Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = semicarbazide-sensitive amine oxidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2961 KiB  
Article
A Novel MAO-B/SSAO Inhibitor Improves Multiple Aspects of Dystrophic Phenotype in mdx Mice
by Francesca Gasparella, Leonardo Nogara, Elena Germinario, Lucia Tibaudo, Stefano Ciciliot, Giorgia Piccoli, Francisca Carolina Venegas, Francesca Fontana, Gabriele Sales, Daniele Sabbatini, Jonathan Foot, Wolfgang Jarolimek, Bert Blaauw, Marcella Canton and Libero Vitiello
Antioxidants 2024, 13(6), 622; https://doi.org/10.3390/antiox13060622 - 21 May 2024
Cited by 2 | Viewed by 2591
Abstract
Duchenne muscular dystrophy (DMD) is one of the most frequent and severe childhood muscle diseases. Its pathophysiology is multifaceted and still incompletely understood, but we and others have previously shown that oxidative stress plays an important role. In particular, we have demonstrated that [...] Read more.
Duchenne muscular dystrophy (DMD) is one of the most frequent and severe childhood muscle diseases. Its pathophysiology is multifaceted and still incompletely understood, but we and others have previously shown that oxidative stress plays an important role. In particular, we have demonstrated that inhibition of mitochondrial monoamine oxidases could improve some functional and biohumoral markers of the pathology. In the present study we report the use of dystrophic mdx mice to evaluate the efficacy of a dual monoamine oxidase B (MAO-B)/semicarbazide-sensitive amine oxidase (SSAO) inhibitor, PXS-5131, in reducing inflammation and fibrosis and improving muscle function. We found that a one-month treatment starting at three months of age was able to decrease reactive oxygen species (ROS) production, fibrosis, and inflammatory infiltrate in the tibialis anterior (TA) and diaphragm muscles. Importantly, we also observed a marked improvement in the capacity of the gastrocnemius muscle to maintain its force when challenged with eccentric contractions. Upon performing a bulk RNA-seq analysis, PXS-5131 treatment affected the expression of genes involved in inflammatory processes and tissue remodeling. We also studied the effect of prolonged treatment in older dystrophic mice, and found that a three-month administration of PXS-5131 was able to greatly reduce the progression of fibrosis not only in the diaphragm but also in the heart. Taken together, these results suggest that PXS-5131 is an effective inhibitor of fibrosis and inflammation in dystrophic muscles, a finding that could open a new therapeutic avenue for DMD patients. Full article
(This article belongs to the Special Issue Antioxidants and Oxidative Stress: Implication in Muscle Diseases)
Show Figures

Graphical abstract

19 pages, 5704 KiB  
Article
The Impact of Semicarbazide Sensitive Amine Oxidase Activity on Rat Aortic Vascular Smooth Muscle Cells
by Vesna Manasieva, Shori Thakur, Lisa A. Lione, Anwar R. Baydoun and John Skamarauskas
Int. J. Mol. Sci. 2023, 24(5), 4946; https://doi.org/10.3390/ijms24054946 - 3 Mar 2023
Cited by 2 | Viewed by 2419
Abstract
Semicarbazide-sensitive amine oxidase (SSAO) is both a soluble- and membrane-bound transmembrane protein expressed in the vascular endothelial and in smooth muscle cells. In vascular endothelial cells, SSAO contributes to the development of atherosclerosis by mediating a leukocyte adhesion cascade; however, its contributory role [...] Read more.
Semicarbazide-sensitive amine oxidase (SSAO) is both a soluble- and membrane-bound transmembrane protein expressed in the vascular endothelial and in smooth muscle cells. In vascular endothelial cells, SSAO contributes to the development of atherosclerosis by mediating a leukocyte adhesion cascade; however, its contributory role in the development of atherosclerosis in VSMCs has not yet been fully explored. This study investigates SSAO enzymatic activity in VSMCs using methylamine and aminoacetone as model substrates. The study also addresses the mechanism by which SSAO catalytic activity causes vascular damage, and further evaluates the contribution of SSAO in oxidative stress formation in the vascular wall. SSAO demonstrated higher affinity for aminoacetone when compared to methylamine (Km = 12.08 µM vs. 65.35 µM). Aminoacetone- and methylamine-induced VSMCs death at concentrations of 50 & 1000 µM, and their cytotoxic effect, was reversed with 100 µM of the irreversible SSAO inhibitor MDL72527, which completely abolished cell death. Cytotoxic effects were also observed after 24 h of exposure to formaldehyde, methylglyoxal and H2O2. Enhanced cytotoxicity was detected after the simultaneous addition of formaldehyde and H2O2, as well as methylglyoxal and H2O2. The highest ROS production was observed in aminoacetone- and benzylamine-treated cells. MDL72527 abolished ROS in benzylamine-, methylamine- and aminoacetone-treated cells (**** p < 0.0001), while βAPN demonstrated inhibitory potential only in benzylamine-treated cells (* p < 0.05). Treatment with benzylamine, methylamine and aminoacetone reduced the total GSH levels (**** p < 0.0001); the addition of MDL72527 and βAPN failed to reverse this effect. Overall, a cytotoxic consequence of SSAO catalytic activity was observed in cultured VSMCs where SSAO was identified as a key mediator in ROS formation. These findings could potentially associate SSAO activity with the early developing stages of atherosclerosis through oxidative stress formation and vascular damage. Full article
(This article belongs to the Special Issue Cell Death in Cardiovascular Disease)
Show Figures

