Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = sensory neuron-like cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 5478 KB  
Review
Brain and Immune System Part II—An Integrative View upon Spatial Orientation, Learning, and Memory Function
by Volker Schirrmacher
Int. J. Mol. Sci. 2025, 26(23), 11567; https://doi.org/10.3390/ijms262311567 - 28 Nov 2025
Viewed by 590
Abstract
The brain and the immune system communicate in many ways and interact directly at neuroimmune interfaces at brain borders, such as hippocampus, choroid plexus, and gateway reflexes. The first part of this review described intercellular communication (synapses, extracellular vesicles, and tunneling nanotubes) during [...] Read more.
The brain and the immune system communicate in many ways and interact directly at neuroimmune interfaces at brain borders, such as hippocampus, choroid plexus, and gateway reflexes. The first part of this review described intercellular communication (synapses, extracellular vesicles, and tunneling nanotubes) during homeostasis and neuroimmunomodulation upon dysfunction. This second part compares spatial orientation, learning, and memory function in both systems. The hippocampus, deep in the medial temporal lobes of the brain, is reported to play a central role in all three functions. Its medial entorhinal cortex contains neuronal spatial cells (place cells, head direction cells, boundary vector cells, and grid cells) that facilitate spatial navigation and allow the construction of cognitive maps. Sensory input (about 100 megabytes per second) via engram neurons and top down and bottom up information processing between the temporal lobes and other lobes of the brain are described to facilitate learning and memory function. Output impulses leave the brain via approximately 1.5 million fibers, which connect to effector organs such as muscles and glands. Spatial orientation in the immune system is described to involve gradients of chemokines, chemokine receptors, and cell adhesion molecules. These facilitate immune cell interactions with other cells and the extracellular matrix, recirculation via lymphatic organs (lymph nodes, thymus, spleen, and bone marrow), and via lymphatic fluid, blood, cerebrospinal fluid, and tissues. Learning in the immune system is summarized to include recognition of exogenous antigens from the outside world as well as endogenous blood-borne antigens, including tumor antigens. This learning process involves cognate interactions through immune synapses and the distinction between self and non-self antigens. Immune education via vaccination helps the process of development of protective immunity. Examples are presented concerning the therapeutic potential of memory T cells, in particular those derived from bone marrow. Like in the brain, memory function in the immune system is described to be facilitated by priming (imprinting), training, clonal cooperation, and an integrated perception of objects. The discussion part highlights evolutionary aspects. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 4762 KB  
Article
TNFR1 Suppression by XPro1595 Reduces Peripheral Neuropathies Associated with Perineural Invasion in Female Mice
by Morgan Zhang, Naijiang Liu, Kesava Asam, Charles Meng, Bradley Aouizerat and Yi Ye
Cells 2025, 14(22), 1749; https://doi.org/10.3390/cells14221749 - 7 Nov 2025
Viewed by 623
Abstract
Perineural invasion (PNI), defined by cancer spreading or invading into the nerve, links to severe pain, recurrence, and poor prognosis. PNI contributes to nerve damage, Schwann cell activation, and sensory neuron dysfunction. Soluble tumor necrosis factor α (solTNFα) binds to TNFR1 to drive [...] Read more.
Perineural invasion (PNI), defined by cancer spreading or invading into the nerve, links to severe pain, recurrence, and poor prognosis. PNI contributes to nerve damage, Schwann cell activation, and sensory neuron dysfunction. Soluble tumor necrosis factor α (solTNFα) binds to TNFR1 to drive inflammation and nerve injury, playing a key role in cancer progression and pain. This study, using a mouse sciatic nerve PNI model, explored whether blocking solTNFα-TNFR1 signaling via TNFR1 knockout or pharmacological inhibition by XPro1595 could reduce PNI-associated pain. Data showed that XPro1595, but not TNFR1 knockout, reduced tumor burden, alleviated mechanical allodynia, and improved muscle function and locomotion, primarily in females. Histological analysis in females showed that XPro1595 increased the number of myelin and dendritic cells while reducing axonal damage that resulted from PNI. In the tumor zone outside the nerve truck, XPro1595 reduced T cell and increased macrophage and dendritic cell numbers. Transcriptomic analysis revealed that XPro1595 in females with PNI upregulated mitochondrial, myelination, motor function, and immune regulation gene pathways while it downregulated inflammatory, extracellular matrix, and tumor progression pathways. Overall, we demonstrated that XPro1595 exhibited antitumor, neuroprotective, and analgesic properties in female mice, likely by promoting neuronal regeneration and mitochondrial function, while reducing inflammation and extracellular remodeling. Full article
Show Figures

