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Abstract: The semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion
protein-1 (VAP-1) or primary amine oxidase (PrAO), is a deaminating enzyme highly expressed in
vessels that generates harmful products as a result of its enzymatic activity. As a multifunctional
enzyme, it is also involved in inflammation through its ability to bind and promote the transmigration
of circulating leukocytes into inflamed tissues. Inflammation is present in different systemic and
cerebral diseases, including stroke and Alzheimer’s disease (AD). These pathologies show important
affectations on cerebral vessels, together with increased SSAO levels. This review summarizes the
main roles of SSAO/VAP-1 in human physiology and pathophysiology and discusses the mechanisms
by which it can affect the onset and progression of both stroke and AD. As there is an evident
interrelationship between stroke and AD, basically through the vascular system dysfunction, the
possibility that SSAO/VAP-1 could be involved in the transition between these two pathologies is
suggested. Hence, its inhibition is proposed to be an interesting therapeutical approach to the brain
damage induced in these both cerebral pathologies.

Keywords: SSAO/VAP-1; stroke; Alzheimer’s disease; vascular damage; blood–brain barrier dys-
function; neurovascular unit; inflammation; oxidative stress

1. Introduction
1.1. SSAO: An Amine Oxidase

Amine oxidases (AOs) are a group of enzymes that catalyze the oxidative deamination
of various amines from the endogenous and xenobiotic origin, as well as those present
in the diet. According to their attached cofactors, the amine oxidases include the follow-
ing categories: (i) flavin adenine dinucleotide (FAD)-containing enzymes (E.C. 1.4.3.4)
include polyamine oxidase (PAO) (E.C. 1.5.3.11) [1], and both isoforms of Monoamine
oxidase (MAO-A and -B), which participate in the metabolism of biogenic amines with
neurotransmitter functions [2,3]; and (ii) topa-quinone (TPQ) or lysine tyrosyl quinone
(LTQ)-containing enzymes, which makes them easily inhibited by carbonyl compounds,
such as semicarbazide, including diamine oxidase (DAO) (E.C. 1.4.3.22), lysyl oxidase
(LOX) (E.C. 1.4.3.13), and soluble and membrane-bound semicarbazide sensitive amine
oxidase (SSAO) (E.C. 1.4.3.21) [4–6].

All AOs are able to catalyze the oxidative deamination of different amines, according
to the following reaction:

R-CH2-NH2 + O2 + H2O→ R-CHO + NH3 + H2O2

SSAO is multifunctional. It can metabolize the deamination of primary amines exclu-
sively, and its functions depend on the tissue that expresses it [7], as listed in Table 1. Some
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SSAO substrates, such as benzylamine, show an overlap with MAO substrates, responsible
for the primary, secondary, and tertiary amine metabolism, but the physiological substrates
methylamine and aminoacetone are exclusively metabolized by SSAO [8–10]. Physiologi-
cally, methylamine can be derived from the metabolism of epinephrine [11], adrenaline [12],
creatine, creatinine [13,14], sarcosine and choline [15–17]. Methylamine may also come from
the digestion of food and beverages or cigarette smoking [18]. Aminoacetone, however,
is a metabolic product of glycine and threonine [19]. SSAO can catalyze the deamination
of methylamine and aminoacetone to generate not only hydrogen peroxide (H2O2) and
ammonia but also formaldehyde and methylglyoxal, respectively.

When overproduced, the metabolites generated by the deamination of SSAO sub-
strates may constitute potentially hazardous products; thus, the inhibition of SSAO activity
may be beneficial under some pathological conditions, which will be detailed further
below. Many chemicals can inhibit both SSAO and MAO activities [20]. For example,
the hydrazine derivatives phenelzine, phenylhydrazine, hydralazine, benserazide, and
carbidopa, can inhibit SSAO activity, and some of them also inhibit MAO activity [20,21].
Lately, the hypothesis that SSAO inhibition could become a therapeutic target in several
diseases has significantly increased the design and synthesis of new specific molecules that
are able to modulate or inhibit its activity [22–26].

Molecular modeling studies showed that the membrane-bound SSAO in humans is a
180 kDa homodimeric glycoprotein composed of two identical 90 kDa monomer subunits.
It consists of a short membrane spinning domain and three catalytically active extracellular
copper-containing amine oxidase domains [27,28]. Surprisingly, the cloning of a novel cell
adhesion molecule, endothelial vascular adhesion protein-1 (VAP-1) cDNA, shows that
VAP-1 not only has SSAO activity but is also significantly identical to copper-containing
amine oxidase [29]. Since then, VAP-1 has been considered to have dual functions and is
defined as a new type of adhesion molecule with both cell adhesion function and SSAO
enzyme activity, as SSAO/VAP-1 [30].

Table 1. Semicarbazide-sensitive amine oxidase (SSAO)/ vascular adhesion protein-1 (VAP-1) tissue localization, cell type
expression, physiological substrates proved to be metabolized by these tissues and physiological function. Note the absence
of SSAO/VAP-1 expression in cerebral parenchymal cells (neurons and glia). Benzylamine is a non-physiological substrate
of SSAO metabolized by SSAOs from different origins. Data are summarized from [7–19,31–44].

Tissue Cell Type Substrate Function

Cerebrovascular tissue (meninges
and microvessels)

(human, rabbit, mouse, bovine)

Endothelial cells
Smooth muscle cells

Methylamine (derived from
epinephrine, adrenaline, creatine,

sarcosine and choline)
aminoacetone (derived from

glycine and threonine)

Scavenger of endogenous dietary
amines

Generation of H2O2 as a signaling
molecule

Leukocyte trafficking under
inflammation

Vascularized tissues (heart,
kidney, lung, intestine, liver,
retina and lymph nodes) and

blood vessels (human, pig, rat,
rabbit, bovine)

Endothelial cells
Smooth muscle cells

Pericytes

Phenylethylamine
Dopamine

Methylamine
Tyramine

Tryptamine

Metabolism of physiological
circulating amines and xenobiotic

ones
Leukocyte binding and

extravasation under inflammatory
conditions

Adipose tissue
(human and rat) Adipocytes (white and brown) Various endogenous and

exogenous amines

Metabolism of endogenous
amines

Insulinomimetic effects through
the generation of H2O2

Ureter and vas deferens Non-vascular smooth muscle cells Dopamine Metabolism of physiological
amines and xenobiotic ones

Endometrium (human) Pericytes Methylamine Recruiting innate immune cells

Skin (guinea pig) Fibroblasts Histamine
1–4 Methylhistamine

Metabolism of physiological
amines and xenobiotic ones

Dental pulp
(human, pig) Odontoblasts

Serotonin
Phenylethylamine

Tyramine
Tryptamine

Contribution to inflammatory
response in dental pulp (pulpitis)
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1.2. SSAO/VAP-1: Expression and Tissular Localization

SSAO/VAP-1 is present in a wide number of mammalian species [31], both as a
membrane-bound form and also as a soluble form in blood plasma [7]. High SSAO
activity is observed to be associated with vascularized tissues [32], and specifically in blood
vessels [33], where it is expressed by smooth muscle cells and endothelial cells [34].

Human SSAO/VAP-1, as in other species, is widely distributed in almost all vascu-
larized tissues and adipose tissue. In humans, the presence of the SSAO enzyme also has
been specifically reported in vascular endothelial cells and smooth muscle cells extracted
from skin, heart, liver, kidney, and brain [35,36]. Its presence has also been described
in pig dental pulp [37], where it is able to metabolize serotonin [38,39]. Regarding the
cerebrovascular tissue, its presence in human and bovine brain meninges and microvessels,
as well as in retina and eye sclera, were confirmed by using a rabbit anti-bovine lung
SSAO/VAP-1 polyclonal antibody [40,41,45–47].

At the subcellular level, SSAO/VAP-1 located at the plasmatic cell membrane appears
randomly distributed in structures named caveolae [48,49], constituting the lipid rafts.
Whether it has a specific function related to this localization needs to be addressed, as
lipid rafts are specialized membrane microdomains with a role in signal transduction that
assemble signaling molecules and influence membrane protein trafficking [50].

1.3. SSAO/VAP-1 Physiological Functions

Up to now, several functions of SSAO/VAP-1 have been described under physiological
conditions, as summarized in Table 1, related to its ability to metabolize primary amines:
the protection against endogenous/xenobiotic amines, the local generation of signaling
molecules, glucose transportation, and leukocyte trafficking under inflammation [8,51].