Figure 1

14 pages, 2209 KiB  
Article
The Biological Implication of Semicarbazide-Sensitive Amine Oxidase (SSAO) Upregulation in Rat Systemic Inflammatory Response under Simulated Aerospace Environment
by Liben Yan, Chunli Sun, Yaxi Zhang, Peng Zhang, Yu Chen, Yifan Deng, Tianyi Er, Yulin Deng, Zhimin Wang and Hong Ma
Int. J. Mol. Sci. 2023, 24(4), 3666; https://doi.org/10.3390/ijms24043666 - 11 Feb 2023
Cited by 3 | Viewed by 2133
Abstract
The progress of space science and technology has ushered in a new era for humanity’s exploration of outer space. Recent studies have indicated that the aerospace special environment including microgravity and space radiation poses a significant risk to the health of astronauts, which [...] Read more.
The progress of space science and technology has ushered in a new era for humanity’s exploration of outer space. Recent studies have indicated that the aerospace special environment including microgravity and space radiation poses a significant risk to the health of astronauts, which involves multiple pathophysiological effects on the human body as well on tissues and organs. It has been an important research topic to study the molecular mechanism of body damage and further explore countermeasures against the physiological and pathological changes caused by the space environment. In this study, we used the rat model to study the biological effects of the tissue damage and related molecular pathway under either simulated microgravity or heavy ion radiation or combined stimulation. Our study disclosed that ureaplasma-sensitive amino oxidase (SSAO) upregulation is closely related to the systematic inflammatory response (IL-6, TNF-α) in rats under a simulated aerospace environment. In particular, the space environment leads to significant changes in the level of inflammatory genes in heart tissues, thus altering the expression and activity of SSAO and causing inflammatory responses. The detailed molecular mechanisms have been further validated in the genetic engineering cell line model. Overall, this work clearly shows the biological implication of SSAO upregulation in microgravity and radiation-mediated inflammatory response, providing a scientific basis or potential target for further in-depth investigation of the pathological damage and protection strategy under a space environment. Full article
(This article belongs to the Special Issue Small Molecules, Influence of Molecular Pathways 2.0)
Show Figures

Figure 1

11 pages, 3507 KiB  
Article
β-N-Methylamino-L-Alanine (BMAA) Modulates the Sympathetic Regulation and Homeostasis of Polyamines
by Milena Shkodrova, Milena Mishonova, Mariela Chichova, Iliyana Sazdova, Bilyana Ilieva, Dilyana Doncheva-Stoimenova, Neli Raikova, Milena Keremidarska-Markova and Hristo Gagov
Toxins 2023, 15(2), 141; https://doi.org/10.3390/toxins15020141 - 9 Feb 2023
Cited by 2 | Viewed by 2784
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. Non-neuronal toxicity of BMAA is poorly studied with a reported increase in reactive oxygen species and a decrease in the antioxidant capacity of liver, kidney, and colorectal adenocarcinoma cells. The aim [...] Read more.
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. Non-neuronal toxicity of BMAA is poorly studied with a reported increase in reactive oxygen species and a decrease in the antioxidant capacity of liver, kidney, and colorectal adenocarcinoma cells. The aim of this research is to study the toxicity of BMAA (0.1–1 mM) on mitochondria and submitochondrial particles with ATPase activity, on the semicarbazide-sensitive amino oxidases (SSAOs) activity of rat liver, and on an in vitro model containing functionally active excitable tissues—regularly contracting heart muscle preparation with a preserved autonomic innervation. For the first time the BMAA-dependent inhibition of SSAO activity, the elimination of the positive inotropic effect of adrenergic innervation, and the direct and reversible inhibition of adrenaline signaling in ventricular myocytes with 1 mM BMAA were observed. Additionally, it is confirmed that 1 mM BMAA can activate mitochondrial ATPase indirectly. It is concluded that a higher dose of BMAA may influence multiple physiological and pathological processes as it slows down the degradation of biogenic amines, downregulates the sympathetic neuromediation, and embarrasses the cell signaling of adrenergic receptors. Full article
(This article belongs to the Special Issue Cyanobacterial Toxins: Toxins Production and Risk Assessment)
Show Figures

