Geochemistry and Mineralogy of the Clay-Type Ni-Laterite Deposit of San Felipe (Camagüey, Cuba)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sampling
3.2. Analytical Methods
4. Results
4.1. Major Elements Geochemistry
4.2. Petrography
4.3. Mineral Chemistry
4.4. Structure Characterization of Minerals by X-ray Diffraction (XRD)
5. Discussion
5.1. Degree of Weathering
5.2. Trioctahedral vs. Dioctahedral Smectites
5.3. Type I Serpentine vs. Type II Serpentine
5.4. XRPD Interpretation of Smectite (vs. Kerolite-Type Structures)
5.5. Mineral Variations and Weathering Process across the Lateritic Profiles
5.6. Comparison of Smectites from Lateritic Profiles Worldwide
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freyssinet, P.; Butt, C.R.M.; Morris, R.C. Ore-forming processes related to lateritic weathering. In Economic Geology One Hundredth Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 681–722. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.A.; Lewis, J.F.; Labrador, M.; Svojtka, M.; Rojas-Purón, A.; Longo, F.; Ďurišová, J. Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore. Geol. Rev. 2016, 73, 127–147. [Google Scholar] [CrossRef]
- Ulrich, M.; Muñoz, M.; Boulvais, P.; Cathelineau, M.; Cluzel, D.; Guillot, S.; Picard, C. Serpentinization of New Caledonia peridotites: From depth to (sub-)surface. Contrib. Mineral. Petrol. 2020, 175, 91. [Google Scholar] [CrossRef]
- Teitler, Y.; Cathelineau, M.; Ulrich, M.; Ambrosi, J.P.; Munoz, M.; Sevin, B. Petrology and geochemistry of scandium in New Caledonian Ni-Co laterites. J. Geochem. Explor. 2019, 196, 131–155. [Google Scholar] [CrossRef]
- Chassé, M.; Griffin, W.L.; Reilly, S.Y.O.; Calas, G. Scandium speciation in a world-class lateritic deposit. Geochem. Perspect. Lett. 2017, 3, 105–114. [Google Scholar] [CrossRef]
- Dalvi, A.D.; Gordon Bacon, W.; Osborne, R.C. The past and the future of nickel laterites. In PDAC 2004 International Convention, Trade Show & Investors Exchange; The Prospectors and Developers Association of Canada Toronto: Toronto, ON, Canada, 2004; p. 27. [Google Scholar]
- McRae, M.E. US Geological Survey, Mineral Commodity Summaries 2022—Nickel. Available online: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-nickel.pdf (accessed on 13 July 2023).
- Golightly, J.P. Nickeliferous laterite deposits. In Seventy-Fifth Anniversary Volume; Economic Geology Publishing Company: Littleton, CO, USA, 1981; pp. 710–735. [Google Scholar] [CrossRef]
- Gleeson, S.A.; Butt, C.R.; Elias, M. Nickel laterites: A review. SEG Newsl. 2003, 54, 11–18. [Google Scholar] [CrossRef]
- Gaudin, A.; Decarreau, A.; Noack, Y.; Grauby, O. Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia. Aust. J. Earth Sci. 2005, 52, 231–241. [Google Scholar] [CrossRef]
- Thorne, R.L.; Roberts, S.; Herrington, R. Climate change and the formation of nickel laterite deposits. Geology 2012, 40, 331–334. [Google Scholar] [CrossRef]
- Butt, C.R.M.; Cluzel, D. Nickel laterite ore deposits: Weathered serpentinites. Elements 2013, 9, 123–128. [Google Scholar] [CrossRef]
- Maurizot, P.; Sevin, B.; Iseppi, M.; Giband, T. Nickel-bearing laterite deposits in accretionary context and the case of New Caledonia: From the large-scale structure of earth to our everyday appliances. GSA Today 2019, 29, 4–10. [Google Scholar] [CrossRef]
- Butt, C.R.M. Nickel Laterites and Bauxites: A Summary of Observations Made During an Overseas Trip in 1974. In CSIRO Division of Mineralogy; Minerals Research Laboratories: Asheville, NC, USA, 1975. [Google Scholar]