1.3.1. Amine Deamination

The first main function attributed to SSAO/VAP-1 was based on its enzymatic activity,
and it was associated with the homeostatic removal or scavenging of physiological active
endogenous and xenobiotic amines, which are potentially hazardous [52]. SSAO deami-
nation of its substrates can reduce the biological activities of the substrates. Moreover, all
the catalytic products of SSAO have biological activities and may have important roles at
physiological concentrations, contributing to the other functions attributed to SSAO/VAP-1.
In this regard, low concentrations of H2O2 can behave as intracellular second messengers
to participate in ligand stimulation, cell growth or cell death regulation, or NF-κB signaling
activation. Subsequently, NF-κB activation modulates the expression of many other genes,
such as MMPs, cytokines, chemokines, and vascular cell adhesion molecules [5,53]. This
signaling is also involved in angiogenesis and cellular differentiation. It has also been
demonstrated that H2O2 can activate mitogen-activated protein kinase (MAPK) as well as
the c-Jun amino-terminal kinase (JNK) [54]. Furthermore, immunohistochemical studies
indicate that in most human peripheral tissues, SSAO/VAP-1 might participate in the
regulation of physiological processes through H2O2 generation [36].

1.3.2. Activation of Glucose Transport

In isolated rat cardiac myocytes and rat adipocytes endosomal vesicles, insulin can
induce the recruitment of the intracellular glucose transporters (GLUT4) and (GLUT1) [55].
Vesicle immunoisolation analysis indicated that GLUT4-containing vesicles from rat
adipocytes contain substantial levels of SSAO activity and immunoreactive SSAO/VAP-1
protein. Furthermore, it has been reported that the SSAO substrate benzylamine could
accelerate the transportation of glucose in the presence of low concentrations of vanadate in
isolated adipocytes from rats. This effect of benzylamine and vanadate on glucose transport
was totally abolished in the presence of semicarbazide, used as an SSAO inhibitor [56,57].
Later on, it was reported that some SSAO substrates stimulate glucose transport and inhibit
lipolysis in human adipocytes, which confirmed the insulin-mimetic action of this protein,
depending on its enzymatic activity [42].
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1.3.3. Leukocyte Adhesion Function under Inflammation

SSAO/VAP-1 can act as an adhesion protein in the leukocyte trafficking
process [43,58–61]. Firstly, VAP-1 was reported to be involved in the human lympho-
cyte trafficking to high endothelial venules (HEVs) in the tonsils, peripheral lymph nodes
(PLN), and inflamed synovia [29]. Besides, SSAO/VAP-1 was also found to have increased
expression at the inflammation sites to control the recirculation of lymphocytes and the
entry of leukocytes [43]. By establishing the primary endothelial cells with the expression
of enzymatically active SSAO/VAP-1, firm evidence demonstrated that the SSAO activity
of VAP-1 was directly involved in the rolling and transmigration steps during leukocyte
adhesion [5,44]. SSAO/VAP-1 participates in these processes by acting as an adhesion
protein but also through the SSAO-catalyzed end products [62]. In this regard, the H2O2
generated by its enzymatic activity is able to induce the expression of other endothelial
adhesion molecules, such as MadCAM-1, E-selectin, P-selectin and CXCL8, through the
activation of NF-kB [63]. This dual function of SSAO/VAP-1 also results in a different se-
lectivity in the type of leukocytes to bind, which also depends on the organ and the type of
inflammatory stimulus, as detailed in Table 2. It has been reported that lipopolysaccharide
(LPS), interleukin 1β (IL-1β), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α)
are the inflammatory mediators responsible of the SSAO/VAP-1 migration from intra-
cellular vesicles to the plasma membrane [64]. Once there, different adhesion molecules
facilitate leukocytes binding to SSAO/VAP-1 for a successful emigration cascade, such as
peripheral lymph node addressin (PNAd), vascular cell adhesion molecule 1 (VCAM-1), or
intracellular adhesion molecules (ICAM-1, ICAM-2) [43].

Table 2. SSAO/VAP-1 is involved in the binding/transmigration of different types of leukocytes, but not of other types.
This selectivity also depends on the organ studied and the inflammatory stimulus.

Inflammatory Stimulus Organ/Tissue Type of Leukocytes
Bound by SSAO/VAP-1

Type of Leukocytes not Bound
by SSAO/VAP-1 Reference

Ischemia/reperfusion Kidney Neutrophils Macrophages/T-lymphocytes [65]
Postischemic inflammation Brain Neutrophils - [66]
Subarachnoid hemorrhage Brain Neutrophils - [67]
Intracerebral hemorrhage Brain Neutrophils - [68]

Peritonitis Peritoneum Granulocytes -
Air pouch inflammation Subcutaneous Monocytes/lymphocytes - [69]

LPS Brain Neutrophils - [70]

LPS, Klebsiella pneumoniae Lungs Polymorphonuclear cells,
neutrophils - [71]

Acute liver failure Liver Leukocytes Monocytes [72]
ConA hepatitis Liver CD4+ Th2 cells - [73]
Hepatic chronic

inflammation and fibrosis Liver CD16+ monocytes - [74]

Liver inflammation Liver CD4+ T cell - [75]

Liver allograft rejection Liver CD4+ and CD8+
lymphocytes - [76,77]

Tumors (adhesion function) Skin CD45+, CD3+, CD8+ CD4+, T-reg cells, Type2
macrophages, GR-1+CD11b+ [78]

Tumors (enzymatic function) Skin CD45+, CD8+, CD11b+,
granulocytes, CD4+, type2 macrophages [78]

Cytokine-induced
angiogenesis Eyes CD11b+ cells,

granulocytes - [79]

Diabetic retinopathy Eyes Leukocytes - [80]
Uveitis Eyes CD45+ - [81]

In vitro Endothelial cells Lymphocytes, T-killer cells Neutrophils, monocytes [82]

In vitro Endothelial cells Polymorphonuclear
leukocytes - [83]

AOC3 knockout Adipose tissue
CD45+, T cells,

macrophages, natural
killer

- [84]
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1.4. SSAO/VAP-1 Involvement in Pathological Conditions

The physiological functions of SSAO/VAP-1 can lead to a harmful situation when its
levels are increased, as summarized in Table 3. Due to the potentially hazardous activity of
the SSAO activity products, increased activity of this enzyme is associated with diverse
human pathological processes. The SSAO metabolic products, such as formaldehyde or
methylglyoxal, are toxic at high concentrations, especially in blood vessels [18,85]. In
this regard, the in vitro treatment of vascular cells with methylamine, which generates
formaldehyde, induces a dose- and time-dependent cytotoxic effect and activates apoptotic
cell death through the tumor suppressor protein p53 activation, inducing PUMA-alpha
expression, altering the mitochondrial Bcl-2 family proteins, and activating final effector
caspases [86]. In the case of the substrate aminoacetone, the generation of methylglyoxal by
SSAO activity has been implicated in vascular alterations, and it is a well-known precursor
of advanced glycation end products (AGEs), which are involved in diabetic complications
and vascular degeneration [87,88].

Table 3. Physiological functions of SSAO/VAP-1 and pathological effects associated with these functions in situations
where the enzyme is overexpressed. Data are summarized from [7–9,16–18,31–34,78,87–104].

Physiological Function Pathological Effect Upon SSAO/VAP-1
Overexpression Involvement in Pathologies

Oxidative deamination of primary
amines of endogenous and xenobiotic

origin
Molecular signaling through H2O2

generation

Toxicity of metabolic products
(formaldehyde, methylglyoxal, H2O2)

Stroke
AD

Protein cross-linking and Aβ aggregation Diabetes
Oxidative stress Atherosclerosis
AGEs generation Congestive heart failure

Inflammation Fibrotic liver disease

Pathological angiogenesis Cancer
Age-related macular degeneration

Leukocyte trafficking under
inflammatory conditions Excessive inflammatory response MS

Insulinomimetic action by recruitment of
GLUT4 receptors to the cell membrane Unknown Unknown

In humans and other species, soluble SSAO/VAP-1 exists in the serum of healthy
adults [89,90], but its levels are found to increase in several pathological conditions. Ex-
periments performed in adipocytes evidenced that soluble SSAO/VAP-1 could be shed
from the membrane-bound form depending on a matrix metalloproteinase (MMP) activity
in diabetic and obese animals [105]. It seems that under pathological conditions, soluble
SSAO/VAP-1 originates from adipocytes, endothelial cells and smooth muscle cells [106],
but given that various cellular sources can secrete different types of MMPs, such as neu-
rons, cerebral microvascular endothelial cells, astrocytes, and inflamed neutrophils, which
kinds of MMPs participate in the shedding of soluble SSAO/VAP-1 still warrant future
investigation.

