Peridotite Weathering and Ni Redistribution in New Caledonian Laterite Profiles: Influence of Climate, Hydrology, and Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. New Caledonia Geology
2.2. Methodology
2.3. Study Sites
3. Results
3.1. Paleosurfaces and Representative Landscapes
3.2. Ore Types
3.2.1. Syntectonic Ni-Talc-like Veins
3.2.2. Ni-Cockade Ores and Pimelite-Breccia
3.2.3. Ferruginous Saprolite Ores Dominated by Silicates
3.3. Geochemical Evolution Along Laterite Profiles
3.4. Detailed Mineralogy
3.4.1. Recommended Characterisation Methodology
- -
- Macroscopic approaches include direct observation and chemical mapping using micro-XRF on samples as large as 20 centimetres. These methods are complemented by detailed mineralogical characterisation of representative quartered samples from ore bags (global approach using XRD and quantitative chemical analysis). A challenge in this approach is correlating the overall chemical characteristics with quantitative mineralogy, especially in cases where a mixture of yellow-to-red laterite and cork-type ore lacks discernible mineralisation. Using Rietveld-type methods for quantification, XRD can be employed for this purpose.
- -
- In situ approaches focus on samples selected based on observational criteria characterising the distinct mineralogical assemblages. Although this sampling method targets typical assemblages, it does not represent the ore heap as a whole. Instead, it provides insights into the characteristic assemblages without quantifying their contribution to the overall chemical and mineralogical properties.
3.4.2. Mineralogical Characterisation
- (1)
- Talc-like precipitation within the serpentine network. These talc-like deposits are, to some extent, similar to those already described by [14,19] in most of the “garnierite” mineralised veins (Tiébaghi, Koniambo, Poro, Thio, Népoui, Cap Bocage, Henriette, Goro). The TOT talc-like structures may constitute a significant Ni-bearer and are much richer in nickel and silicon than the serpentines (TO).
- (2)
- Moderate nickel substitutions in lizardites within their crystal lattice. Ni-bearing serpentines do not correspond to nepouite, as reported in earlier work. Nepouite has never been found in the samples studied over the last ten years. However, serpentines can be moderately enriched in Ni up to a few per cent NiO (e.g., [22]). These in situ investigations constitute the first direct observations of saprolite ore without macroscopically observable nickel-bearing phyllosilicates, where nickel appears enriched in inherited lizardite-type black serpentine microstructures. In agreement with our previous spectroscopic study [60], our nanometric scale observations confirm the crystallisation of fine talc-like particles localised in pre-existing serpentine networks and the incorporation of Ni in the serpentines.
3.4.3. Use of Ni K-Edge XANES Spectra for Determination of Ni-Bearers in Bulk Rock
4. Discussion
4.1. Role of Micro-Fractures in Ni Redistribution During the Bedrock-Saprolite Transition
- -
- Micro-fracturing is a preferential network controlling the transfer and mobility of Ni-Mg-Si and their re-precipitation as newly formed minerals.
- -
- Inherited serpentine fillings play a crucial role in the epitaxial or topotactic precipitation of nickel in the form of Ni-Mg talc on the surfaces of pre-existing serpentines. The serpentines are primarily lizardites, which may be partially replaced or transformed into polygonal serpentine.
- -
- The combined role of: (i) micro-fracturing (micro-structural heritage linked to the initial functioning of the serpentinisation networks or their reactivation under crack-seal conditions (stage I of Ni-Mg talc mineralisation then micro-crystalline red quartz) or reopening by surface bursting; (ii) the mineral inheritance linked to the presence of two types of serpentine along the microcracks, during the reopening phases of these networks is effectively visualised by the micro-XRF maps of nickel, iron, silicon and magnesium.