Figure 1

13 pages, 8750 KB  
Article
Type II Cells in the Human Carotid Body Display P2X7 Receptor and Pannexin-1 Immunoreactivity
by Marcos Anache, Ramón Méndez, Olivia García-Suárez, Patricia Cuendias, Graciela Martínez-Barbero, Elda Alba, Teresa Cobo, Iván Suazo, José A. Vega, José Martín-Cruces and Yolanda García-Mesa
Biomolecules 2025, 15(11), 1523; https://doi.org/10.3390/biom15111523 - 29 Oct 2025
Viewed by 2257
Abstract
The carotid body is a peripheral chemoreceptor that consists of clusters of chemoreceptive type I cells, glia-like type II cells, afferent and efferent nerves, and sinusoidal capillaries and arterioles. Cells and nerves communicate through reciprocal chemical synapses and electrical coupling that form a [...] Read more.
The carotid body is a peripheral chemoreceptor that consists of clusters of chemoreceptive type I cells, glia-like type II cells, afferent and efferent nerves, and sinusoidal capillaries and arterioles. Cells and nerves communicate through reciprocal chemical synapses and electrical coupling that form a “tripartite synapse,” which allows for the process of sensory stimuli within the carotid body involving neurotransmission, autocrine, and paracrine pathways. In this network there are a variety of neurotransmitters and neuromodulators including adenosine 5′-triphosphate (ATP). Carotid body cells and nerve fibre terminals express ATP receptors, i.e., purinergic receptors. Here we used double immunofluorescence associated with laser confocal microscopy to detect the ATP receptor P2X7 and pannexin 1 (an ATP permeable channel) in the human carotid body, as well as the petrosal and cervical sympathetic ganglia. Immunofluorescence for P2X7r and pannexin 1 forms a broad cellular network within the glomeruli of the carotid body, whose pattern corresponds to that of type II cells. Moreover, both P2X7r and pannexin 1 were also detected in nerve profiles. In the petrosal ganglion, the distribution of P2X7r was restricted to satellite glial cells, whereas in the cervical sympathetic ganglion, P2X7r was found in neurons and glial satellite cells. The role of this purinergic receptor in the carotid body, if any, remains to be elucidated, but it probably provides new evidence for gliotransmission. Full article
Show Figures

Figure 1

17 pages, 7304 KB  
Article
Subtype- and Site-Specific Innervation of Melanocytic Nevi as Revealed by PGP 9.5 and CGRP Expression
by Bruno Minigo, Marin Ogorevc, Nela Kelam, Ante Čizmić, Sandra Zekić Tomaš, Katarina Vukojević, Sandra Kostić, Dubravka Vuković and Snježana Mardešić
Medicina 2025, 61(10), 1828; https://doi.org/10.3390/medicina61101828 - 13 Oct 2025
Viewed by 800
Abstract
Background and objectives: Melanocytic nevi are among the most common skin lesions, yet their relationship with the peripheral nervous system has remained understudied. Given the neural crest origin of melanocytes and Schwann cells, and the neurotrophic signaling capabilities of pigment cells, this study [...] Read more.
Background and objectives: Melanocytic nevi are among the most common skin lesions, yet their relationship with the peripheral nervous system has remained understudied. Given the neural crest origin of melanocytes and Schwann cells, and the neurotrophic signaling capabilities of pigment cells, this study aimed to investigate the density of nerve fibers within nevi and assess how it varies with respect to histological subtype and anatomical location. Materials and Methods: A total of 90 nevi were analyzed, including junctional, compound, and intradermal types, distributed across the head, trunk, and limbs. Immunofluorescence staining for the pan-neuronal marker PGP 9.5 and for CGRP were performed and nerve fiber density was quantified. Statistical evaluation using two-way ANOVA revealed that both nevus type and anatomical site significantly influenced the degree of total innervation. Results: Junctional nevi demonstrated the highest total nerve fiber density, significantly exceeding that of compound and intradermal nevi. Likewise, nevi located on the head exhibited a significantly greater density of PGP 9.5-positive nerve fibers compared to those on the trunk and limbs. No significant correlation was observed between nevus type and location, suggesting that both factors contribute independently to the differences in innervation. CGRP-positive innervation was uniform regardless of the histological type of nevus and anatomical location. Conclusions: These findings likely reflect the facts that junctional nevi reside at the dermo-epidermal junction, where nerve fibers are most abundant, while the skin of the head and neck is well known to be more richly innervated than other regions. In contrast, analysis of CGRP-positive fibers suggests that the heterogeneity detected with PGP 9.5 is primarily driven by other neuronal populations. The results support the hypothesis of a dynamic relationship between nevi and the peripheral nervous system, potentially mediated by neurotrophic factors. Understanding this interaction may provide insight into nevus biology, sensory symptoms reported in some lesions, and the evolving role of nerves in the tumor microenvironment. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