Plasma soluble SSAO/VAP-1 is increased in various systemic diseases: in diabetes,
atherosclerosis [107–110], congestive heart failure [91] and non-diabetic morbidity obe-
sity [111]. Moreover, it has also been described that the soluble SSAO/VAP-1 is increased in
malignant hypertension [51], inflammatory diseases (cirrhotic liver inflammation) [89], and
retinopathies associated with diabetes mellitus [112]. The specific mechanisms regulating
the soluble plasmatic SSAO/VAP-1 and activity increase in these pathologic conditions are
still not fully elucidated. Since soluble SSAO/VAP-1 may be derived from the membrane-
bound form, the enhanced SSAO activity in plasma may be attributed to upregulated
expression of membrane-bound SSAO/VAP-1 in diabetic patients [17] in response to in-
flammation [89]. The increasing prevalence of chronic inflammatory and autoimmune
diseases associated with the aging population points out the interest in developing thera-
pies directed against SSAO/VAP-1 for the treatment of chronic inflammatory diseases [113].
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On the other hand, plasma SSAO activity was found to decrease in severely burnt or
cancer patients [114]. Using an experimental model of breast cancer in rats induced by
7,12-dimethylbenz(alpha)anthracene (DMBA), a decreasing SSAO activity was observed
and correlated with cancer malignancy [115]. However, it was described that high levels of
SSAO/VAP-1 are closely linked to alternative M2 macrophage activation during human
glioma progression [116]. Moreover, the SSAO/VAP-1 expression in different astrocy-
toma grades and its correlation with clinicopathological features as well as prognosis of
astrocytoma patients was studied. The expression of this enzyme was assayed by immuno-
histochemistry, and the level of SSAO/VAP-1 was found significantly higher in diffuse
astrocytoma than those of pilocytic astrocytoma. Therefore, the authors concluded that
SSAO/VAP-1 could be a promising prognostic biomarker in human astrocytoma [117].

SSAO/VAP-1 also has been found altered in central nervous system (CNS) pathologies.
In humans, the concentration of soluble SSAO/VAP-1 in serum is significantly higher in
multiple sclerosis (MS) patients with ongoing inflammatory activity, as demonstrated by
gadolinium-enhancing MRI lesions [118]. Results suggest that SSAO/VAP-1 may partic-
ipate in controlling leukocyte entry into the inflamed brain in this pathologic condition.
In addition, the expression of membrane-bound SSAO/VAP-1 has been studied in focal
rat models of experimental autoimmune encephalomyelitis (EAE) mimicking MS. Results
reveal that SSAO/VAP-1 is expressed and is functionally active in vasculature within
the induced focal EAE lesions during the acute phase of inflammation, and it remains
expressed after the acute inflammation has subsided. These data support that SSAO/VAP-1
is actively involved in the development of inflammatory CNS lesions [119], thus becom-
ing an interesting target to study its involvement in human vascular and inflammatory
pathologies [120]. The involvement of SSAO/VAP-1 in stroke and AD, where its levels are
found also elevated, will be discussed in-depth in the following sections.

2. Cerebrovascular Dysfunction in Stroke and AD
2.1. The BBB and Cerebrovascular Dysfunction

Brain endothelial cells are unique, as they are interconnected by focal adhesions
known as “tight junctions”, resulting in a highly selective barrier, the blood-brain barrier
(BBB). This constitutes a highly specialized endothelial membrane lining cerebral microves-
sels with the astrocyte end-feet and pericytes [121]. BBB effectively regulates the passive
exchange of solutes, transporter-mediated substances (e.g., glucose, amino acids, ions), sig-
naling molecules, and the trafficking of macromolecules (e.g., proteins, peptides) between
the blood and the brain [122]. It also regulates the entry of leukocytes and plasma compo-
nents into the brain and ensures the exclusion of neurotoxic molecules [123–125]. The brain
takes about 20% of the overall glucose and oxygen of the body, and brain microvessels
are responsible for the delivery of both substrates to brain parenchyma. Therefore, a link
between cerebrovascular alterations and neurodegeneration seems plausible [126,127]. Vast
bibliography points out the interrelationship between cerebrovascular tissue and neurode-
generation, as well as confirms the age-dependent deterioration of the BBB during normal
aging in the hippocampus, the brain region that is responsible for learning and memory,
but faster degradation in patients with mild cognitive impairment (MCI) compared with
neurologically intact controls [128–131].

At the functional level, the BBB is integrated into the neurovascular unit (NVU),
composed of glial cells (astrocytes and microglia) and brain vascular cells (pericytes, en-
dothelial cells, and vascular smooth muscle cells). NVU acts as a complex tissue with all its
cells communicating with each other by secreting molecular factors named angioneurins.
This communication allows the regulation of BBB integrity, angiogenesis, neuroprotec-
tion, vascular perfusion, and synaptic plasticity, thus ensuring the correct development,
maintenance, and function of the unit in a healthy brain [132–135]. On the other hand, the
BBB/NVU dysfunction induces inadequate nutrient supply, accumulation of toxins in the
brain, or altered secretion of proteins by NVU cells, which induce inflammation, oxidative
stress, and neuronal damage. Dysfunction of the NVU is related to several CNS pathologies,
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such as ischemic and hemorrhagic stroke, tauopathies, MS, diabetic retinopathy, and HIV-1
infection [136–138].

Cerebrovascular inflammation is underlying during the progression of different CNS
disorders, including AD, stroke, traumatic brain injury, etc. Under normal physiological
conditions, the BBB prevents adhesion molecules trafficking into the brain, however un-
der pathophysiological conditions, the BBB integrity is impaired and different adhesion
molecules, such as chemokines, selectins, and vascular cell adhesion molecules (CAMs),
enter the CNS and pathologically enhance neuroinflammation [139,140].

2.2. Stroke

The concept of stroke involves a heterogeneous group of processes. Ischemic stroke
is caused by the obstruction of cerebral vessels and is the most common type of stroke,
accounting for about 85% of the total. On the other hand, sudden bleeding in the brain
induces a hemorrhagic stroke, accounting for the remaining cases [141]. Hemorrhagic
stroke is due to bleeding into the brain by the rupture of a blood vessel, and it can be
subdivided, depending on the localization of the blood vessels broken, into subarachnoid
hemorrhage (SAH) and intracerebral hemorrhage (ICH). In SAH, the bleeding is into the
subarachnoid space, while in ICH, the bleeding is into the brain parenchyma. Hemorrhagic
stroke is associated with severe morbidity and high mortality, and it is related to worse
outcomes, such as deterioration of consciousness and neurological dysfunction.

Ischemic stroke results in a sudden loss of oxygen and glucose to the brain tissue,
leading to neuronal cell death and severe brain damage. It involves multiple processes, such
as energy failure, alteration of the ion homeostasis, increased intracellular calcium levels,
excitotoxicity, free-radicals toxicity, arachidonic acid generation, cytokine cytotoxicity,
the BBB disruption, infiltration of leukocytes, inflammation, glial cells activation, and
apoptosis, among others [142]. Meanwhile, the lack of energy supply leads to mitochondrial
dysfunction and oxidative and nitrosative stress. Postischemic inflammation brings further
damage to brain cells and tissues during reperfusion. These events aggravate the initial
injury and ultimately lead to the death of endothelial cells, pericytes, glial cells, and neurons
composing the NVU [143,144].

Oxidative stress significantly contributes to tissue injury in acute ischemic stroke.
During ischemia, damaged electron transportation generates excessive superoxide (O2

-),
which facilitates the generation of other free radicals, such as H2O2 and hydroxyl radi-
cal (OH·). These reactive free radicals (ROS) further inhibit the mitochondrial electron
transport, leading to even more ROS production [145,146]. Reperfusion also induces the
production of O2

-, nitric oxide (NO), and peroxynitrite. These free radicals are not only
able to directly damage lipids, proteins, and nucleic acids to induce cell death but also
activate MMPs to degrade collagen and laminins, which leads to vascular wall disruption
and increased BBB permeability [142]. By activating the synthesis of transcription factors
(e.g., NF-κB, hypoxia-inducible factor 1 (HIF-1), interferon regulatory factor 1 (IRF1), and
signal transducer and activator of transcription 3 (STAT3)), oxidative stress is also able to
induce numerous proinflammatory genes’ expression (e.g., ICAM-1, VCAM-1, E-selectin,
and P-selectin). As cerebral levels of antioxidant enzymes and substances are not high
enough, oxidative stress is relatively more harmful to the brain than other organs [143].

Inflammation further exacerbates stroke-induced tissue injury. Different types of
cells, extracellular receptors, and inflammatory mediators participate in the inflammatory
response after stroke. Inflammatory cells, such as microglia and astrocytes, participate
in post-ischemic tissue remodeling. Increasing evidence shows that cerebral ischemia
can activate microglia and astrocytes, which can release proinflammatory cytokines and
chemokines, such as TNF-α, IL-1β, interleukin-6 (IL-6), and other cytotoxic molecules
(e.g., NO and ROS) [147–149]. Moreover, ischemic stroke can cause the penetration of
neutrophils and monocytes from the blood to the brain. Neutrophils are the earliest
upregulated leukocyte subtype in the ischemic cerebral parenchyma [144], which triggers
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tissue damage by releasing ROS, proteases, and cytokines. Lymphocytes also participate in
the inflammatory response after stroke and contribute to ischemia-induced damage [150].