- Golightly, J.P. Progress in understanding the evolution of nickel laterites. Econ. Geol. Spec. Pub. 2010, 15, 451–485. [Google Scholar] [CrossRef]
- Brand, N.W.; Butt, C.R.M.; Elias, M. Nickel laterites: Classification and features. AGSO J. Aust. Geol. Geoph. 1998, 17, 81–88. [Google Scholar]
- Wells, M.A.; Ramanaidou, E.R.; Verrall, M.; Tessarolo, C. Mineralogy and crystal chemistry of garnierites in the Goro lateritic nickel deposit, New Caledonia. Eur. J. Miner. 2009, 21, 467–483. [Google Scholar] [CrossRef]
- Villanova-de-Benavent, C.; Proenza, J.A.; Galí, S.; García-Casco, A.; Tauler, E.; Lewis, J.F.; Longo, F. Garnierites and garnierites: Textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore. Geol. Rev. 2014, 58, 91–109. [Google Scholar] [CrossRef]
- Cathelineau, M.; Quesnel, B.; Gautier, P.; Boulvais, P.; Couteau, C.; Drouillet, M. Nickel dispersion and enrichment at the bottom of the regolith: Formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia). Miner. Depos. 2016, 51, 271–282. [Google Scholar] [CrossRef]
- Tupaz, C.A.J.; Watanabe, Y.; Sanematsu, K.; Echigo, T. Mineralogy and Geochemistry of the Berong Ni-Co laterite Deposit, Palawan, Philippines. Ore. Geol. Rev. 2020, 125, 103686. [Google Scholar] [CrossRef]
- Lambiv Dzemua, G.; Gleeson, S.A.; Schofield, P.F. Mineralogical characterization of the Nkamouna Co–Mn laterite ore, southeast Cameroon. Miner. Depos. 2013, 48, 155–171. [Google Scholar] [CrossRef]
- Nahon, D.B.; Paquet, H.; Delvigne, J. Lateritic weathering of ultramafic rocks and the concentration of nickel in the Western Ivory Coast. Econ. Geol. 1982, 77, 1159–1175. [Google Scholar] [CrossRef]
- Colin, F.; Noack, Y.; Trescases, J.J.; Nahon, D. L’alteration latéritique débutante des pyroxenites de Jacuba, Niquelândia, Brésil. Clay Miner. 1985, 20, 93–113. [Google Scholar] [CrossRef]
- Putzolu, F.; Abad, I.; Balassone, G.; Boni, M.; Mondillo, N. Ni-bearing smectites in the Wingellina laterite deposit (Western Australia) at nanoscale: TEM-HRTEM evidences of the formation mechanisms. Appl. Clay Sci. 2020, 196, 105753. [Google Scholar] [CrossRef]
- Tauler, E.; Lewis, J.F.; Villanova-de-Benavent, C.; Aiglsperger, T.; Proenza, J.A.; Domènech, C.; Gallardo, C.; Longo, F.; Galí, S. Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): Geochemistry and mineralogy of an unusual case of “hybrid hydrous Mg silicate–clay silicate” type Ni-laterite. Miner. Depos. 2017, 52, 1011–1030. [Google Scholar] [CrossRef]
- Nelson, C.E.; Proenza, J.A.; Lewis, J.F.; López-Kramer, J. The metallogenic evolution of the Greater Antilles. Geol. Acta 2011, 9, 229–264. [Google Scholar] [CrossRef]
- Chang-Rodríguez, A.; Rojas, A. Fases minerales portadoras de níquel presentes en el horizonte saprolítico del yacimiento San Felipe. Minería Geol. 2015, 31, 1–18. [Google Scholar]
- Chang-Rodríguez, A.; Tauler, E.; Lavaut, W.; Rojás-Purón, A.L.; Proenza, J.A. Caracterización geoquímica del perfil litológico del yacimiento laterítico de níquel “San Felipe”, Camagüey, Cuba”. Rev. Cienc. Tierra Espac. 2015, 16, 9–22. [Google Scholar]
- Chang-Rodríguez, A.; Tauler, E.; Proenza, J.A.; Rojas-Purón, A.L. Mineralogía del yacimiento laterítico de níquel San Felipe. Minería Geol. 2016, 32, 28–47. [Google Scholar]