12 pages, 6471 KB  
Article
The Effects of Co-Culturing ND7/23 Sensory Neuron-like Cells and IFRS1 Schwann Cells on Myelination: A Single-Arm Nonrandomized Study
by Shizuka Takaku and Kazunori Sango
Neurol. Int. 2025, 17(9), 138; https://doi.org/10.3390/neurolint17090138 - 1 Sep 2025
Viewed by 4460
Abstract
Background/Objectives: Co-culture models of neurons and Schwann cells have been used to explore the mechanisms of myelination during development, axonal regeneration after injury, and the pathogenesis of various demyelinating neuropathies. A spontaneously immortalized Fischer rat Schwann cell line 1 (IFRS1), established from [...] Read more.
Background/Objectives: Co-culture models of neurons and Schwann cells have been used to explore the mechanisms of myelination during development, axonal regeneration after injury, and the pathogenesis of various demyelinating neuropathies. A spontaneously immortalized Fischer rat Schwann cell line 1 (IFRS1), established from the primary culture of adult Fischer344 rat peripheral nerves, can myelinate neurites in co-cultures with primary cultured dorsal root ganglion neurons and neuronal cell lines, such as nerve growth factor (NGF)-primed PC12 cells and NSC-34 motor neuron-like cells. In this study, we aimed to establish a stable co-culture system using IFRS1 cells and ND7/23 sensory neuron-like cells. Methods: ND7/23 cells were seeded at a low density (2 × 103/cm2) and maintained for 7 days in serum-containing medium supplemented with NGF (10 ng/mL) and the Rho kinase inhibitor Y27632 (5 μM) to promote neurite elongation. The cells were then treated with the anti-mitotic agent mitomycin C (1 μg/mL) for 12–16 h to suppress proliferative activity. Following this, the cells were co-cultured with IFRS1 cells (2 × 104/cm2) and maintained at 37 °C in serum-containing medium supplemented with ascorbic acid (50 μg/mL), NGF (10 ng/mL), and ciliary neurotrophic factor (10 ng/mL). Results: Double-immunofluorescence staining performed on day 21 of the co-culture revealed myelin protein 22- or myelin basic protein-immunoreactive IFRS1 cells surrounding βIII tubulin-immunoreactive neurites emerging from ND7/23 cells. Myelin formation was further confirmed via Sudan Black B staining and electron microscopy. Conclusions: This co-culture system may provide a valuable tool for studying the processes of myelination in the peripheral nervous system, as well as the pathogenesis of various sensory neuropathies and potential novel therapeutic approaches for these conditions. Full article
Show Figures