CAMs facilitate leukocyte infiltration into the brain. During the inflammation process
of an ischemic stroke, three classes of CAMs are activated: selectins, integrins, and im-
munoglobulins. During the early stage of ischemia, enhanced selectins, such as P-selectin
and E-selectin, mediate leukocyte rolling and recruitment during inflammation [151]. Simi-
larly, within hours after the onset of stroke, immunoglobulins, such as ICAM-1, can also be
stimulated by cytokines secreted by microglia and astrocytes, among others [152]. In this
context, soluble ICAM-1 (sICAM-1) has been proposed as an indicator for the severity of
the stroke, as it is increased in acute ischemic stroke patients, and its expression level is
significantly higher in patients who died than those who survived [153].

2.3. Alzheimer’s Disease and Cerebral Amyloid Angiopathy

AD is the most common cause of dementia worldwide. Aging is its principal risk
factor, together with others, including smoking, obesity, head trauma, previous depression,
female gender, positive family history, and several other conditions involving vascular-
associated pathologies as diabetes mellitus, hypercholesterolemia, hypertension, atheroscle-
rosis, coronary heart disease, and stroke [154,155]. AD can be originated by familial genetic
alterations or sporadically, constituting a heterogeneous disorder. Several mutations have
been described in the familial AD, accounting for those in the amyloid precursor protein
(APP) and in presenilins 1 and 2 1 (PSEN1 and PSEN2) for most cases of the disease of this
type [156,157]. However, the inheritance of the apolipoprotein E (apoE) ε4 allele is the main
genetic risk factor in sporadic AD [158,159], together with aging and other environmental
factors.

AD is a progressive and neurodegenerative disease. Neuropathologically, the in-
tracellular accumulation of hyperphosphorylated tau protein as neurofibrillary tangles
and neuropil threads, together with the extracellular accumulation of amyloid-β (Aβ) in
the core of the neuritic plaques, are considered the two molecular and morphological
signatures of AD. AD is also associated with microvascular dysfunction, neurovascular dis-
integration, defective BBB function and other vascular factors [124], which may contribute
to the disease progression [160].

Although still under debate, different evidence supports the idea that Aβ deposition
is the central event in AD pathogenesis, which latterly induces the formation of neu-
rofibrillary tangles, cell injury, vascular damage, and ultimately dementia [161]. In the
amyloidogenic pathway, β- and γ-secretases sequentially cleavage APP to generate Aβ
peptides [162–165]. According to the amyloid hypothesis on the cause of AD, the initiating
event of the pathological process is the imbalance between the clearance and production of
Aβ. Subsequently, Aβ peptides over-accumulated at the extracellular level lead to neuronal
degeneration and dementia [166].

In this regard, there have been described several molecular pathways responsible
for the Aβ clearance, being the most relevant the proteolytic degradation by extracellular
proteases, such as insulin-degrading enzyme (IDE), neprilysin (NEP), and endothelin-
converting enzyme (ECE) [167], and through the perivascular clearance, which comprises
perivascular drainage and glymphatic pathways [168]. Another mechanism for the Aβ
clearing from the brain relies on the balance between the efflux and influx of Aβ across
the BBB [169]. In this regard, two receptors are responsible for the Aβ transportation:
the low-density lipoprotein receptor protein-1 (LRP-1) transports Aβ from the brain to
blood [170], while the receptor for advanced glycation end products (RAGE) [171] does it
from blood to the brain.

Besides the two main pathological hallmarks, extraneuronal Aβ plaques and neurofib-
rillary tangles, AD presents other traits, such as cerebral amyloid angiopathy (CAA) and
inflammation. CAA is related to the accumulation of Aβ in the walls of arteries, arterioles,
capillaries, and veins of the leptomeningeal and cortical regions [172,173]. In CAA, Aβ
accumulates in cerebral blood vessels replacing smooth muscle cells and inducing vascular
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degeneration compromising the functionality and integrity of vessels and contributing to
the BBB disruption [125].

In fact, CAA and AD pathology frequently co-occur, presumably because of the
accumulation of Aβ in the brain [174]. However, independently from AD, the risk of
symptomatic lobar ICH and microscopic cortical infarcts is the most relevant clinical conse-
quence of CAA [175]. CAA patients also present cognitive impairment, lower perceptual
speed and episodic memory impairment, separately from the effect of AD [176]. CAA
is a sporadic disease associated with age, although familial CAA cases are reported as
a consequence of mutations in the APP gene located within or just outside the Aβ cod-
ing region [174]. One of these mutations, for instance, causes the autosomal dominant
disorder of Dutch-type hereditary CAA (also known as hereditary cerebral hemorrhage
with amyloidosis (HCHWA)–Dutch type), which is clinically characterized by early-onset
recurrent hemorrhagic strokes and dementia [177]. Nevertheless, the crosstalk between
CAA and AD seems a clear example of the interactive effects of neurodegenerative and
cerebrovascular diseases on cognition, which are likely a consequence of brain injuries
caused by each process [174].

Wide bibliography emphasizes that vascular defects contribute to the onset and pro-
gression of neuronal degeneration and death in AD [178]. In this regard, the two-hit
vascular hypothesis of AD incorporates a pathogenic vascular component to the excessive
Aβ accumulation as initial events in the AD onset [132]. According to this hypothesis, vas-
cular damage would impair the Aβ clearance, which would accumulate in cerebral vessels
and parenchyma to generate toxicity [124,179]. This vascular damage would be induced
mainly but not exclusively by cerebral hypoperfusion, NVU dysfunction or BBB disrup-
tion, for example, by CAA. Studies reinforcing this hypothesis have demonstrated that
vascular abnormalities occur before changes in Aβ deposition, metabolic dysregulation,
and functional impairment [180]. Hypoperfusion is detected at preclinical AD stages [181],
and animal models of bilateral common carotid artery occlusion recapitulate AD pathol-
ogy, including Aβ accumulation [182]. Several studies have observed deficiencies in the
neurovascular response to various stimuli in MCI or early-stage AD, evidencing an NVU
dysfunction, as recapitulated by Solis et al. [160]. In addition, increased BBB permeability
is found in MCI and early AD patients, correlating with increased BBB leakage [128,183].

At the molecular level, mitochondrial function declines with aging, in parallel to
enhanced production of intracellular oxidative agents, including ROS, and the expression
of nitric oxide synthase (NOS). The ROS and the reactive nitrogen species jointly contribute
to the malfunction of the BBB and injury to the cerebral parenchymal cells [184].

In addition, inflammatory factors are elevated in microvessels in AD [185], and Aβ is
also able to induce the inflammatory cascade in human endothelial cells [186]. Cerebral
endothelial activation inducing the expression of interleukins (IL-1β, IL-6, IL-8), vascular
endothelial growth factor (VEGF), TNF-α, and MMPs, among others, occurs in AD altering
brain homeostasis [139,187]. Elevated endothelial markers, such as E-selectin or VCAM-1,
have been detected in the plasma of older subjects affected by late-onset AD and vascular
dementia [139,188]. Moreover, activated microglia contributes to neuroinflammation and
is associated with senile plaques in AD [189]. The presence of Aβ peptide in senile plaques
of AD patients can also stimulate the secretion of proinflammatory cytokines and the
complement system [190]. However, it also has been described that brain myeloid cells
contribute to the Aβ removal through phagocytosis and that stimulation of the immune
response in the CNS ameliorates Aβ deposition [191]. Taken together all these results, it
can be concluded that AD can be correlated with factors, such as inflammation, besides Aβ
deposition and neurofibrillary tangle formation [192].

3. SSAO/VAP-1 and Cerebrovascular Dysfunction
3.1. SSAO/VAP-1 in Stroke

To date, increasing evidence implicates that SSAO/VAP-1 may play an important role
in stroke. In humans, several studies demonstrated that the plasmatic SSAO/VAP-1 is
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altered in the stroke condition, as listed in Table 4. In ischemic stroke, it has been reported
that serum SSAO/VAP-1 protein increases in the acute phase (<6 h), while levels of the
membrane-bound protein in the ipsilateral hemisphere decrease [193]. Other authors found
a small increase in SSAO activity in plasma 24 h after ischemia but more significant and
from 1 h after symptoms onset when patients developed a hemorrhagic transformation
(HT) [92]. Interestingly, the levels of SSAO activity in plasma predict the adverse neuro-
logical outcome in ischemic stroke patients and also represent a robust predictor of the
appearance of parenchymal hemorrhages after the treatment with tissue plasminogen acti-
vator (tPA) in these patients [92]. In this study, an increased SSAO activity was observed in
the ipsilateral hemisphere, contrary to Airas et al. 2008 [193]. Differences at this level may
be due to different ways to measure the protein, such as immunohistochemical approaches
or enzymatic activity determination, or by the pathological condition itself. In this regard,
the presence of HT may lead to massive infiltration of plasma content into the parenchyma,
including SSAO/VAP-1, which may account for this increased activity in the ipsilateral
hemisphere, as found by Hernandez-Guillamon et al. 2010, but may not be present in
ischemic conditions without HT. Other authors had found no differences in plasma SSAO
activity after ischemic stroke when samples were obtained more than 24 h after the onset
of symptoms [93]. In this regard, the time of plasma obtention after the onset of symptoms
may be crucial to detect differences, as plasma SSAO activity has been reported to decrease
after the acute phase [92] or weeks after stroke [94]. Even so, in acute ICH, the increased
plasma SSAO activity predicts neurological outcome, suggesting a possible contribution of
the soluble protein in the secondary brain damage after the initial bleeding. Remarkably,
patients clinically diagnosed as possible or probable CAA cases presented higher plasma
SSAO/VAP-1 activity than patients who showed a hypertensive-related ICH [95]. On the
other hand, serum SSAO activity levels are also associated with the appearance of cerebral
microbleeds in MS [194].