Graphical abstract

18 pages, 4211 KiB  
Article
Semicarbazide-Sensitive Amine Oxidase (SSAO) and Lysyl Oxidase (LOX) Association in Rat Aortic Vascular Smooth Muscle Cells
by Vesna Manasieva, Shori Thakur, Lisa A. Lione, Jessal Patel, Anwar Baydoun and John Skamarauskas
Biomolecules 2022, 12(11), 1563; https://doi.org/10.3390/biom12111563 - 26 Oct 2022
Cited by 7 | Viewed by 2795
Abstract
Vascular smooth muscle cells (VSMCs) are the main stromal cells in the medial layer of the vascular wall. These cells produce the extracellular matrix (ECM) and are involved in many pathological changes in the vascular wall. Semicarbazide-sensitive amine oxidase (SSAO) and lysyl oxidase [...] Read more.
Vascular smooth muscle cells (VSMCs) are the main stromal cells in the medial layer of the vascular wall. These cells produce the extracellular matrix (ECM) and are involved in many pathological changes in the vascular wall. Semicarbazide-sensitive amine oxidase (SSAO) and lysyl oxidase (LOX) are vascular enzymes associated with the development of atherosclerosis. In the vascular smooth muscle cells, increased SSAO activity elevates reactive oxygen species (ROS) and induces VSMCs death; increased LOX induces chemotaxis through hydrogen peroxide dependent mechanisms; and decreased LOX contributes to endothelial dysfunction. This study investigates the relationship between SSAO and LOX in VSMCs by studying their activity, protein, and mRNA levels during VSMCs passaging and after silencing the LOX gene, while using their respective substrates and inhibitors. At the basal level, LOX activity decreased with passage and its protein expression was maintained between passages. βAPN abolished LOX activity (** p < 0.01 for 8 vs. 3 and * p < 0.05 for 5 vs. 8) and had no effect on LOX protein and mRNA levels. MDL72527 reduced LOX activity at passage 3 and 5 (## p < 0.01) and had no effect on LOX protein, and mRNA expression. At the basal level, SSAO activity also decreased with passage, and its protein expression was maintained between passages. MDL72527 abolished SSAO activity (**** p < 0.0001 for 8 vs. 3 and * p < 0.05 for 5 vs. 8), VAP-1 expression at passage 5 (** p < 0.01) and 8 (**** p < 0.0001), and Aoc3 mRNA levels at passage 8 (* p < 0.05). βAPN inhibited SSAO activity (**** p < 0.0001 for 5 vs. 3 and 8 vs. 3 and * p < 0.05 for 5 vs. 8), VAP-1 expression at passage 3 (* p < 0.05), and Aoc3 mRNA levels at passage 3 (* p < 0.05). Knockdown of the LOX gene (**** p < 0.0001 for Si6 vs. Sictrl and *** p < 0.001 for Si8 vs. Sictrl) and LOX protein (** p < 0.01 for Si6 and Si8 vs. Sictrl) in VSMCs at passage 3 resulted in a reduction in Aoc3 mRNA (#### p < 0.0001 for Si6 vs. Sictrl and ### p < 0.001 for Si8 vs. Sictrl) and VAP-1 protein (# p < 0.05 for Si8 vs. Sictrl). These novel findings demonstrate a passage dependent decrease in LOX activity and increase in SSAO activity in rat aortic VSMCs and show an association between both enzymes in early passage rat aortic VSMCs, where LOX was identified as a regulator of SSAO activity, protein, and mRNA expression. Full article
Show Figures