Figure 1

24 pages, 2317 KB  
Article
Improved Tactile Receptivity and Skin Beauty Benefits Through Topical Treatment with a Hyacinthus orientalis Bulb Extract Shown to Activate Oxytocin Receptor Signaling
by Fabien Havas, Shlomo Krispin, Moshe Cohen and Joan Attia-Vigneau
Cosmetics 2025, 12(5), 184; https://doi.org/10.3390/cosmetics12050184 - 26 Aug 2025
Viewed by 1840
Abstract
The neuropeptide oxytocin (OXT) is involved in social bonding, reproduction, and childbirth. Its activity is mediated by the oxytocin receptor (OXTR), also expressed in the skin. OXT alleviates dermal fibroblast senescence, and OXT levels correlate with visible skin aging. OXT inhibits nociceptive signaling [...] Read more.
The neuropeptide oxytocin (OXT) is involved in social bonding, reproduction, and childbirth. Its activity is mediated by the oxytocin receptor (OXTR), also expressed in the skin. OXT alleviates dermal fibroblast senescence, and OXT levels correlate with visible skin aging. OXT inhibits nociceptive signaling and promotes neuronal plasticity. Here, we demonstrate OXT-like benefits of OXTR activation for skin touch sensoriality and nociception, as well as visible skin health and beauty indicators, using an aqueous extract of Hyacinthus orientalis bulbs. OXTR activation was evaluated in a Chinese hamster ovary (CHO) cell model. Nociception and innervation benefits were investigated in keratinocyte/sensory neuron coculture models. A placebo-controlled clinical study evaluated gentle touch receptivity, nociception, skin tone, elasticity, and wrinkling. The extract activated OXTR and enhanced dermal fibroblast proliferation in vitro. In the keratinocyte-neuron coculture, the HO extract lowered nociceptive CGRP release below that of the unstimulated and OXT controls and promoted neuronal survival and dendricity. An organ-on-a-chip coculture showed decreased electrical activity and increased neuronal peripherin. Clinically, we observed selective left-side frontal alpha-wave activation, indicating pleasant sensation, reduced nociception, enhanced skin glow, improved elasticity, and reduced wrinkling. This extract thus shows high value for holistic wellbeing solutions, enhancing the skin’s receptivity to pleasant sensations and promoting well-aging. Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

17 pages, 2700 KB  
Article
Glucocorticoid Receptor (GR) and Specificity Protein 1 (Sp1) or Sp3 Transactivate the Bovine Alphaherpesvirus 1 (BoHV-1)-Infected Cell Protein 0 Early Promoter
by Sankha Hewawasam, Fouad S. El-Mayet and Clinton Jones
Viruses 2025, 17(2), 229; https://doi.org/10.3390/v17020229 - 7 Feb 2025
Cited by 1 | Viewed by 1403
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) acute infection leads to latently infected sensory neurons in trigeminal ganglia. During lytic infection, the immediate early expression of infected cell protein 0 (bICP0) and bICP4 is regulated by an immediate early transcription unit 1 (IEtu1) promoter. A separate [...] Read more.
Bovine alphaherpesvirus 1 (BoHV-1) acute infection leads to latently infected sensory neurons in trigeminal ganglia. During lytic infection, the immediate early expression of infected cell protein 0 (bICP0) and bICP4 is regulated by an immediate early transcription unit 1 (IEtu1) promoter. A separate bICP0 early (E) promoter drives bICP0 as an early viral gene, presumably to sustain high levels during productive infection. Notably, bICP0 protein expression is detected before bICP4 during reactivation from latency, suggesting the bICP0 E promoter drives bICP0 protein expression during the early phases of reactivation from latency. The glucocorticoid receptor (GR) and Krüppel-like factor 4 (KLF4) cooperatively transactivate the bICP0 E promoter despite this promoter lacks a consensus GR response element (GRE). KLF and specificity protein (Sp) family members comprise a “super-family” of transcription factors. Consequently, we hypothesized Sp1 and Sp3 transactivated the bICP0 E promoter. These studies revealed GR and Sp3 or Sp1 cooperatively transactivated bICP0 E promoter activity. KLF4 and Sp3, but not Sp1, had an additive effect on bICP0 E promoter activity. Mutating the consensus Sp1 and CACCC binding sites proximal to the TATA box impaired promoter activity more than the Sp1 sites further upstream from the TATA box. Full article
(This article belongs to the Special Issue Epigenetic and Transcriptional Regulation of DNA Virus Infections)
Show Figures