Interestingly, the SSAO enzymatic inhibition in several embolic stroke models per-
formed in rats diminishes the CAMs expression, downregulating the inflammatory reaction,
the leukocyte adhesion and extravasation, decreasing the infarct volume, and recovering the
neurological outcome [67,68,92,195,196], even in delayed cerebral ischemia [67,68,92,195,196].
Analogous anti-inflammatory activity and mitigated damage are found in animal models
with suppressed SSAO activity or deficient in the SSAO/VAP-1 protein subjected to ischemia-
reperfusion treatment in the lung [195] and heart [196], and the SSAO/VAP-1 inhibition is
proposed as a novel therapy in ischemic acute kidney injury [65].

SSAO activity is able to upregulate the expression of other CAMs, such as E- and
P-selectins, ICAM, or VCAM [63,197]. In addition, a possible role of soluble SSAO/VAP-1
has been suggested to spread the inflammatory signal from the ipsilateral side of the
ischemic brain to the contralateral side [198]. These facts may reinforce the benefits of
SSAO/VAP-1 inhibition on inflammation control under a stroke condition.

Moreover, using an in vitro experimental model of oxygen–glucose deprivation (OGD),
Sun et al. described the role of SSAO/VAP-1 present in endothelial cells during ischemic
stroke, which was consistent with results obtained in animal models. Different OGD
and reoxygenation conditions were analyzed, and SSAO/VAP-1 presence increased the
susceptibility of endothelial cells to the OGD insult. Under these conditions, the oxidation
of its substrate through its enzymatic activity boosted the resulting damage on vascular
cells, with the activation of caspases 3 and 8 during the cell death process. OGD also
constituted a spur for the release of soluble SSAO/VAP-1, which was found to be mediated
in part by MMP-2-dependent shedding. On the other hand, short times of OGD stimu-
lated SSAO/VAP-1-dependent leukocyte binding on endothelium, a function that partially
depends on its enzymatic activity [199].

Besides the beneficial effects of blocking leukocyte adhesion in stroke conditions,
the inhibition of SSAO/VAP-1 activity also prevents the generation of H2O2, aldehydes
and ammonia from its enzymatic catalyzation, which could contribute to oxidative stress
in acute ischemic stroke when overproduced. In this regard, it has been reported that



Int. J. Mol. Sci. 2021, 22, 3365 11 of 30

both the soluble [200] and the membrane-bound SSAO/VAP-1 could induce apoptosis
in vascular cells through its oxidative metabolites [86], and this is enhanced under OGD
conditions [199]. As brain cells are more sensitive to oxidative stress given their lack of
antioxidants, good maintenance of the BBB tightness is crucial for preserving neuronal
function. In this regard, the SSAO/VAP-1 inhibition could be beneficial in preserving the
BBB by reducing the uncontrolled inflammation and maintaining the function of NVU
after stroke.

3.2. SSAO/VAP-1 in Alzheimer’s Disease

As previously reported, SSAO/VAP-1 is expressed in vascularized tissues, including
the brain [41,45–47,201]. The presence of SSAO/VAP-1 enzyme has also been determined
in the brains of AD patients, as summarized in Table 4, and SSAO/VAP-1 immunoreactivity
appeared restricted to meningeal and parenchymal blood vessels in the brain and markedly
and selectively increased SSAO/VAP-1 immunoreactivity was observed to associate with
vascular Aβ deposits in patients with AD. Moreover, augmented SSAO immunoreactivity
appeared associated with elevated Cu/Zn superoxide dismutase 1 expression in abnormal
blood vessels of diseased brains [96]. In parallel, circulating SSAO/VAP-1 was also assessed
in the plasma of patients with sporadic AD. A clear rise in plasma SSAO activity was
found in AD patients at moderate-severe and severe stages of the disease, compared to
healthy controls [97]. No alteration of the enzyme was observed in AD patients with
mild or moderate dementia compared with controls. Other authors have corroborated the
plasma SSAO/VAP-1 increase in AD as well as in post-stroke dementia patients, negatively
correlating with mini-mental state examination (MMSE) scores [98]. The elevation in
plasmatic SSAO activity could be a consequence of its shedding from membrane-bound
SSAO/VAP-1, particularly when the enzyme is overexpressed in AD [96]. Remarkably,
plasma SSAO/VAP-1 levels did not correlate with Aβ in plasma samples [97]. Altogether,
these results suggested that an elevated plasmatic SSAO activity could contribute to
oxidative stress and vascular damage in advanced AD.

On the other hand, numerous studies have exposed that many physiopathological
alterations are shared features between AD and diabetes mellitus (DM), including elevated
cholesterol levels, aging-related processes, metabolic disorders, glycogen synthase kinase-3
elevated activity, aggregation of Aβ, association with cardiovascular diseases, increased
oxidative stress, and inflammation response among others [99–102]. SSAO activity in the
blood plasma of diabetic patients is also elevated [103]. Moreover, classic pathological
signatures observed in AD are more prominent in diabetic patients, and DM constitutes a
risk factor for AD [202,203]. In this context, the role of SSAO/VAP-1 was also assessed in
human hippocampal vessels of non-demented DM, AD, and AD with diabetes mellitus
(ADD) patients [204]. Results revealed enhanced accumulation of both SSAO/VAP-1
and Aβ immunolabeling intensity in vessels from ADD compared with AD patients.
Interestingly, injured vessels exhibiting elevated SSAO/VAP-1 staining also presented
augmented oxidative damage indicators and glial activation. Globally, this study suggests
that increased vascular SSAO/VAP-1 levels in the human hippocampus may contribute to
the faster pathology evolution in patients with both diseases.

Besides DM, other cardiovascular and lifestyle-related risk factors are increasingly ac-
cepted to be relevant for the pathogenesis of AD [205]. In this context, plasma SSAO/VAP-1
is positively associated with coronary artery disease, and its expression is increased in
atherosclerotic plaques in humans and in ApoE-deficient mice [206]. Moreover, SSAO inhi-
bition reduces atheroma, decreases oxidative stress in Apo-E-deficient mice, and attenuates
the expression of adhesion molecules, chemoattractant proteins, and proinflammatory
cytokines in the aorta. Thus, together with DM, the SSAO/VAP-1 alteration in several AD
risk factors suggests that it could be not only involved in AD progression but also in the
AD onset.

The aldehydes generated from methylamine metabolism by SSAO/VAP-1 are involved
in protein unfolding and generate protein cross-linkages into lysine residues [207,208].
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Therefore, it is reasonable to hypothesize that these compounds may react with lysines of
Aβ to promote vascular aggregation of Aβ in AD patients. In this regard, the potential
effects of these SSAO-generated endogenous aldehydes have been implicated in Aβmis-
folding, oligomerization, and fibrillogenesis [209,210]. In fact, formaldehyde concentrations
are elevated in senescence-accelerated mouse-prone 8 (SAMP8) mice, which correlates with
cognitive dysfunction, and is associated with increased SSAO activity of these mice [211].
In addition, urine formaldehyde measurement has been proposed as a biomarker for
AD and post-stroke dementia progression as, in parallel to plasma SSAO/VAP-1 con-
tent, it negatively correlates with MMSE scores [98]. These results suggest that increased
SSAO/VAP-1 expression, as well as its circulating form, maybe a source of oxidative stress
in the blood vessel wall in AD. Moreover, considering that SSAO/VAP-1 is overexpressed
in cerebrovascular tissue of patients with CAA-AD, and its intrinsic enzymatic activity
generates pro-aggregating metabolites, one can conclude that SSAO/VAP-1 may contribute
to the vascular damage associated with AD [212,213].

Table 4. Alterations of SSAO/VAP-1 levels found in human ischemic stroke, intracerebral hemorrhage (ICH) and
Alzheimer’s disease (AD).

Disorder Tissue Analyzed Phase of the
Pathology SSAO/VAP-1 Alteration Reference

Ischemic stroke

Serum <6 h (acute phase) Increase [193]
Plasma 24 h after stroke Increase vs. 1 h [92]
Plasma 1 h after HT Increase [92]
Serum >24 h after stroke No change [93]
Plasma weeks after Decrease [94]

Ipsilateral brain - Decrease [193]
Ipsilateral brain - Increase [92]

Hemorrhagic stroke
(ICH)

Plasma 3–4 h after ICH Increase [95]
Contralateral brain - Increase [95]

AD

Plasma moderate-severe Increase [97]
Plasma - Increase [98]

Brain vessels - Increase [96]
Hippocampus - Increase [98]
Brain vessels - Increase [204]
Brain vessels - Increase [212]

As shown in Figure 1, the abilities of SSAO metabolic products (e.g., H2O2, ammonia,
and aldehydes) to generate oxidative stress, to enhance the AGEs generation, to promote
the Aβ aggregation, and to induce apoptosis, reinforce the role of SSAO/VAP-1 in CAA-
AD-related vascular pathology.