Figure 1

22 pages, 2963 KiB  
Article
Effects of Chemical Structures Interacting with Amine Oxidases on Glucose, Lipid and Hydrogen Peroxide Handling by Human Adipocytes
by Christian Carpéné, Pénélope Viana, Zsuzsa Iffiú-Soltesz, Pál Tapolcsányi, Anna Ágota Földi, Péter Mátyus and Petra Dunkel
Molecules 2022, 27(19), 6224; https://doi.org/10.3390/molecules27196224 - 22 Sep 2022
Cited by 1 | Viewed by 2141
Abstract
Benzylamine is a natural molecule present in food and edible plants, capable of activating hexose uptake and inhibiting lipolysis in human fat cells. These effects are dependent on its oxidation by amine oxidases present in adipocytes, and on the subsequent hydrogen peroxide production, [...] Read more.
Benzylamine is a natural molecule present in food and edible plants, capable of activating hexose uptake and inhibiting lipolysis in human fat cells. These effects are dependent on its oxidation by amine oxidases present in adipocytes, and on the subsequent hydrogen peroxide production, known to exhibit insulin-like actions. Virtually, other substrates interacting with such hydrogen peroxide-releasing enzymes potentially can modulate lipid accumulation in adipose tissue. Inhibition of such enzymes has also been reported to influence lipid deposition. We have therefore studied in human adipocytes the lipolytic and lipogenic activities of pharmacological entities designed to interact with amine oxidases highly expressed in this cell type: the semicarbazide-sensitive amine oxidase (SSAO also known as PrAO or VAP-1) and the monoamine oxidases (MAO). The results showed that SZV-2016 and SZV-2017 behaved as better substrates than benzylamine, releasing hydrogen peroxide once oxidized, and reproduced or even exceeded its insulin-like metabolic effects in fat cells. Additionally, several novel SSAO inhibitors, such as SZV-2007 and SZV-1398, have been evidenced and shown to inhibit benzylamine metabolic actions. Taken as a whole, our findings reinforce the list of molecules that influence the regulation of triacylglycerol assembly/breakdown, at least in vitro in human adipocytes. The novel compounds deserve deeper investigation of their mechanisms of interaction with SSAO or MAO, and constitute potential candidates for therapeutic use in obesity and diabetes. Full article
Show Figures

Figure 1

18 pages, 1902 KiB  
Article
Multiple Direct Effects of the Dietary Protoalkaloid N-Methyltyramine in Human Adipocytes
by Christian Carpéné, Pénélope Viana, Jessica Fontaine, Henrik Laurell and Jean-Louis Grolleau
Nutrients 2022, 14(15), 3118; https://doi.org/10.3390/nu14153118 - 29 Jul 2022
Cited by 1 | Viewed by 2201
Abstract
Dietary amines have been the subject of a novel interest in nutrition since the discovery of trace amine-associated receptors (TAARs), especially TAAR-1, which recognizes tyramine, phenethylamine, tryptamine, octopamine, N-methyltyramine (NMT), synephrine, amphetamine and related derivatives. Alongside the psychostimulant properties of TAAR-1 ligands, [...] Read more.
Dietary amines have been the subject of a novel interest in nutrition since the discovery of trace amine-associated receptors (TAARs), especially TAAR-1, which recognizes tyramine, phenethylamine, tryptamine, octopamine, N-methyltyramine (NMT), synephrine, amphetamine and related derivatives. Alongside the psychostimulant properties of TAAR-1 ligands, it is their ephedrine-like action on weight loss that drives their current consumption via dietary supplements advertised for ‘fat-burning’ properties. Among these trace amines, tyramine has recently been described, at high doses, to exhibit an antilipolytic action and activation of glucose transport in human adipocytes, i.e., effects that are facilitating lipid storage rather than mobilization. Because of its close structural similarity to tyramine, NMT actions on human adipocytes therefore must to be reevaluated. To this aim, we studied the lipolytic and antilipolytic properties of NMT together with its interplay with insulin stimulation of glucose transport along with amine oxidase activities in adipose cells obtained from women undergoing abdominal surgery. NMT activated 2-deoxyglucose uptake when incubated with freshly isolated adipocytes at 0.01–1 mM, reaching one-third of the maximal stimulation by insulin. However, when combined with insulin, NMT limited by half the action of the lipogenic hormone on glucose transport. The NMT-induced stimulation of hexose uptake was sensitive to inhibitors of monoamine oxidases (MAO) and of semicarbazide-sensitive amine oxidase (SSAO), as was the case for tyramine and benzylamine. All three amines inhibited isoprenaline-induced lipolysis to a greater extent than insulin, while they were poorly lipolytic on their own. All three amines—but not isoprenaline—interacted with MAO or SSAO. Due to these multiple effects on human adipocytes, NMT cannot be considered as a direct lipolytic agent, potentially able to improve lipid mobilization and fat oxidation in consumers of NMT-containing dietary supplements. Full article
(This article belongs to the Special Issue Modulation by Dietary Supplements in Obesity)
Show Figures