4.2. Role of Macro-Fractures on the Morphology of the Bedrock-Saprolite Interface
Development of the Boulder and Saprolite
4.3. Chronology of the Formation of Paleosurface and Development of Boulders
4.4. Modelling Reactive Transport in a Dual Permeability Environment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nahon, D.; Tardy, Y. The Ferruginous Laterites. In Handbook of Exploration Geochemistry; Elsevier: Amsterdam, The Netherlands, 1992; pp. 41–55. [Google Scholar] [CrossRef]
- Golightly, J.-P. Progress in Understanding the Evolution of Nickel Laterites. in The Challenge of Finding New Mineral Resources Global Metallogeny, Innovative Exploration, and New Discoveries. Soc. Econ. Geol. Spec. Publ. 2010, 15, 451–475. [Google Scholar]
- Thorne, R.; Herrington, R.; Robert, S. Composition and origin of the Çaldag oxide nickel laterite, W. Turkey. Miner. Depos. 2009, 44, 581–595. [Google Scholar] [CrossRef]
- Vasconcelos, P.M.; Reich, M.; Shuster, D.L. The Paleoclimatic Signatures of Supergene Metal Deposits. Elements 2015, 11, 317–322. [Google Scholar] [CrossRef]
- Anand, R.R. Regolith-landform processes and geochemical exploration for base metal deposits in regolith-dominated terrains of the Mt Isa region, northwest Queensland, Australia. Ore Geol. Rev. 2016, 73, 451–474. [Google Scholar] [CrossRef]
- Reis, F.D.A.A.; Brantley, S.L. Models of transport and reaction describing weathering of fractured rock with mobile and immobile water. J. Geophys. Res. Earth Surf. 2017, 122, 735–757. [Google Scholar] [CrossRef]
- Tardy, Y.; Roquin, C. Geochemistry and evolution of lateritic landscapes. In Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 1992; Volume 2, pp. 407–443. [Google Scholar]
- Butt, C.R.M.; Cluzel, D. Nickel Laterite Ore Deposits: Weathered Serpentinites. Elements 2013, 9, 123–128. [Google Scholar] [CrossRef]
- Grimaud, J.L. Dynamique Long-Terme de L’érosion en Contexte Cratonique: L’Afrique de l’Ouest depuis l’Eocène. Ph.D. Thesis, Université Paul Sabatier-Toulouse II, Toulouse, France, 2014. [Google Scholar]
- Beauvais, A.; Chardon, D. Modes, tempo, and spatial variability of Cenozoic cratonic denudation: The West African example. Geochem. Geophys. 2013, 14, 1590–1608. [Google Scholar] [CrossRef]
- Jean, A.; Beauvais, A.; Chardon, D.; Arnaud, N.; Jayananda, M.; Mathe, P.E. Weathering history and landscape evolution of Western Ghats (India) from 40Ar/39Ar dating of supergene K–Mn oxides. J. Geol. Soc. 2020, 177, 523–536. [Google Scholar] [CrossRef]
- Elias, M. Nickel laterite deposits-geological overview, resources and exploitation. In Giant Ore Deposits: Characteristics, Genesis and Exploration; Cooke, D.R., Pongratz, J., Eds.; Special Publication; Centre for Ore Deposit Research, University of Tasmania: Hobart, Australia, 2002; Volume 4, pp. 205–220. [Google Scholar]
- Favier, S.; Teitler, Y.; Golfier, F.; Cathelineau, M. Multiscale physical-chemical analysis of the impact of fracture networks on weathering: Application to nickel redistribution in the formation of Ni-laterite ores, New Caledonia. Ore Geol. Rev. 2022, 147, 104971. [Google Scholar] [CrossRef]
- Cathelineau, M.; Boiron, M.C.; Grimaud, J.L.; Favier, S.; Teitler, Y.; Golfier, F. Pseudo-Karst Silicification Related to Late Ni Reworking in New Caledonia. Minerals 2023, 13, 518. [Google Scholar] [CrossRef]
- Sevin, B.; Cluzel, D.; Maurizot, P.; Ricordel-Prognon, C.; Chaproniere, G.; Folcher, N.; Quesnel, F. A drastic lower Miocene regolith evolution triggered by post-obduction slab break-off and uplift in New Caledonia. Tectonics 2014, 33, 1787–1801. [Google Scholar] [CrossRef]