Figure 1

17 pages, 1968 KB  
Article
Nerve Enlargement in Patients with INF2 Variants Causing Peripheral Neuropathy and Focal Segmental Glomerulosclerosis
by Quynh Tran Thuy Huong, Linh Tran Nguyen Truc, Hiroko Ueda, Kenji Fukui, Koichiro Higasa, Yoshinori Sato, Shinichi Takeda, Motoshi Hattori and Hiroyasu Tsukaguchi
Biomedicines 2025, 13(1), 127; https://doi.org/10.3390/biomedicines13010127 - 8 Jan 2025
Viewed by 2519
Abstract
Background: Charcot–Marie–Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration [...] Read more.
Background: Charcot–Marie–Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration affecting podocytes and Schwann cells. In general, nerve enlargement has been reported in 25% of the demyelinating CMT subtype (CMT1), while little is known about the CMT-DIE caused by INF2 variants. Methods: To characterize the peripheral nerve phenotype of INF2-related CMT, we studied the clinical course, imaging, histology, and germline genetic variants in two unrelated CMT-DIE patients. Results: Patient 1 (INF2 p.Gly73Asp) and patient 2 (p.Val108Asp) first noticed walking difficulties at 10 to 12 years old. Both of them were electrophysiologically diagnosed with demyelinating neuropathy. In patient 2, the sural nerve biopsy revealed an onion bulb formation. Both patients developed nephrotic syndrome almost simultaneously with CMT and progressed into renal failure at the age of 16 to 17 years. Around the age of 30 years, both patients manifested multiple hypertrophy of the trunk, plexus, and root in the cervical, brachial, lumbosacral nerves, and cauda equina. The histology of the cervical mass in patient 2 revealed Schwannoma. Exome analysis showed that patient 2 harbors a germline LZTR1 p.Arg68Gly variant, while patient 1 has no schwannomatosis-related mutations. Conclusions: Peripheral neuropathy caused by INF2 variants may lead to the development of multifocal hypertrophy with age, likely due to the initial demyelination and subsequent Schwann cell proliferation. Schwannoma could co-occur when the tissues attain additional hits in schwannomatosis-related genes (e.g., LZTR1). Full article
Show Figures

Figure 1

13 pages, 7062 KB  
Article
Expression of Drosophila melanogaster V-ATPases in Olfactory Sensillum Support Cells
by Kalpana Jain, Sinisa Prelic, Bill S. Hansson and Dieter Wicher
Insects 2024, 15(12), 1016; https://doi.org/10.3390/insects15121016 - 22 Dec 2024
Cited by 1 | Viewed by 1545
Abstract
V-ATPases are ubiquitous and evolutionarily conserved rotatory proton pumps, which are crucial for maintaining various biological functions. Previous investigations have shown that a V-ATPase is present in the support cells of moth trichoid sensilla and influences their olfactory sensory neuron performance. Generally, V-ATPases [...] Read more.
V-ATPases are ubiquitous and evolutionarily conserved rotatory proton pumps, which are crucial for maintaining various biological functions. Previous investigations have shown that a V-ATPase is present in the support cells of moth trichoid sensilla and influences their olfactory sensory neuron performance. Generally, V-ATPases are thought to regulate the pH value within the sensillum lymph, and aid K+ homeostasis within the sensillum. This, in turn, could influence various mechanisms involved within the support cells, like maintaining the receptor membrane potential (receptor current), nutrient and ion transport, odorant solubility, and various signaling mechanisms. In this study, we identify V-ATPase expression and localization in the Drosophila melanogaster antenna using bioinformatics and immunohistochemistry. Elucidating an olfactory V-ATPase function will improve our current understanding of how support cells contribute to Drosophila’s sense of smell. Full article
(This article belongs to the Collection Insect Sensory Biology)
Show Figures