Figure 1

13 pages, 3301 KiB  
Article
Redox Properties of 3-Iodothyronamine (T1AM) and 3-Iodothyroacetic Acid (TA1)
by Manuela Gencarelli, Maura Lodovici, Lorenza Bellusci, Laura Raimondi and Annunziatina Laurino
Int. J. Mol. Sci. 2022, 23(5), 2718; https://doi.org/10.3390/ijms23052718 - 28 Feb 2022
Cited by 3 | Viewed by 2753
Abstract
3-iodothyronamine (T1AM) and 3-iodothyroacetic acid (TA1) are thyroid-hormone-related compounds endowed with pharmacological activity through mechanisms that remain elusive. Some evidence suggests that they may have redox features. We assessed the chemical activity of T1AM and TA1 at pro-oxidant conditions. Further, in the cell [...] Read more.
3-iodothyronamine (T1AM) and 3-iodothyroacetic acid (TA1) are thyroid-hormone-related compounds endowed with pharmacological activity through mechanisms that remain elusive. Some evidence suggests that they may have redox features. We assessed the chemical activity of T1AM and TA1 at pro-oxidant conditions. Further, in the cell model consisting of brown adipocytes (BAs) differentiated for 6 days in the absence (M cells) or in the presence of 20 nM T1AM (M + T1AM cells), characterized by pro-oxidant metabolism, or TA1 (M + TA1 cells), we investigated the expression/activity levels of pro- and anti-oxidant proteins, including UCP-1, sirtuin-1 (SIRT1), mitochondrial monoamine (MAO-A and MAO-B), semicarbazide-sensitive amine oxidase (SSAO), and reactive oxygen species (ROS)-dependent lipoperoxidation. T1AM and TA1 showed in-vitro antioxidant and superoxide scavenging properties, while only TA1 acted as a hydroxyl radical scavenger. M + T1AM cells showed higher lipoperoxidation levels and reduced SIRT1 expression and activity, similar MAO-A, but higher MAO-B activity in terms of M cells. Instead, the M + TA1 cells exhibited increased levels of SIRT1 protein and activity and significantly lower UCP-1, MAO-A, MAO-B, and SSAO in comparison with the M cells, and did not show signs of lipoperoxidation. Our results suggest that SIRT1 is the mediator of T1AM and TA1 pro-or anti-oxidant effects as a result of ROS intracellular levels, including the hydroxyl radical. Here, we provide evidence indicating that T1AM and TA1 administration impacts on the redox status of a biological system, a feature that indicates the novel mechanism of action of these two thyroid-hormone-related compounds. Full article
Show Figures

Figure 1

20 pages, 1883 KiB  
Article
Oral Supplementation with Benzylamine Delays the Onset of Diabetes in Obese and Diabetic db-/- Mice
by Zsuzsa Iffiú-Soltesz, Estelle Wanecq, László Tóthfalusi, Éva Szökő and Christian Carpéné
Nutrients 2021, 13(8), 2622; https://doi.org/10.3390/nu13082622 - 29 Jul 2021
Cited by 3 | Viewed by 3117
Abstract
Substrates of semicarbazide-sensitive amine oxidase (SSAO) exert insulin-like actions in adipocytes. One of them, benzylamine (Bza) exhibits antihyperglycemic properties in several rodent models of diabetes. To further study the antidiabetic potential of this naturally occurring amine, a model of severe type 2 diabetes, [...] Read more.
Substrates of semicarbazide-sensitive amine oxidase (SSAO) exert insulin-like actions in adipocytes. One of them, benzylamine (Bza) exhibits antihyperglycemic properties in several rodent models of diabetes. To further study the antidiabetic potential of this naturally occurring amine, a model of severe type 2 diabetes, the obese db-/- mouse, was subjected to oral Bza administration. To this end, db-/- mice and their lean littermates were treated at 4 weeks of age by adding 0.5% Bza in drinking water for seven weeks. Body mass, fat content, blood glucose and urinary glucose output were followed while adipocyte insulin responsiveness and gene expression were checked at the end of supplementation, together with aorta nitrites. Bza supplementation delayed the appearance of hyperglycemia, abolished polydypsia and glycosuria in obese/diabetic mice without any detectable effect in lean control, except for a reduction in food intake observed in both genotypes. The improvement of glucose homeostasis was observed in db-/- mice at the expense of increased fat deposition, especially in the subcutaneous white adipose tissue (SCWAT), without sign of worsened inflammation or insulin responsiveness and with lowered circulating triglycerides and uric acid, while NO bioavailability was increased in aorta. The higher capacity of SSAO in oxidizing Bza in SCWAT, found in the obese mice, was unaltered by Bza supplementation and likely involved in the activation of glucose utilization by adipocytes. We propose that Bza oxidation in tissues, which produces hydrogen peroxide mainly in SCWAT, facilitates insulin-independent glucose utilization. Bza could be considered as a potential agent for dietary supplementation aiming at preventing diabetic complications. Full article
(This article belongs to the Special Issue Nutrition and Metabolic Syndrome Management)
Show Figures

Graphical abstract

18 pages, 1083 KiB  
Article
Proof-of-Concept for the Analgesic Effect and Thermoregulatory Safety of Orally Administered Multi-Target Compound SZV 1287 in Mice: A Novel Drug Candidate for Neuropathic Pain
by Ádám István Horváth, Nikolett Szentes, Valéria Tékus, Maja Payrits, Éva Szőke, Emőke Oláh, András Garami, Eszter Fliszár-Nyúl, Miklós Poór, Cecília Sár, Tamás Kálai, Szilárd Pál, Krisztina Percze, Éva Nagyné Scholz, Tamás Mészáros, Blanka Tóth, Péter Mátyus and Zsuzsanna Helyes
Biomedicines 2021, 9(7), 749; https://doi.org/10.3390/biomedicines9070749 - 29 Jun 2021
Cited by 4 | Viewed by 3304
Abstract
SZV 1287 (3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime) is a novel multi-target candidate under preclinical development for neuropathic pain. It inhibits amine oxidase copper containing 3, transient receptor potential ankyrin 1 and vanilloid 1 (TRPV1) receptors. Mainly under acidic conditions, it is transformed to the cyclooxygenase inhibitor [...] Read more.
SZV 1287 (3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime) is a novel multi-target candidate under preclinical development for neuropathic pain. It inhibits amine oxidase copper containing 3, transient receptor potential ankyrin 1 and vanilloid 1 (TRPV1) receptors. Mainly under acidic conditions, it is transformed to the cyclooxygenase inhibitor oxaprozin, which is ineffective for neuropathy. Therefore, an enterosolvent capsule is suggested for oral formulation, which we investigated for nociception, basic kinetics, and thermoregulatory safety in mice. The antihyperalgesic effect of SZV 1287 (10, 20, 50, and 200 mg/kg, p.o.) was determined in partial sciatic nerve ligation-induced traumatic neuropathy by aesthesiometry, brain and plasma concentrations by HPLC, and deep body temperature by thermometry. Its effect on proton-induced TRPV1 activation involved in thermoregulation was assessed by microfluorimetry in cultured trigeminal neurons. The three higher SZV 1287 doses significantly, but not dose-dependently, reduced neuropathic hyperalgesia by 50% of its maximal effect. It was quickly absorbed; plasma concentration was stable for 2 h, and it entered into the brain. Although SZV 1287 significantly decreased the proton-induced TRPV1-mediated calcium-influx potentially leading to hyperthermia, it did not alter deep body temperature. Oral SZV 1287 inhibited neuropathic hyperalgesia and, despite TRPV1 antagonistic action and brain penetration, it did not influence thermoregulation, which makes it a promising analgesic candidate. Full article
(This article belongs to the Special Issue Neuropathic Pain: Therapy and Mechanisms)
Show Figures

Figure 1

30 pages, 1327 KiB  
Review
SSAO/VAP-1 in Cerebrovascular Disorders: A Potential Therapeutic Target for Stroke and Alzheimer’s Disease
by Mercedes Unzeta, Mar Hernàndez-Guillamon, Ping Sun and Montse Solé
Int. J. Mol. Sci. 2021, 22(7), 3365; https://doi.org/10.3390/ijms22073365 - 25 Mar 2021
Cited by 23 | Viewed by 5584
Abstract
The semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 (VAP-1) or primary amine oxidase (PrAO), is a deaminating enzyme highly expressed in vessels that generates harmful products as a result of its enzymatic activity. As a multifunctional enzyme, it is also [...] Read more.
The semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 (VAP-1) or primary amine oxidase (PrAO), is a deaminating enzyme highly expressed in vessels that generates harmful products as a result of its enzymatic activity. As a multifunctional enzyme, it is also involved in inflammation through its ability to bind and promote the transmigration of circulating leukocytes into inflamed tissues. Inflammation is present in different systemic and cerebral diseases, including stroke and Alzheimer’s disease (AD). These pathologies show important affectations on cerebral vessels, together with increased SSAO levels. This review summarizes the main roles of SSAO/VAP-1 in human physiology and pathophysiology and discusses the mechanisms by which it can affect the onset and progression of both stroke and AD. As there is an evident interrelationship between stroke and AD, basically through the vascular system dysfunction, the possibility that SSAO/VAP-1 could be involved in the transition between these two pathologies is suggested. Hence, its inhibition is proposed to be an interesting therapeutical approach to the brain damage induced in these both cerebral pathologies. Full article
(This article belongs to the Special Issue The Blood-Brain Barrier in Health and Disease)
Show Figures