- Cobas-Botey, R.M. Caracterización geológica de las lateritas en diferentes regiones metalogénicas: Comparación de los yacimientos San Felipe y Piloto. Minería Geol. 2016, 32, 48–59. [Google Scholar]
- Cobas-Botey, R.M.; Formell-Cortina, F.; Leyva-Rodríguez, C. Modelo geológico descriptivo del yacimiento laterítico San Felipe, Camagüey, Cuba. Minería Geol. 2017, 33, 251–264. [Google Scholar]
- Iturralde-Vinent, M.A.; Garcia-Casco, A.; Rojas-Agramonte, Y.; Proenza, J.A.; Murphy, J.B.; Stern, R.G. The geology of Cuba: A brief overview and syn thesis. GSA Today 2016, 26, 4–10. [Google Scholar] [CrossRef]
- Rojas-Agramonte, Y.; Garcia-Casco, A.; Kemp, A.; Kröner, A.; Proenza, J.A.; Lázaro, C.; Liu, D. Recycling and transport of continental material through the mantle wedge above subduction zones: A Caribbean example. Earth Planet. Sci. Lett. 2016, 436, 93–107. [Google Scholar] [CrossRef]
- Iturralde-Vinent, M. Introduction to Cuban geology and geophysics. Ofiolitas y Arcos Volcánicos de Cuba. Miami, Florida. Int. Geol. Correl. Programme 1996, 364, 3–35. [Google Scholar]
- Lewis, J.F.; Draper, G.; Proenza, J.A.; Espaillat, J.; Jiménez, J. Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: A review of their occurrence, composition, origin, emplacement and nickel laterite soils. Geol. Acta 2006, 4, 237–263. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Kelso, N.V.; Patterson, T. Introducing natural earth data—Naturalearthdata.com. Geogr. Tech. 2010, 5, 25. [Google Scholar]
- Gallardo, T.; Tauler, E.; Garcia-Romero, E.; Proenza, J.A.; Suarez-Barrrrios, M.; Chang, A. Caracterización Mineralógica de las Esmetitas Niquelíferas del Yacimiento de San Felipe (Camagüey, Cuba). Macla 2011, 15, 89–90. [Google Scholar]
- Lázaro, C.; García-Casco, A.; Blanco-Quintero, I.F.; Rojas-Agramonte, Y.; Corsini, M.; Proenza, J.A. Did the Turonian–Coniacian plume pulse trigger subduction initiation in the Northern Caribbean? Constraints from 40Ar/39Ar dating of the Moa-Baracoa metamorphic sole (eastern Cuba). Int. Geol. Rev. 2015, 57, 919–942. [Google Scholar] [CrossRef]
- Young, R.A. The Rietveld Method. In International Union of Crystallography; Oxford University Press: Oxford, UK, 1993; p. 298. ISBN 0198555776. [Google Scholar]
- TOPAS. General Profile and Structure Analysis Software for Powder Diffraction Data, version 4.2; Bruker AXS Gmbh: Karlsruhe, Germany, 2009. [Google Scholar]
- Pouchou, J.L.; Pichoir, F. Electron probe x-ray microanalysis applied to thin surface films and stratified specimens. Scanning Microsc. Suppl. 1993, 7, 167–189. [Google Scholar]
- Decarreau, A.; Colin, F.; Herbillon, A.; Manaceau, A.; Nahon, D.; Paquet, H.; Trauth-Badaud, D.; Trescases, J.J. Domain segregation in Ni-Fe-Mg smectites. Clays Clay Miner. 1987, 35, 1–10. [Google Scholar] [CrossRef]
- Roque-Rosell, J.; Villanova-de-Benavent, C.; Proenza, J.A. The accumulation of Ni in serpentines and garnierites from the Falcondo Ni-laterite deposit (Dominican Republic) elucidated by means of μXAS. Geochim. Cosmochim. Acta 2017, 198, 48–69. [Google Scholar] [CrossRef]
- Villanova-de-Benavent, C.; Domènech, C.; Tauler, E.; Galí, S.; Tassara, S.; Proenza, J.A. Fe–Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: New insights from thermodynamic calculations. Miner. Depos. 2017, 52, 979–992. [Google Scholar] [CrossRef]
- Guggenheim, S.; Adams, J.M.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Formoso, M.L.L.; Galán, E.; Kogure, T.; Stanjek, H. Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association Internationale pour l’etude des Argiles, nomenclature committee for 2006. Clay Miner. 2006, 41, 863–877. [Google Scholar] [CrossRef]
- Bosio, N.J.; Hurst, V.J.; Smith, R.L. Nickeliferous nontronite, a 15 Å garnierite, at Niquelândia, Goiás, Brazil. Clays Clay Miner. 1975, 23, 400–403. [Google Scholar] [CrossRef]
- Brindley, G.W.; de Souza, J.V. Nickel containing montmorillonites and chlorites from Brazil, with remarks on schuchardtite. Miner. Mag. 1975, 40, 141–152. [Google Scholar] [CrossRef]
- Nahon, D.B.; Colin, F. Chemical weathering of orthopyroxenes under lateritic conditions. Am. J. Sci. 1982, 282, 1232–1243. [Google Scholar] [CrossRef]
- Nahon, D.B.; Colin, F.; Tardy, Y. Formation and distribution of Mg, Fe, Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite. Clay Miner. 1982, 17, 339–348. [Google Scholar] [CrossRef]
- Pelletier, B. Serpentines in nickel silicate ore from New Caledonia. Australasian Institute of Mining and Metallurgy publication series—Nickel conference Bmineral to market, Kalgoorlie. West. Aust. 1996, 6, 197–205. [Google Scholar]
- Gaudin, A.; Grauby, O.; Noack, Y.; Decarreau, A.; Petit, S. Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). I XRD and multi-scale chemical approaches. Clay Miner. 2004, 39, 301–315. [Google Scholar] [CrossRef]
- Gleeson, S.A.; Herrington, R.J.; Durango, J.; Velásquez, C.A.; Koll, G. The mineralogy and geochemistry of the Cerro Matoso S.A. Nilaterite deposit, Montelíbano, Colombia. Econ. Geol. 2004, 99, 1197–1213. [Google Scholar] [CrossRef]
- Suárez, S.; Nieto, F.; Velasco, F.; Martín, F.J. Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. Eur. J. Miner. 2011, 23, 179–196. [Google Scholar] [CrossRef]
- Murofushi, A.; Otake, T.; Sanematsu, K.; Zay Ya, K.; Ito, A.; Kikuchi, R.; Sato, T. Mineralogical evolution of a weathering profile in the Tagaung Taung Ni laterite deposit: Significance of smectite in the formation of high-grade Ni ore in Myanmar. Min. Depos. 2022, 57, 1107–1122. [Google Scholar] [CrossRef]
- Velde, B. Clay Minerals: A Physico-Chemical Explanation of Their Occurrence; Elsevier: Amsterdam, The Netherlands, 1985; p. 427. ISBN 0444424237. [Google Scholar]
- Chen, T.T.; Dutrizac, J.E.; Krause, E.; Osborne, R. Mineralogical characterization of nickel laterites from New Caledonia and Indonesia. Int. Laterite Nickel Symp. 2004, 79–99. [Google Scholar]
- Golightly, J.P.; Arancibia, O.N. The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine form a nickeliferous laterite profile, Soroako, Indonesia. Can. Mineral. 1979, 17, 719–728. [Google Scholar]
- Brindley, G.W.; Bish, D.L.; Wan, H.M. The nature of kerolite, its relation to talc and stevensite. Min. Mag. 1977, 41, 443–452. [Google Scholar] [CrossRef]
- Hillier, S. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: Comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Miner. 2000, 35, 291–302. [Google Scholar] [CrossRef]
- Srodon, J. Identification and Quantitative Analysis of Clay Minerals. Dev. Clay Sci. 2013, 5, 25–49. [Google Scholar] [CrossRef]
- Reynolds, R.C. Principles and techniques of quantitative analysis of clay minerals by X-ray powder diffraction. In Quantitative Mineral Analysis of Clays; Pevear, D.R., Mumpton, F.A., Eds.; CMS: Bonn, Germany, 1989; p. 437. [Google Scholar]
- Brindley, G.W.; Brown, G. Crystal Structures of Clay Minerals and Their X-ray Identification 1980; Mineralogical Society: Washington, DC, USA; p. 495. ISBN 0-903056-08-9.
- Suquet, H.; Malard, C.; Copin, E.; Pezerat, H. Variation du parametre b et de la distance basale d 001 dans une serie de saponites à charge roissante: I. Ëtats hydrates. II Ëtats “zero couche”. Clay Miner. 1981, 16, 181–193. [Google Scholar] [CrossRef]
- Colin, F.; Nahon, D.; Trescases, J.J.; Melfi, A.J. Lateritic weathering ofpyroxenites at Niquelandia, Goias, Brazil: The supergene behaviour of nickel. Econ. Geol. 1990, 85, 1010–1023. [Google Scholar] [CrossRef]
- Paquet, H.; Duplay, J.; Nahon, D.; Tardy, Y.; Millot, G. Analyses chimiques de particules isole’es dans les populations de mine´raux argileux. Passage des smectites magnésiennes trioctaédriques aux smectites ferrifères dioctaédriques au cours de l’altération des roches ultrabasiques. Comptes Rendus L’académie Sci. II 1983, 296, 699–704. [Google Scholar]
- Aquino, K.A.; Arcilla, C.A.; Schardt, C.; Tupaz, C.A.J. Mineralogical and geochemical characterization of the Sta. Cruz Nickel laterite deposit, Zambales, Philippines. Minerals 2022, 12, 305. [Google Scholar] [CrossRef]
- Domènech, C.; Galí, S.; Villanova-de-Benavent, C.; Soler, J.M.; Proenza, J.A. Reactive transport model of the formation of oxide-type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba). Miner. Dep. 2017, 52, 993–1010. [Google Scholar] [CrossRef]
- Cathelineau, M.; Boiron, M.C.; Grimaud, J.L.; Favier, S.; Teitler, Y.; Golfier, F. Pseudo-Karst Silicification Related to Late Ni Reworking in New Caledonia. Minerals 2023, 13, 518. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tauler, E.; Galí, S.; Villanova-de-Benavent, C.; Chang-Rodríguez, A.; Núñez-Cambra, K.; Khazaradze, G.; Proenza, J.A. Geochemistry and Mineralogy of the Clay-Type Ni-Laterite Deposit of San Felipe (Camagüey, Cuba). Minerals 2023, 13, 1281. https://doi.org/10.3390/min13101281
Tauler E, Galí S, Villanova-de-Benavent C, Chang-Rodríguez A, Núñez-Cambra K, Khazaradze G, Proenza JA. Geochemistry and Mineralogy of the Clay-Type Ni-Laterite Deposit of San Felipe (Camagüey, Cuba). Minerals. 2023; 13(10):1281. https://doi.org/10.3390/min13101281
Chicago/Turabian StyleTauler, Esperança, Salvador Galí, Cristina Villanova-de-Benavent, Alfonso Chang-Rodríguez, Kenya Núñez-Cambra, Giorgi Khazaradze, and Joaquín Antonio Proenza. 2023. "Geochemistry and Mineralogy of the Clay-Type Ni-Laterite Deposit of San Felipe (Camagüey, Cuba)" Minerals 13, no. 10: 1281. https://doi.org/10.3390/min13101281
APA StyleTauler, E., Galí, S., Villanova-de-Benavent, C., Chang-Rodríguez, A., Núñez-Cambra, K., Khazaradze, G., & Proenza, J. A. (2023). Geochemistry and Mineralogy of the Clay-Type Ni-Laterite Deposit of San Felipe (Camagüey, Cuba). Minerals, 13(10), 1281. https://doi.org/10.3390/min13101281