Figure 1

16 pages, 2783 KB  
Article
Functional Analysis of TAAR1 Expression in the Intestine Wall and the Effect of Its Gene Knockout on the Gut Microbiota in Mice
by Anastasia N. Vaganova, Ilya S. Zhukov, Taisiia S. Shemiakova, Konstantin A. Rozhkov, Lyubov S. Alferova, Alena B. Karaseva, Elena I. Ermolenko and Raul R. Gainetdinov
Int. J. Mol. Sci. 2024, 25(23), 13216; https://doi.org/10.3390/ijms252313216 - 9 Dec 2024
Cited by 5 | Viewed by 2441
Abstract
Currently, the TAAR1 receptor has been identified in various cell groups in the intestinal wall. It recognizes biogenic amine compounds like phenylethylamine or tyramine, which are products of decarboxylation of phenylalanine and tyrosine by endogenous or bacterial decarboxylases. Since several gut bacteria produce [...] Read more.
Currently, the TAAR1 receptor has been identified in various cell groups in the intestinal wall. It recognizes biogenic amine compounds like phenylethylamine or tyramine, which are products of decarboxylation of phenylalanine and tyrosine by endogenous or bacterial decarboxylases. Since several gut bacteria produce these amines, TAAR1 is suggested to be involved in the interaction between the host and gut microbiota. The purpose of this present study was to clarify the TAAR1 function in the intestinal wall and estimate the TAAR1 gene knockout effect on gut microbiota composition. By analyzing public transcriptomic data of the GEO repository, we identified TAAR1 expression in enterocytes, enteroendocrine cells, tuft cells, and myenteric neurons in mice. The analysis of genes co-expressed with TAAR1 in enteroendocrine cells allows us to suggest the TAAR1 involvement in enteroendocrine cell maturation. Also, in myenteric neurons, we identified the co-expression of TAAR1 with calbindin, which is specific for sensory neurons. The 16S rRNA gene-based analysis of fecal microbiota revealed a slight but significant impact of TAAR1 gene knockout in mice on the gut microbial community, which manifests in the higher diversity, accompanied by low between-sample variability and reorganization of the microbial co-occurrence network. Full article
Show Figures

Figure 1

14 pages, 6160 KB  
Article
RNA-Seq Reveals Transcriptome Changes Following Zika Virus Infection in Fetal Brains in c-Flip Knockdown Mice
by Ting Xie, Qiqi Chen, Nina Li, Shengze Zhang, Lin Zhu, Shaohui Bai, Haolu Zha, Weijian Tian, Chuming Luo, Nan Wu, Xuan Zou, Shisong Fang, Yuelong Shu, Jianhui Yuan, Ying Jiang and Huanle Luo
Viruses 2024, 16(11), 1712; https://doi.org/10.3390/v16111712 - 31 Oct 2024
Cited by 1 | Viewed by 2105
Abstract
The FADD-like interleukin-1β converting enzyme (FLICE)-inhibitory protein (c-FLIP) plays a crucial role in various biological processes, including apoptosis and inflammation. However, the complete transcriptional profile altered by the c-FLIP is not fully understood. Furthermore, the impact of the c-FLIP deficiency on the transcriptome [...] Read more.
The FADD-like interleukin-1β converting enzyme (FLICE)-inhibitory protein (c-FLIP) plays a crucial role in various biological processes, including apoptosis and inflammation. However, the complete transcriptional profile altered by the c-FLIP is not fully understood. Furthermore, the impact of the c-FLIP deficiency on the transcriptome during a Zika virus (ZIKV) infection, which induces apoptosis and inflammation in the central nervous system (CNS), has not yet been elucidated. In this study, we compared transcriptome profiles between wild-type (WT) and the c-Flip heterozygous knockout mice (c-Flip+/−) fetal heads at embryonic day 13.5 from control and PBS-infected WT dams mated with c-Flip+/− sires. In the non-infected group, we observed differentially expressed genes (DEGs) mainly involved in embryonic development and neuron development. However, the ZIKV infection significantly altered the transcriptional profile between WT and the c-Flip+/− fetal heads. DEGs in pattern recognition receptor (PRR)-related signaling pathways, such as the RIG-I-like receptor signaling pathway and Toll-like receptor signaling pathway, were enriched. Moreover, the DEGs were also enriched in T cells, indicating that the c-FLIP participates in both innate and adaptive immune responses upon viral infection. Furthermore, our observations indicate that DEGs are associated with sensory organ development and eye development, suggesting a potential role for the c-FLIP in ZIKV-induced organ development defects. Overall, we have provided a comprehensive transcriptional profile for the c-FLIP and its modulation during a ZIKV infection. Full article
(This article belongs to the Special Issue Innate Immunity to Virus Infection 2nd Edition)
Show Figures