Figure 1

11 pages, 2648 KiB  
Article
New Data on Cylindrospermopsin Toxicity
by Mariela Chichova, Oskan Tasinov, Milena Shkodrova, Milena Mishonova, Iliyana Sazdova, Bilyana Ilieva, Dilyana Doncheva-Stoimenova, Yoana Kiselova-Kaneva, Neli Raikova, Blagoy Uzunov, Diana Ivanova and Hristo Gagov
Toxins 2021, 13(1), 41; https://doi.org/10.3390/toxins13010041 - 8 Jan 2021
Cited by 18 | Viewed by 3955
Abstract
Cylindrospermopsin (CYN) is a widely spread cyanotoxin that can occur in fresh water and food. This research aims to investigate CYN toxicity by studying the effects of drinking 0.25 nM of CYN-contaminated water from a natural source, and of the direct application of [...] Read more.
Cylindrospermopsin (CYN) is a widely spread cyanotoxin that can occur in fresh water and food. This research aims to investigate CYN toxicity by studying the effects of drinking 0.25 nM of CYN-contaminated water from a natural source, and of the direct application of moderate concentrations of CYN on different animal targets. The chosen structures and activities are rat mitochondria inner membrane permeability, mitochondrial ATP synthase (ATPase) and rat liver diamine oxidase (DAO) activities (EC 1.4.3.22.), the force of the contraction of an excised frog heart preparation with functional innervation, and the viability of a human intestinal epithelial cell line (HIEC-6). The oral exposure to CYN decreased the reverse (hydrolase) activity of rat liver ATPase whereas its short-term, in vitro application was without significant effect on this organelle, DAO activity, heart contractions, and their neuronal regulation. The application of CYN reduced HIEC-6 cells’ viability dose dependently. It was concluded that CYN is moderately toxic for the human intestinal epithelial cells, where the regeneration of the epithelial layer can be suppressed by CYN. This result suggests that CYN may provoke pathological changes in the human gastrointestinal tract. Full article
Show Figures

Figure 1

18 pages, 1156 KiB  
Review
Beneficial Impact of Semicarbazide-Sensitive Amine Oxidase Inhibition on the Potential Cytotoxicity of Creatine Supplementation in Type 2 Diabetes Mellitus
by Dimitri Papukashvili, Nino Rcheulishvili and Yulin Deng
Molecules 2020, 25(9), 2029; https://doi.org/10.3390/molecules25092029 - 27 Apr 2020
Cited by 9 | Viewed by 5884
Abstract
Creatine supplementation of the population with type 2 diabetes mellitus (T2DM) combined with an exercise program is known to be a possible therapy adjuvant with hypoglycemic effects. However, excessive administration of creatine leads to the production of methylamine which is deaminated by the [...] Read more.
Creatine supplementation of the population with type 2 diabetes mellitus (T2DM) combined with an exercise program is known to be a possible therapy adjuvant with hypoglycemic effects. However, excessive administration of creatine leads to the production of methylamine which is deaminated by the enzyme semicarbazide-sensitive amine oxidase (SSAO) and as a result, cytotoxic compounds are produced. SSAO activity and reaction products are increased in the serum of T2DM patients. Creatine supplementation by diabetics will further augment the activity of SSAO. The current review aims to find a feasible way to ameliorate T2DM for patients who exercise and desire to consume creatine. Several natural agents present in food which are involved in the regulation of SSAO activity directly or indirectly are reviewed. Particularly, zinc-α2-glycoprotein (ZAG), zinc (Zn), copper (Cu), histamine/histidine, caffeine, iron (Fe), and vitamin D are discussed. Inhibiting SSAO activity by natural agents might reduce the potential adverse effects of creatine metabolism in population of T2DM. Full article
Show Figures