On the other hand, other functions attributed to endothelial SSAO/VAP-1 also may
play a role in promoting or aggravating the pathology of AD, including those related
to granulocytes binding and leukocyte trafficking into tissues. In this regard, different
peripheral inflammatory cells have been detected in brains from AD and animal models:
monocytes, lymphocytes and neutrophils [214]. The adhesion function of SSAO/VAP-1
is particularly active for neutrophils. Neutrophils infiltrate the brain parenchyma in AD
and migrate towards Aβ deposits in the experimental mouse model [215]. However, this
neutrophil infiltration resulted in an exacerbation of microgliosis and behavioral deficits in
an experimental AD model [216]. More recently, it has been demonstrated that neutrophil
adhesion in brain capillaries may impair cognitive functions [217]. These and other studies
performed in mouse AD models indicate that neutrophils may contribute to the initial
stages of the disease [214,218]. Although the specific participation of SSAO/VAP-1 has not
been assessed in these models, it is reasonable to believe that the potential inhibition of
leukocyte trafficking may be beneficial in AD. Thus, the regulation of VAP-1 may also be
considered as a strategy to address this aspect associated with the pathology.



Int. J. Mol. Sci. 2021, 22, 3365 13 of 30

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 14 of 32 
 

 

in smooth muscle cells [222]. Thus, these new cell lines constitute suitable experimental 

tools for studying new functions of SSAO/VAP-1, as well as to elucidate its role in patho-

logical processes or to evaluate potential molecules that could modify its activity for ther-

apeutic purposes [222]. 

 

Figure 1. Summary of the pathogenic mechanisms of SSAO/VAP-1 in exacerbating the progress of cerebral amyloid angi-

opathy (CAA)-AD. Through the generation of toxic metabolites from SSAO activity (ammonia, methylgioxal, formalde-

hyde, and H2O2), SSAO/VAP-1 induces the vascular degeneration on both endothelial and smooth muscle cells through 

several mechanisms: (i) oxidative stress, (ii) induction of apoptosis through the mitochondrial pathway, (iii) induction of 

the expression of pro-inflammatory molecules (selectins, VCAM, ICAM…), (iv) induction of protein and lipid crosslink-

ing, and (v) increase in A aggregation. The resulting vascular degeneration, together with the protein and lipid cross-

linkage and the A aggregation contribute to the vascular degeneration and the CAA pathology, and these generate a 

positive feedback loop reinforcing SSAO/VAP-1 overexpression. A aggregation itself also contributes to the SSAO/VAP-

1 increase. 

To reveal the nature of the SSAO/VAP-1 relationship with the AD pathology, cell 

lines stably expressing human SSAO/VAP-1 were treated with different Aβ forms to sim-

ulate the CAA conditions in vitro [220]. The vasculotropic Dutch-mutated Aβ1-40 (Aβ1-

40D) peptide, which accumulates in vessels of the Dutch-type hereditary CAA brain, was 

used to reproduce the pathology in vitro. It was found that the treatment with Aβ1-40D 

increased the vascular SSAO/VAP-1-dependent toxicity, which was correlated by a rise of 

SSAO/VAP-1 protein in the membrane of endothelial cells. Moreover, SSAO/VAP-1 en-

hanced the deposition of Aβ on vascular cells by both activity-dependent and -independ-

ent mechanisms. Taken together, these data suggest that Aβ itself can be one of the ele-

ments stimulating the SSAO/VAP-1 elevation in AD, augmenting its toxic action, and in-

ducing the vascular dysfunction and, in turn, that SSAO/VAP-1 can stimulate Aβ deposi-

tion on the vascular walls, thereby contributing to the CAA-AD progression. 

As previously mentioned, the function and structure of both NVU and BBB are abun-

dantly compromised in several neurological diseases, such as stroke and [223]. In this con-

text, it is necessary to study the neurovascular crosstalk and alterations to better compre-

hend the molecular base of AD [123]. Therefore, a new in vitro model of NVU was used 

to assess the possible contribution of vascular SSAO/VAP-1 overexpression to the BBB 

SSAO 
    RCH2NH2 + O2 + H2O                           RCHO + NH3 + H2O2 SSAO catalytic activity 

Membrane-bound 
SSAO/VAP-1 

expression 

CAA-AD 

pathology 

others 
(inflammation, 

hypoxia) 

SSAO activity 
methylglioxal 

formaldehyde 

H2O2 

soluble SSAO 

shedding 

SSAO plasmatic 

activity 

Expression of 

inflammatory 

molecules Mitochondrial 

apoptotic pathway 

induction 

Protein and lipid 

crosslinkings 

Aβ aggregation 

vascular degeneration 

BBB 
dysfunction 

ammonia 

Oxidative stress 

Figure 1. Summary of the pathogenic mechanisms of SSAO/VAP-1 in exacerbating the progress of cerebral amyloid
angiopathy (CAA)-AD. Through the generation of toxic metabolites from SSAO activity (ammonia, methylgioxal, formalde-
hyde, and H2O2), SSAO/VAP-1 induces the vascular degeneration on both endothelial and smooth muscle cells through
several mechanisms: (i) oxidative stress, (ii) induction of apoptosis through the mitochondrial pathway, (iii) induction of the
expression of pro-inflammatory molecules (selectins, VCAM, ICAM . . . ), (iv) induction of protein and lipid crosslinking,
and (v) increase in Aβ aggregation. The resulting vascular degeneration, together with the protein and lipid crosslinkage
and the Aβ aggregation contribute to the vascular degeneration and the CAA pathology, and these generate a positive
feedback loop reinforcing SSAO/VAP-1 overexpression. Aβ aggregation itself also contributes to the SSAO/VAP-1 increase.

From this background, elucidating whether vascular SSAO/VAP-1 modulation is a
consequence, or a cause of specific pathologic processes seems a question that needs to
be solved. However, the study of this enzyme is difficult since the primary culture of
SSAO/VAP-1-positive cells gradually loses its expression, and immortalized cell lines do
not display activity or expression of SSAO [34,48]. In this concern, newly developed vascu-
lar cell lines stably expressing the human SSAO/VAP-1 have been established [219–221].
The transfected protein is essentially expressed as a dimer in the vascular cells membrane,
and specifically, localize in the lipid rafts of these cells. The protein levels and enzymatic
activity, and kinetic parameters of the enzyme in these cells are similar to those detected
in vivo by the same cell types. These new SSAO/VAP-1-expressing endothelial cell lines
(HUVEC, human umbilical vein endothelial cells, and hCMEC/D3, human cerebral mi-
crovascular endothelial cells) are also able to mediate leukocyte adhesion, a known function
of SSAO/VAP-1 in endothelium under inflammatory conditions that are not observed in
smooth muscle cells [222]. Thus, these new cell lines constitute suitable experimental tools
for studying new functions of SSAO/VAP-1, as well as to elucidate its role in pathological
processes or to evaluate potential molecules that could modify its activity for therapeutic
purposes [222].

To reveal the nature of the SSAO/VAP-1 relationship with the AD pathology, cell lines
stably expressing human SSAO/VAP-1 were treated with different Aβ forms to simulate
the CAA conditions in vitro [220]. The vasculotropic Dutch-mutated Aβ1-40 (Aβ1-40D)
peptide, which accumulates in vessels of the Dutch-type hereditary CAA brain, was used
to reproduce the pathology in vitro. It was found that the treatment with Aβ1-40D in-
creased the vascular SSAO/VAP-1-dependent toxicity, which was correlated by a rise of
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SSAO/VAP-1 protein in the membrane of endothelial cells. Moreover, SSAO/VAP-1 en-
hanced the deposition of Aβ on vascular cells by both activity-dependent and -independent
mechanisms. Taken together, these data suggest that Aβ itself can be one of the elements
stimulating the SSAO/VAP-1 elevation in AD, augmenting its toxic action, and inducing
the vascular dysfunction and, in turn, that SSAO/VAP-1 can stimulate Aβ deposition on
the vascular walls, thereby contributing to the CAA-AD progression.