Figure 1

16 pages, 3271 KB  
Article
Mechanisms Underlying Sensory Nerve-Predominant Damage by Methylmercury in the Peripheral Nervous System
by Tsuyoshi Nakano, Eiko Yoshida, Yu Sasaki, Shigekatsu Kazama, Fumika Katami, Kazuhiro Aoki, Tomoya Fujie, Ke Du, Takato Hara, Chika Yamamoto, Tsutomu Takahashi, Yasuyuki Fujiwara, Komyo Eto, Yoichiro Iwakura, Yo Shinoda and Toshiyuki Kaji
Int. J. Mol. Sci. 2024, 25(21), 11672; https://doi.org/10.3390/ijms252111672 - 30 Oct 2024
Cited by 5 | Viewed by 2562
Abstract
Sensory disturbances and central nervous system symptoms are important in patients with Minamata disease. In the peripheral nervous system of these patients, motor nerves are not strongly injured, whereas sensory nerves are predominantly affected. In this study, we investigated the mechanisms underlying the [...] Read more.
Sensory disturbances and central nervous system symptoms are important in patients with Minamata disease. In the peripheral nervous system of these patients, motor nerves are not strongly injured, whereas sensory nerves are predominantly affected. In this study, we investigated the mechanisms underlying the sensory-predominant impairment of the peripheral nervous system caused by methylmercury. We found that the types of cell death in rat dorsal root ganglion (DRG) neurons caused by methylmercury included apoptosis, necrosis, and necroptosis. Methylmercury induced apoptosis in cultured rat DRG neurons but not in anterior horn neurons or Schwann cells. Additionally, methylmercury activated both caspase 8 and caspase 3 in DRG neurons. It increased the expression of tumor necrosis factor (TNF) receptor-1 and the phosphorylation of receptor-interacting protein kinase 3 (RIP3) and mixed-lineage kinase domain-like pseudokinase (MLKL). The expression of TNF-α was increased in macrophage-like RAW264.7 cells by methylmercury. The increase was suggested to be mediated by the NF-κB pathway. Moreover, methylmercury induced neurological symptoms, evaluated by a hindlimb extension response, were significantly less severe in TNF-α knockout mice. Based on these results and our previous studies, we propose the following hypothesis regarding the pathogenesis of sensory nerve-predominant damage by methylmercury: First, methylmercury accumulates within sensory nerve neurons and initiates cell death mechanisms, such as apoptosis, on a small scale. Second, cell death triggers the infiltration of macrophages into the sensory fibers. Third, the macrophages are stimulated by methylmercury and secrete TNF-α through the NF-κB pathway. Fourth, TNF-α induces cell death mechanisms, including necrosis, apoptosis through the caspase 8/3 pathway, and necroptosis through the TNFR1-RIP1-RIP3-MLKL pathway, activated by methylmercury in sensory neurons. Consequently, methylmercury exhibits potent cytotoxicity specific to the DRG/sensory nerve cells in the peripheral nervous system. This chain of events caused by methylmercury may contribute to sensory disturbances in patients with Minamata disease. Full article
(This article belongs to the Special Issue Mechanisms of Heavy Metal Toxicity: 3rd Edition)
Show Figures

Figure 1

16 pages, 1850 KB  
Review
Stress Can Induce Bovine Alpha-Herpesvirus 1 (BoHV-1) Reactivation from Latency
by Fouad El-Mayet and Clinton Jones
Viruses 2024, 16(11), 1675; https://doi.org/10.3390/v16111675 - 27 Oct 2024
Cited by 4 | Viewed by 3368
Abstract
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are important
sites [...] Read more.
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are important
sites for latency. Reactivation from latency can lead to reproductive problems in pregnant cows, virus transmission to young calves, suppression of immune responses, and bacterial pneumonia. BoHV-1 is also a significant cofactor in bovine respiratory disease (BRD). Stress, as mimicked by the synthetic corticosteroid dexamethasone, reproducibly initiates reactivation from latency. Stress-mediated activation of the glucocorticoid receptor (GR) stimulates viral replication and transactivation of viral promoters that drive the expression of infected cell protein 0 (bICP0) and bICP4. Notably, GR and Krüppel-like factor 15 (KLF15) form a feed-forward transcription loop that cooperatively transactivates immediate early transcription unit 1 (IEtu1 promoter). Two  pioneer transcription factors, GR and KLF4, cooperatively transactivate the bICP0 early promoter. Pioneer transcription factors bind silent viral  heterochromatin, remodel chromatin, and activate gene expression. Thus, we
predict that these novel transcription factors mediate early stages of BoHV-1 reactivation from latency. Full article
(This article belongs to the Special Issue Herpesvirus Latency 2024)
Show Figures