- Teitler, Y.; Cathelineau, M.; Ulrich, M.; Ambrosi, J.P.; Munoz, M.; Sevin, B. Petrology and geochemistry of scandium in New Caledonian Ni-Co laterites. J. Geochem. Explor. 2019, 196, 131–155. [Google Scholar] [CrossRef]
- Teitler, Y.; Favier, S.; Ambrosi, J.-P.; Sevin, B.; Golfier, F.; Cathelineau, M. Evaluation of Sc Concentrations in Ni-Co Laterites Using Al as a Geochemical Proxy. Minerals 2022, 12, 615. [Google Scholar] [CrossRef]
- Cathelineau, M.; Quesnel, B.; Gautier, P.; Boulvais, P.; Couteau, C.; Drouillet, M. Nickel dispersion and enrichment at the bottom of the regolith: Formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia). Miner. Depos. 2016, 51, 271–282. [Google Scholar] [CrossRef]
- Cathelineau, M.; Myagkiy, A.; Quesnel, B.; Boiron, M.-C.; Gautier, P.; Boulvais, P.; Ulrich, M.; Truche, L.; Golfier, F.; Drouillet, M. Multistage crack seal vein and hydrothermal Ni enrichment in serpentinised ultramafic rocks (Koniambo massif, New Caledonia). Miner. Depos. 2017, 52, 945–960. [Google Scholar] [CrossRef]
- Villanova-de-Benavent, C.; Jawhari, T.; Roqué-Rosell, J.; Galí, S.; Proenza, J.A. Ni-bearing phyllosilicates (“garnierites”): New insights from thermal analysis, μRaman and IR spectroscopy. Appl. Clay Sci. 2019, 175, 47–66. [Google Scholar] [CrossRef]
- Dublet, G.; Juillot, F.; Morin, G.; Fritsch, E.; Fandeur, D.; Ona-Nguema, G.; Brown, G.E. Ni speciation in a New Caledonian lateritic regolith: A quantitative X-Ray absorption spectroscopy investigation. Geochim. Cosmochim. Acta 2012, 95, 119–133. [Google Scholar] [CrossRef]
- Muñoz, M.; Ulrich, M.; Cathelineau, M.; Mathon, O. Weathering processes and crystal chemistry of Ni-bearing minerals in saprock horizons of New Caledonia ophiolite. J. Geochem. Explor. 2019, 198, 82–99. [Google Scholar] [CrossRef]
- Dublet, G.; Juillot, F.; Morin, G.; Fritsch, E.; Fandeur, D.; Brown, G.E. Goethite ageing explains Ni depletion in upper units of ultramafic lateritic ores from New Caledonia. Geochim. Cosmochim. Acta 2015, 160, 1–15. [Google Scholar] [CrossRef]
- Ramanaidou, E.R.; Wells, M.A.; Godel, B. Ni-goethites in nickel laterites. In Proceedings of the International Workshop Geochemical Cycle of Ni, Co and Sc: From Mining Exploration to Ecotoxicity, Nancy, France, 17–19 October 2017. [Google Scholar]
- Quesnel, B.; de Veslud, C.L.C.; Boulvais, P.; Gautier, P.; Cathelineau, M.; Drouillet, M. 3D modeling of the laterites on top of the Koniambo Massif, New Caledonia: Refinement of the per descensum lateritic model for nickel mineralisation. Miner. Depos. 2017, 52, 961–978. [Google Scholar] [CrossRef]
- Fritsch, E.; Juillot, F.; Dublet, G.; Fonteneau, L.; Fandeur, D.; Martin, E.; Caner, L.; Auzende, A.-L.; Grauby, O.; Beaufort, D. An Alternative Model for the Formation of Hydrous Mg/Ni Layer Silicates (‘deweylite’/’garnierite’) in Faulted Peridotites of New Caledonia: I. Texture and Mineralogy of a Paragenetic Succession of Silicate Infillings. Eur. J. Mineral. 2016, 28, 295–311. [Google Scholar] [CrossRef]
- Wells, M.A.; Ramanaidou, E.R.; Verrall, M.; Tessarolo, C. Mineralogy and chemical chemistry of ‘garnierites’ in the Goro lateritic nickel deposit, New Caledonia. Eur. J. Mineral. 2009, 21, 467–483. [Google Scholar] [CrossRef]
- Trescases, J.J. L’évolution Géochimique Supergène des Roches Ultrabasiques en Zone Tropicale: Formation des Gisements Nickélifères de Nouvelle-Calédonie, 1975, Mémoires ORSTOM (Office de La Recherche Scientifique et Technique Outre-Mer) n°78, 278p, no AO8708: 1973/09/26, ISBN 2-7099-0362-8. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/Mem_cm/07526.pdf (accessed on 26 August 2024).
- Chardon, D.; Chevillotte, V. Morphotectonic evolution of the New Caledonia ridge (Pacific Southwest) from post-obduction tectonosedimentary record. Tectonophysics 2006, 420, 473–491. [Google Scholar] [CrossRef]
- Chevillotte, V. Morphogenèse Tropicale en contexte Epirogénique Modéré: Exemple de la Nouvelle-Calédonie (Pacifique Sud-Ouest). Ph.D. Thesis, Université de la Nouvelle-Calédonie, Nouméa, New Caledonia, France, 2005. [Google Scholar]
- Maurizot, P.; Lafoy, Y.; Poupée, M. Cartographie des Formations Superficielles et des aléas Mouvements de Terrain en Nouvelle-Calédonie, Zone du Koniambo. BRGM, Public Report RP51624-FR, 2002; 45p. Available online: http://infoterre.brgm.fr/rapports/RP-51624-FR.pdf (accessed on 26 August 2024).
- Maurizot, P.; Sevin, B.; Lesimple, S.; Bailly, L.; Iseppi, M.; Robineau, B. Mineral resources and prospectivity of the ultramafic rocks of New Caledonia, Chapter 10. Geol. Soc. Lond. Mem. 2020, 51, 247–277. [Google Scholar] [CrossRef]
- Sevin, B. Cartographie du Régolithe sur Formation Ultrabasique de Nouvelle-Calédonie: Localisation dans l’espace et le Temps des Gisements Nickélifères. Ph.D. Thesis, Université de la Nouvelle-Calédonie, Nouméa, New Caledonia, 2014. [Google Scholar]
- Sevin, B.; Maurizot, P.; Cluzel, D.; Tournadour, E.; Etienne, S.; Folcher, N.; Patriat, M. Post-obduction evolution of New Caledonia. Geol. Soc. Lond. Mem. 2020, 51, 147–188, Chapter 7. [Google Scholar] [CrossRef]
- Iseppi, M.; Sevin, B.; Cluzel, D.; Maurizot, P.; Bayon, B.L. Supergene nickel ore deposits controlled by gravity-driven faulting and slope failure, Peridotite Nappe, New Caledonia. Econ. Geol. 2018, 113, 531–544. [Google Scholar] [CrossRef]
- Sevin, B.; Ricordel-Prognon, C.; Quesnel, B.; Cluzel, D.; Lesimple, S.; Maurizot, P. First palaeomagnetic dating of ferricrete in New Caledonia: New insight on the morphogenesis and palaeoweathering of ‘Grande Terre’. Terra Nova 2012, 24, 77–85. [Google Scholar] [CrossRef]
- Jeanpert, J. Structural and Hydrogeologic Characterisation of the Peridotitic Massifs of New Caledonia. Ph.D. Thesis, Université de la Réunion, Saint-Denis, Réunion, 2017. [Google Scholar]
- Jeanpert, J.; Iseppi, M.; Adler, P.M.; Genthon, P.; Sevin, B.; Thovert, J.-F.; Dewandel, B.; Join, J.-L. Fracture controlled permeability of ultramafic basement aquifers. Inferences from the Koniambo massif, New Caledonia. Eng. Geol. 2019, 256, 67–83. [Google Scholar] [CrossRef]
- Domènech, C.; Galí, S.; Villanova-de-Benavent, C.; Soler, J.M.; Proenza, J.A. Reactive transport model of the formation of oxide-type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba). Miner. Depos. 2017, 52, 993–1010. [Google Scholar] [CrossRef]
- Myagkiy, A.; Truche, L.; Cathelineau, M.; Golfier, F. Revealing the conditions of Ni mineralisation in the laterite profiles of New Caledonia: Insights from reactive geochemical transport modelling. Chem. Geol. 2017, 466, 274–284. [Google Scholar] [CrossRef]
- Favier, S.; Teitler, Y.; Golfier, F.; Cathelineau, M. Reactive transport modelling in porous fractured media: Application to weathering processes. Water Resour. Res. 2024, 60, e2023WR035283. [Google Scholar] [CrossRef]
- Cluzel, D.; Maurizot, P.; Collot, J.; Sevin, B. An outline of the geology of New Caledonia; from Permian-Mesozoic Southeast Gondwanaland active margin to Cenozoic obduction and supergene evolution. Epis.-News Mag. Int. Union Geol. Sci. 2012, 35, 72–86. [Google Scholar] [CrossRef]
- Gautier, P.; Quesnel, B.; Boulvais, P.; Cathelineau, M. The emplacement of the Peridotite Nappe of New Caledonia and its bearing on the tectonics of obduction. Tectonics 2016, 35, 3070–3094. [Google Scholar] [CrossRef]