Figure 1

19 pages, 2789 KiB  
Article
Methylxanthines Inhibit Primary Amine Oxidase and Monoamine Oxidase Activities of Human Adipose Tissue
by Wiem Haj Ahmed, Cécile Peiro, Jessica Fontaine, Barry J. Ryan, Gemma K. Kinsella, Jeff O’Sullivan, Jean-Louis Grolleau, Gary T.M. Henehan and Christian Carpéné
Medicines 2020, 7(4), 18; https://doi.org/10.3390/medicines7040018 - 2 Apr 2020
Cited by 5 | Viewed by 4683
Abstract
Background: Methylxanthines including caffeine and theobromine are widely consumed compounds and were recently shown to interact with bovine copper-containing amine oxidase. To the best of our knowledge, no direct demonstration of any interplay between these phytochemicals and human primary amine oxidase (PrAO) has [...] Read more.
Background: Methylxanthines including caffeine and theobromine are widely consumed compounds and were recently shown to interact with bovine copper-containing amine oxidase. To the best of our knowledge, no direct demonstration of any interplay between these phytochemicals and human primary amine oxidase (PrAO) has been reported to date. We took advantage of the coexistence of PrAO and monoamine oxidase (MAO) activities in human subcutaneous adipose tissue (hScAT) to test the interaction between several methylxanthines and these enzymes, which are involved in many key pathophysiological processes. Methods: Benzylamine, methylamine, and tyramine were used as substrates for PrAO and MAO in homogenates of subcutaneous adipose depots obtained from overweight women undergoing plastic surgery. Methylxanthines were tested as substrates or inhibitors by fluorimetric determination of hydrogen peroxide, an end-product of amine oxidation. Results: Semicarbazide-sensitive PrAO activity was inhibited by theobromine, caffeine, and isobutylmethylxanthine (IBMX) while theophylline, paraxanthine, and 7-methylxanthine had little effect. Theobromine inhibited PrAO activity by 54% at 2.5 mM. Overall, the relationship between methylxanthine structure and the degree of inhibition was similar to that seen with bovine PrAO, although higher concentrations (mM) were required for inhibition. Theobromine also inhibited oxidation of tyramine by MAO, at the limits of its solubility in a DMSO vehicle. At doses higher than 12 % v/v, DMSO impaired MAO activity. MAO was also inhibited by millimolar doses of IBMX, caffeine and by other methylxanthines to a lesser extent. Conclusions: This preclinical study extrapolates previous findings with bovine PrAO to human tissues. Given that PrAO is a potential target for anti-inflammatory drugs, it indicates that alongside phosphodiesterase inhibition and adenosine receptor antagonism, PrAO and MAO inhibition could contribute to the health benefits of methylxanthines, especially their anti-inflammatory effects. Full article
Show Figures

Figure 1

19 pages, 2047 KiB  
Article
Opipramol Inhibits Lipolysis in Human Adipocytes without Altering Glucose Uptake and Differently from Antipsychotic and Antidepressant Drugs with Adverse Effects on Body Weight Control
by Christian Carpéné, Francisco Les, Josep Mercader, Saioa Gomez-Zorita, Jean-Louis Grolleau, Nathalie Boulet, Jessica Fontaine, Mari Carmen Iglesias-Osma and Maria José Garcia-Barrado
Pharmaceuticals 2020, 13(3), 41; https://doi.org/10.3390/ph13030041 - 5 Mar 2020
Cited by 3 | Viewed by 5823
Abstract
Treatment with several antipsychotic drugs exhibits a tendency to induce weight gain and diabetic complications. The proposed mechanisms by which the atypical antipsychotic drug olanzapine increases body weight include central dysregulations leading to hyperphagia and direct peripheral impairment of fat cell lipolysis. Several [...] Read more.
Treatment with several antipsychotic drugs exhibits a tendency to induce weight gain and diabetic complications. The proposed mechanisms by which the atypical antipsychotic drug olanzapine increases body weight include central dysregulations leading to hyperphagia and direct peripheral impairment of fat cell lipolysis. Several investigations have reproduced in vitro direct actions of antipsychotics on rodent adipocytes, cultured preadipocytes, or human adipose tissue-derived stem cells. However, to our knowledge, no such direct action has been described in human mature adipocytes. The aim of the present study was to compare in human adipocytes the putative direct alterations of lipolysis by antipsychotics (haloperidol, olanzapine, ziprazidone, risperidone), antidepressants (pargyline, phenelzine), or anxiolytics (opipramol). Lipolytic responses to the tested drugs, and to recognized lipolytic (e.g., isoprenaline) or antilipolytic agents (e.g., insulin) were determined, together with glucose transport and amine oxidase activities in abdominal subcutaneous adipocytes from individuals undergoing plastic surgery. None of the tested drugs were lipolytic. Surprisingly, only opipramol exhibited substantial antilipolytic properties in the micromolar to millimolar range. An opipramol antilipolytic effect was evident against isoprenaline-, forskolin-, or atrial natriuretic peptide-stimulated lipolysis. Opipramol did not impair insulin activation of glucose transport but inhibited monoamine oxidase (MAO) activity to the same extent as antidepressants recognized as MAO inhibitors (pargyline, harmine, or phenelzine), whereas antipsychotics were inefficient. Considering its unique properties, opipramol, which is not associated with weight gain in treated patients, is a good candidate for drug repurposing because it limits exaggerated lipolysis, prevents hydrogen peroxide release by amine oxidases in adipocytes, and is thereby of potential use to limit lipotoxicity and oxidative stress, two deleterious complications of diabetes and obesity. Full article
Show Figures

Figure 1

Back to TopTop