As previously mentioned, the function and structure of both NVU and BBB are
abundantly compromised in several neurological diseases, such as stroke and [223]. In
this context, it is necessary to study the neurovascular crosstalk and alterations to better
comprehend the molecular base of AD [123]. Therefore, a new in vitro model of NVU was
used to assess the possible contribution of vascular SSAO/VAP-1 overexpression to the BBB
dysfunction through its role on endothelial activation, the modification of angioneurins
release and the alteration of the NVU communication [224]. As human umbilical venous
endothelial cells, HUVECs are different from those present in the endothelium of the BBB.
To better mimic the NVU model, the cell line hCMEC/D3 [225] was stably transfected with
hSSAO/VAP-1 [221]. With this model, it was interesting to decipher the role of SSAO/VAP-
1 in endothelial activation, the angioneurins release, the BBB permeability, the BBB function
alteration, and the Aβ deposition. Using the hSSAO/VAP-1-expressing hCMEC/D3 cells,
co-cultured with mixed mouse neuron-glia primary cultures as an experimental model of
NVU, it was observed that SSAO/VAP-1 induced the endothelial activation by modifying
the release of proinflammatory and pro-angiogenic angioneurins IL-6, IL-8, and VEGF.
In parallel, the alteration of the BBB structure was also exhibited a decreased level of
tight-junction proteins, such as zona ocludens-1 and claudin-5. The activation of signaling
pathways by the products of SSAO catalytic activity or the structural modifications induced
by only the presence of this enzyme could be the molecular mechanisms responsible for
regulating these phenotypic changes. An increasing permeability and leukocyte adhesion,
as well as an augmentation of Aβ deposition, were also observed by both enzymatic
activity-dependent and independent mechanisms [224]. These results revealed that the
expression of SSAO/VAP-1 in human brain microvessels induces an endothelial activation
status towards a proinflammatory phenotype, accompanied by BBB leakage and leukocyte
adhesion. In addition, the proinflammatory molecules released by the enzymatic activity-
independent mechanisms could affect the surrounding microenvironment, the neighboring
cells, and thus the NVU. Furthermore, the SSAO activity in enhancing leukocyte adhesion
and Aβ deposition on endothelial cells suggests SSAO/VAP-1 inhibition, a promising
strategy to bring beneficial effects for the treatment of AD [224].

4. Can SSAO/VAP-1 Be a Link between Stroke and AD?
4.1. Stroke and the Risk for AD

Mounting evidence suggests that disorders affecting the vascular system, as can be
cerebrovascular diseases, including stroke, play a significant part in the development and
progress of neurological diseases like AD in the elderly [123,139,226,227]. The existence
of a strong link between vascular damage and AD is evidenced by a high percentage of
patients who have suffered strokes and subsequently develop AD [228,229]. In this regard,
several reports revealed that brain stroke/ischemia significantly rises the occurrence of
AD [226,230,231]. This risk is even more elevated in cases where other vascular risk factors,
for example, atherosclerosis, coexist with stroke [226]. Several mechanisms may contribute
to this fate, as recently reviewed by Goulay et al. [227].

Both hypoxia and ischemic injury induce upregulation of Aβ generation, confirming
the link between stroke and AD [228,229]. Evidence also indicates that increased APP
accumulation is present at areas of ischemic brain damage in models of middle cerebral
artery occlusion (MCAO) or focal cerebral ischemia. Thus, the APP cleavage may be
induced under ischemic conditions [230–237]. Moreover, hypoxia induces the increase
of BACE-1 expression and activity to increase the Aβ generation. Prolonged hypoxia
can also induce mitochondrial dysfunction, neuronal loss, and potential memory deficits,
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facilitating the pathogenesis of AD [238,239]. Mechanistic studies reveal that both oxidative
stress and HIF-1 are accountable for the elevated expression of beta-secretase 1 (BACE-1)
at distinct phases after cerebral ischemia [240].

Besides increasing Aβ generation, ischemic conditions can alter the Aβ clearance
by inducing downregulation of the levels of NEP and ECE-1 in the brain, enzymes that
are responsible for the degradation of Aβ [241,242]. In addition, several mechanisms
can harm the BBB after hypoxia/ischemia insults, including altering the expression of
major Aβ clearance enzyme LRP-1 to impair the clearance of Aβ from the brain [243].
Moreover, the expression of RAGE, another important protein in the BBB that transports
Aβ across BBB to the brain, is upregulated in the brains of mice undergone an experimental
stroke or systematic hypoxia, thus diminishing the Aβ clearance from the brain [244].
On the other hand, it has been described that transient hypoxia damage can increase the
hyperphosphorylation of tau in cortical neurons [245,246].

Ischemic or hemorrhagic stroke frequently involves the breakdown of the BBB, and as
a consequence, soluble plasmatic proteins reach brain parenchyma, triggering inflammation
and subsequent neurodegeneration [247,248]. In addition, the excessive release of free
radicals and oxidative environment generated as a result of stroke injury are well-known
contributors to the development and progression of AD [249,250].

Among the common features between stroke and AD, restricted brain perfusion,
cerebrovasculature dysfunction, and inflammation are the most significant ones, which
finally lead to neuronal injury and cognitive impairment [251]. All these data allow us to
conclude that it exists a robust association between AD and cerebrovascular disease, and the
injury effects of stroke, through numerous pathways, could facilitate neurodegeneration,
worsen dementia, and the outcome of AD.

4.2. AD and the Risk for Stroke

Cerebral hypoperfusion, atherosclerosis, oxidative stress, and vascular Aβ deposition
around the cerebral vascular wall as CAA are alterations found in AD that can lead to an
acute cerebrovascular functional failure by way of brain ischemia or hemorrhage [240].
CAA directly compromises cerebrovascular function, causing not only cerebral hypoperfu-
sion, and therefore, chronic ischemia but also BBB disruption and micro-bleeds [252,253].
In fact, CAA is associated with hemorrhagic stroke [254], and symptomatic patients with
CAA often present with lobar intraparenchymal hemorrhages [255].

At the molecular level, Aβ presence decreases the expression of tight junction pro-
teins in experimental models and in human samples, which is associated with BBB
leakage [256,257]. Under these conditions, MMP-2 and MMP-9 are upregulated and de-
grade the cerebral basement membrane and lead to cerebral hemorrhage [258].

Inflammation acts as another important contributor to neurovascular dysfunction since
the main source of vascular reactive oxygen species contributing to the Aβ-associated cere-
bral blood flow disturbances are perivascular macrophages reacting to vascular Aβ [259].
Vascular Aβ deposits promote the migration of monocytes across BBB [260], which gener-
ate oxidative stress and proinflammatory cytokines [261]. Clusters of activated microglia
are also present around vascular Aβ deposits [262]. These cells create an inflammatory
response to release proinflammatory cytokines and oxidative stress mediators that induce
the loss of BBB integrity by the disruption of tight junctions [263]. In addition, Aβ deposi-
tion on vascular walls activates cell signaling pathways in endothelial and smooth muscle
vascular cells that contribute to the BBB disruption, as apoptotic cell death pathways,
generation of free radicals, and disruption of intracellular Ca2+ homeostasis [264]. These
vascular cells are also able to release proinflammatory cytokines that are upregulated in
AD, contribute to the CAA progression and the subsequent development of hemorrhages.
The specific mechanism of this vascular cells-mediated inflammatory response is not clearly
defined, but it is thought to contribute to the BBB breakdown [265].
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4.3. SSAO/VAP-1 As a Possible Link between Stroke and AD

SSAO/VAP-1, which is present in the cerebrovasculature, and particularly in the
endothelial and smooth muscle cells, is a common factor involved in the pathogenesis of
stroke and AD, but may also be a possible link between both diseases, mediating the onset
of one of them in patients affected by the other.

On one hand, evidence has exposed that SSAO/VAP-1 is abnormally elevated in the
cerebrovascular tissue, colocalizing with Aβ deposits in AD patients [96,206,214]. There,
SSAO/VAP-1 is able to promote aggregation of Aβ, vascular cell injury through its enzy-
matic activity, and lead to the BBB dysfunction [211,215,222,228]. In addition, in smooth
muscle cells from brain meninges, excessive SSAO/VAP-1 activity would contribute to the
Aβ aggregation and extracellular matrix cross-linkage, inducing the rigidity of the vessel
and the final breakdown generating hemorrhage. The increased SSAO/VAP-1 present
in blood plasma has already been associated with vessel wall breaking, for instance, in
ischemic stroke patients undergoing HT [92]. Given these considerations, it is reasonable
to deduce that under AD conditions, the alterations induced by SSAO/VAP-1 could eas-
ily drive to a vascular wall weakening and, therefore, to an increased risk of suffering a
subsequent hemorrhagic stroke in the presence of AD.

On the other hand, SSAO/VAP-1 participates in the inflammatory response in multiple
models of stroke [67,92,195], mediating leukocyte-endothelium adhesion and upregulating
other CAMs [63,199,266,267], augmenting the leukocyte adhesion cascade, and producing
toxic and pro-aggregating products, such as H2O2 and formaldehyde [62]. These prod-
ucts are directly involved in the oxidative stress and Aβ aggregation responsible for AD
pathology. Thus, the SSAO/VAP-1 alterations produced during a stroke may contribute to
generating the conditions necessary for the AD onset in stroke patients: a high pro-oxidant,
pro-aggregating and inflammatory environment. The increased plasma SSAO/VAP-1 pres-
ence described in post-stroke dementia patients [98] reinforces this hypothesis. Although
more research should be done to establish the SSAO/VAP-1 alterations as a causative link
between stroke and AD, the evidence existing so far suggests that SSAO/VAP-1 could
participate in the transition from stroke to AD or from AD to stroke.