- Pirard, C.; Hermann, J.; O’Neill, H.S.C. Petrology and Geochemistry of the Crust-Mantle Boundary in a Nascent Arc, Massif du Sud Ophiolite, New Caledonia, SW Pacific. J. Petrol. 2013, 54, 1759–1792. [Google Scholar] [CrossRef]
- Ulrich, M.; Picard, C.; Guillot, S.; Chauvel, C.; Cluzel, D.; Meffre, S. Multiple melting stages and refertilization as indicators for ridge to subduction formation: The New Caledonia ophiolite. Lithos 2010, 115, 223–236. [Google Scholar] [CrossRef]
- Quesnel, B.; Gautier, P.; Cathelineau, M.; Boulvais, P.; Couteau, C.; Drouillet, M. The internal deformation of the Peridotite Nappe of New Caledonia: A structural study of serpentine-bearing faults and shear zones in the Koniambo Massif. J. Struct. Geol. 2016, 85, 51–67. [Google Scholar] [CrossRef]
- Ulrich, M.; Muñoz, M.; Boulvais, P.; Cathelineau, M.; Guillot, S.; Picard, C. Serpentinisation of New Caledonia peridotites: From depth to (sub-)surface. Contrib. Miner. Pet. 2020, 175, 91. [Google Scholar] [CrossRef]
- Jeanpert, J.; Dewandel, B. Analyse Préliminaire des Données Hydrogéologiques du Massif du Koniambo, Nouvelle-Calédonie; SGNC/DIMENC; Report BRGM/RP-61765-FR; SGNC: Nouméa, New Caledonia, France, 2013; 95p. [Google Scholar]
- Chevillotte, V.; Chardon, D.; Beauvais, A.; Maurizot, P.; Colin, F. Long-term tropical morphogenesis of New Caledonia (Southwest Pacific): Importance of positive epeirogeny and climate change. Geomorphology 2006, 81, 361–375. [Google Scholar] [CrossRef]
- Grimaud, J.L.; Chardon, D.; Metelka, V.; Beauvais, A.; Bamba, O. Neogene cratonic erosion fluxes and landform evolution processes from regional regolith mapping (Burkina Faso, West Africa). Geomorphology 2015, 241, 315–330. [Google Scholar] [CrossRef]
- Grimaud, J.L.; Rouby, D.; Chardon, D.; Beauvais, A. Cenozoic sediment budget of West Africa and the Niger Delta. Basin Res. 2018, 30, 169–186. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C. Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol. Surv. Tech. Methods 2013, 6, 497. [Google Scholar]
- COMSOL Multiphysics® (5.6). [Computer Software] 2020. COMSOL AB, Stockholm, Sweden. Available online: www.comsol.com (accessed on 15 January 2021).
- Favier, S.; Teitler, Y.; Golfier, F.; Cathelineau, M. Migration of dissolution front in a fracture network—Implications for weathering of fractured bedrock systems and boulder formation. J. Hydrol. 2024, 644, 132056. [Google Scholar] [CrossRef]
- Maurizot, P.; Vendé-Leclerc, M. Carte Géologique de la Nouvelle-Calédonie au 1/500 000, 2009; Direction de l’Industrie, des Mines et de l’Energie, Service de la Géologie de Nouvelle-Calédonie (SGNC); Bureau de Recherches Géologiques et Minières: Nouméa, New Caldonia, France, 2009.
- Cluzel, D.; Vigier, B. Syntectonic Mobility of Supergene Nickel Ores of New Caledonia (Southwest Pacific). Evidence from Garnierite Veins and Faulted Regolith. Resour. Geol. 2008, 58, 161–170. [Google Scholar] [CrossRef]
- Lagabrielle, Y.; Chauvet, A. The role of extensional faulting in shaping Cenozoic New-Caledonia. Bull. Soc. Géol. Fr. 2008, 179, 315–329. [Google Scholar] [CrossRef]
- Genna, A.; Maurizot, P.; Lafoy, Y.; Augé, T. Contrôle karstique de minéralisations nickélifères de Nouvelle-Calédonie. C. R. Geosci. 2005, 337, 367–374. [Google Scholar] [CrossRef]
- Farrokhpay, F.; Cathelineau, M.; Blancher, S.; Laugier, O.; Filippov, L. Characterization of Weda Bay nickel laterite ore from Indonesia. J. Geochem. Explor. 2019, 196, 270–281. [Google Scholar] [CrossRef]
- Muñoz, M.; Ulrich, M.; Cathelineau, M.; Mathon, O. Crystal Chemistry and Concentration Process of Nickel in New Caledonia laterite. Goldschmidt Conference Hawai, 2022, Session 8h, Raw Materials for a Low Carbon Future 302A/B. Available online: https://conf.goldschmidt.info/goldschmidt/2022/meetingapp.cgi/Paper/10128 (accessed on 26 August 2024).
- Idnurm, M.; Senior, B.R. Palaeomagnetic ages of late Cretaceous and Tertiary weathered profiles in the Eromanga Basin, Queensland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1978, 24, 263–272. [Google Scholar] [CrossRef]
- Radtke, U.; Brückner, H. Investigation on age and genesis of silcretes in Queensland (Australia)-Preliminary results. Earth Surf. Process. Landf. 1991, 16, 547–554. [Google Scholar] [CrossRef]
- Mathian, M.; Chassé, M.; Calas, G.; Griffin, W.L.; O’Reilly, S.Y.; Buisson, T.; Allard, T. Insights on the Cenozoic climatic history of Southeast Australia from kaolinite dating. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 604, 111212. [Google Scholar] [CrossRef]
- Lagabrielle, Y.; Maurizot, P.; Lafoy, Y.; Cabioch, G.; Pelletier, B.; Regnier, M.; Wabete, I.; Calmant, S. Post-Eocene extensional tectonics in southern New-Caledonia (SW Pacific): Insights from onshore fault analysis and offshore seismic data. Tectonophysics 2005, 403, 1–28. [Google Scholar] [CrossRef]
- Myagkiy, A.; Golfier, F.; Truche, L.; Cathelineau, M. Reactive Transport Modeling Applied to Ni Laterite Ore Deposits in New Caledonia: Role of Hydrodynamic Factors and Geological Structures in Ni Mineralization. Geochem. Geophys. Geosyst. 2019, 20, 1425–1440. [Google Scholar] [CrossRef]
- Huysmans, M.; Dassargues, A. Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments. Hydrogeol. J. 2005, 13, 895–904. [Google Scholar] [CrossRef]
- Estrade, N.; Cloquet, C.; Echevarria, G.; Sterckeman, T.; Deng, T. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania), Earth Planet. Sci. Lett. 2015, 423, 24–35. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cathelineau, M.; Teitler, Y.; Grimaud, J.-L.; Favier, S.; Golfier, F.; Ramanaidou, E.; Grangeon, S.; Kerreveur, Y.; Jeanpert, J.; Étienne, S.; et al. Peridotite Weathering and Ni Redistribution in New Caledonian Laterite Profiles: Influence of Climate, Hydrology, and Structure. Minerals 2024, 14, 1082. https://doi.org/10.3390/min14111082
Cathelineau M, Teitler Y, Grimaud J-L, Favier S, Golfier F, Ramanaidou E, Grangeon S, Kerreveur Y, Jeanpert J, Étienne S, et al. Peridotite Weathering and Ni Redistribution in New Caledonian Laterite Profiles: Influence of Climate, Hydrology, and Structure. Minerals. 2024; 14(11):1082. https://doi.org/10.3390/min14111082
Chicago/Turabian StyleCathelineau, Michel, Yoram Teitler, Jean-Louis Grimaud, Sylvain Favier, Fabrice Golfier, Erick Ramanaidou, Sylvain Grangeon, Yohann Kerreveur, Julie Jeanpert, Samuel Étienne, and et al. 2024. "Peridotite Weathering and Ni Redistribution in New Caledonian Laterite Profiles: Influence of Climate, Hydrology, and Structure" Minerals 14, no. 11: 1082. https://doi.org/10.3390/min14111082
APA StyleCathelineau, M., Teitler, Y., Grimaud, J. -L., Favier, S., Golfier, F., Ramanaidou, E., Grangeon, S., Kerreveur, Y., Jeanpert, J., Étienne, S., Muñoz, M., & Ulrich, M. (2024). Peridotite Weathering and Ni Redistribution in New Caledonian Laterite Profiles: Influence of Climate, Hydrology, and Structure. Minerals, 14(11), 1082. https://doi.org/10.3390/min14111082