Figure 1

18 pages, 1332 KB  
Review
Innovative Strategies in 3D Bioprinting for Spinal Cord Injury Repair
by Daniel Youngsuk Kim, Yanting Liu, Gyubin Kim, Seong Bae An and Inbo Han
Int. J. Mol. Sci. 2024, 25(17), 9592; https://doi.org/10.3390/ijms25179592 - 4 Sep 2024
Cited by 13 | Viewed by 5124
Abstract
Spinal cord injury (SCI) is a catastrophic condition that disrupts neurons within the spinal cord, leading to severe motor and sensory deficits. While current treatments can alleviate pain, they do not promote neural regeneration or functional recovery. Three-dimensional (3D) bioprinting offers promising solutions [...] Read more.
Spinal cord injury (SCI) is a catastrophic condition that disrupts neurons within the spinal cord, leading to severe motor and sensory deficits. While current treatments can alleviate pain, they do not promote neural regeneration or functional recovery. Three-dimensional (3D) bioprinting offers promising solutions for SCI repair by enabling the creation of complex neural tissue constructs. This review provides a comprehensive overview of 3D bioprinting techniques, bioinks, and stem cell applications in SCI repair. Additionally, it highlights recent advancements in 3D bioprinted scaffolds, including the integration of conductive materials, the incorporation of bioactive molecules like neurotrophic factors, drugs, and exosomes, and the design of innovative structures such as multi-channel and axial scaffolds. These innovative strategies in 3D bioprinting can offer a comprehensive approach to optimizing the spinal cord microenvironment, advancing SCI repair. This review highlights a comprehensive understanding of the current state of 3D bioprinting in SCI repair, offering insights into future directions in the field of regenerative medicine. Full article
Show Figures

Figure 1

18 pages, 8281 KB  
Article
Study on the Mechanisms of Glrα3 in Pain Sensitization of Endometriosis
by Peiya Fan, Rong Liu, Yan Li, Shixuan Wang and Tian Li
Int. J. Mol. Sci. 2024, 25(15), 8143; https://doi.org/10.3390/ijms25158143 - 26 Jul 2024
Cited by 3 | Viewed by 2343
Abstract
Endometriosis, often associated with chronic pelvic pain, can lead to anxiety and depression. This study investigates the role and mechanism of Glycine receptor alpha 3 (Glrα3) in the central sensitization of pain in endometriosis, aiming to identify new therapeutic targets. Using a Glrα3 [...] Read more.
Endometriosis, often associated with chronic pelvic pain, can lead to anxiety and depression. This study investigates the role and mechanism of Glycine receptor alpha 3 (Glrα3) in the central sensitization of pain in endometriosis, aiming to identify new therapeutic targets. Using a Glrα3 knockout mouse model of endometriosis, we employed behavioral tests, qPCR, immunofluorescence, Nissl staining, MRI, and Western blot to assess the involvement of Glrα3 in central pain sensitization. Our results indicate that endometriosis-induced hyperalgesia and anxiety–depressive-like behaviors are linked to increased Glrα3 expression. Chronic pain in endometriosis leads to gray matter changes in the sensory and insular cortices, with Glrα3 playing a significant role. The inhibition of Glrα3 alleviates pain, reduces neuronal abnormalities, and decreases glial cell activation. The absence of Glrα3 effectively regulates the central sensitization of pain in endometriosis by inhibiting glial cell activation and maintaining neuronal stability. This study offers new therapeutic avenues for the clinical treatment of endometriosis-related pain. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop