultramafic rocks of the WOC were, therefore, likely formed during intra-oceanic subduction initiation (forearc spreading) in the SSZ setting; they were exhumed along a thrust fault, and obducted onto the forearc region as result of the collision between the Indian plate and the Afghan microplate. Full article
Show Figures

Figure 1

Back to TopTop