5. Therapeutic Approach to Stroke and AD by SSAO/VAP-1 Inhibition

The vast bibliography on the association of SSAO/VAP-1 with DM, atherosclerosis,
AD, or stroke has suggested this enzyme as an important therapeutic target for these
diseases [195]. Moreover, there is a wide consensus in describing AD pathogenesis as a
multifaceted neurological disorder, which development and evolution may be prompted by
several mechanisms embracing cholinergic dysfunction, oxidative stress and free radicals
formation, disproportionate protein misfolding and aggregation, biometal dyshomeostasis,
excitotoxicity, and neuroinflammation, in addition to disturbances in the monoaminergic
and glutamatergic systems. Furthermore, the increase of BACE-1 induced by both hypoxia
and ischemic damage enhances the Aβ generation, confirming the link between AD and
stroke [228,240].

Because modifications of the levels of plasmatic SSAO/VAP-1 humans have been asso-
ciated with several pathological conditions such as ischemic stroke and AD [92,95,96,193],
it would be interesting to design new molecules able to inhibit SSAO/VAP-1 and to interact
with other molecular systems involved in AD and stroke, as a novel therapeutic option.

Drugs currently approved by the US Food and Drug Administration (FDA) drugs
for the treatment of AD-associated cognitive deficits are grounded on the cholinergic
hypothesis of AD with limited therapeutic interest [268,269]. Given the limited effectivity
of anticholinergic therapies as well as the multifactorial and extreme complexity of AD
nature, several researchers have suggested a new idea, based on “one molecule, multiple
targets,” also known as the multi-target directed-ligand (MTDL) approach, which proposes
the beneficial use of molecules with numerous pharmacological profiles that would allow
them to interact with diverse molecular targets [266,270–273].



Int. J. Mol. Sci. 2021, 22, 3365 17 of 30

Regarding the new series of MTDL molecules designed to be used in AD therapy,
it was interesting to analyze their effect on cerebral ischemia as well. A novel series of
molecules grown on the hybridization of selected moieties from donepezil, propargylamine,
and 8-hydroxyquinoline (DPH), were synthesized and pharmacologically assessed for the
prevention of AD [267]. Among them, the DPH4 (Figure 2) resulted in being a good MAO-
A, MAO-B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) inhibitor, and
besides, DPH4 displayed robust biometal chelating properties against Cu2+ and Fe2+,
good absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties
confirming its interesting properties to be used in AD therapy. In this context, the possible
protective effect of DPH4 in cerebral ischemia was studied, as well.
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Using an experimental model of ischemic stroke, the cell viability of the human
cerebral microvascular endothelial cells stably expressing the hSSAO/VAP-1 was assessed
after OGD and reoxygenation in the presence of DPH4. Under these hypoxic conditions, a
release of soluble SSAO/VAP-1 was observed, contributing to the vascular cell damage
through its catalytic action. DPH4 pretreatment mediated a dose-dependent protective
effect on hSSAO/VAP-1-expressing hCMEC/D3 cells in the presence of methylamine in
both normoxic and OGD with reoxygenation conditions. The beneficial action of DPH4
was significant on inflammation also, as DPH4 significantly diminished the adhesion of
leukocytes to the endothelium in the presence of methylamine, as a consequence of its
inhibitory action on SSAO activity. To simulate a pre-existing AD pathology, Aβ1-40D
treatment was introduced into this experimental model of ischemia. DPH4 showed a
protective effect against the synergistic damaging effect induced by methylamine and
Aβ1-40D. These results not only confirmed the important role that SSAO/VAP-1 plays in
enhancing endothelial cell death under ischemia but also suggest that DPH4, a new MTDL
molecule containing donepezil, propargylamine, and 8-hydroxyquinoline, is able to protect
brain endothelial cells under hypoxia through its inhibitory and anti-inflammatory activity
on SSAO/VAP-1, and may be used for AD therapy [221].

Moreover, a new series of molecules, such as indole substituted hydrazides and
hydrazines, were synthesized as potential MAO inhibitors in vitro [274,275], and have been
analyzed of their multipotent inhibitory potency towards MAOs A and B, SSAO/VAP-1,
AChE and BuChE. Among them, the hydrazine JL72 (3-(3-hydrazinylpropyl)-1H-indole)
exhibited a potent, reversible inhibitory activity on MAO-A, which suggests its ability
to restore serotoninergic neurotransmission. Moreover, it behaved as a moderate BuChE
inhibitor and as a high-affinity inhibitor towards SSAO/VAP-1. The molecule JL-72 also
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showed significant anti-inflammatory activity in HUVEC hSSAO/VAP-1-expressing cells
by measuring leukocyte adhesion on the endothelium. Taken together these results, JL-72
resulted in being a good candidate lead compound for the subsequent development of
drugs targeting cerebrovascular and neurological diseases, such as stroke and AD [21].

The neuroprotective effect of statins has been widely reported in the therapy of
neurodegenerative diseases such as Parkinson’s disease, AD, and vascular dementia [276].
Regarding their beneficial effects observed in stroke, these effects have been described to
be independent of their role in cholesterol reduction [277]. Two different animal models
of stroke (embolic MCAO through the injection of a clot, eMCAO; and transient MCAO
by introducing an intraluminal filament, tMCAO [278], and an in vitro model of stroke
using human brain microvascular endothelial cells expressing SSAO/VAP-1 under OGD,
were used to assess the possible involvement of SSAO/VAP-1 in the protective effect of
simvastatin. In the animal model, the soluble SSAO/VAP-1 is released into the bloodstream
after an ischemic stimulus, correlating with an increase in E-selectin, VCAM-1, and with
the infarct volume. Simvastatin blocked soluble SSAO/VAP-1 release and prevented E-
selectin and VCAM-1 overexpression, and also effectively blocked SSAO/VAP-1-mediated
leukocyte adhesion. The attenuation of SSAO/VAP-1 release could be responsible for the
beneficial effects of simvastatin observed in protecting against the proinflammatory effects
of ischemia in these animal models. Similar results were also observed in cultured cell lines
and, therefore, highlight the importance of the attenuation of SSAO/VAP-1-dependent
inflammatory response in the process [198].

6. Conclusions

All these data allow us to conclude that a robust connection between cerebrovascular
diseases and AD exists, and the adverse effects of the stroke condition, through multiple
pathways, could enable the progression to neurodegeneration and the outcome of AD. On
the other hand, AD could also facilitate the appearance of stroke and aggravate the outcome
following strokes. Most interestingly, based on the data discussed above, SSAO/VAP-1
could be a common link between both pathologies. In this context, the design of new MTDL
molecules being able to inhibit SSAO/VAP-1 activity and interact with the cholinergic and
monoaminergic system could be a promising therapeutic approach for the treatment of
both stroke and AD.
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Aβ Amyloid-β
AChE Acetylcholinesterase
AD Alzheimer’s disease
ADD AD with diabetes mellitus
ADMET Absorption, distribution, metabolism, excretion, and toxicity
AGEs Advanced glycation end products
AOs Amine oxidases
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apoE Apolipoprotein E
APP Amyloid precursor protein
BACE-1 Beta-secretase 1
BBB Blood–brain barrier
BuChE Butyrylcholinesterase
CAA Cerebral amyloid angiopathy
CAMs Cell adhesion molecules
CNS Central nervous system
DAO Diamine oxidase
DM Diabetes mellitus
DMBA 7,12-dimethylbenz(alpha)anthracene
EAE Experimental autoimmune encephalomyelitis
ECE Endothelin-converting enzyme
eMCAO Embolic MCAO
FAD Flavin adenine dinucleotide
FDA Food and Drug Administration
GLUT Glucose transporters
H2O2 Hydrogen peroxide
HCHWA Hereditary cerebral hemorrhage with amyloidosis
hCMEC/D3 Human cerebral microvascular endothelial cells
HEVs High endothelial venules
HIF-1 Hypoxia-inducible factor 1
HT Hemorrhagic transformation
HUVEC Human umbilical vein endothelial cells
ICAM-1 Intracellular adhesion molecule 1
ICH Intracerebral hemorrhage
IDE Insulin-degrading enzyme
IL-1β Interleukin 1 beta
IL-6 Interleukin 6
IFN- γ Interferon- γ
IRF1 Interferon regulatory factor 1
JL-72 3-(3-hydrazinylpropyl)-1H-indole
JNK c-Jun amino-terminal kinase
LOX Lysyl oxidase
LPS Lipopolysaccharide
LRP-1 Lipoprotein receptor protein-1
LTQ Lysine tyrosyl quinone
MAO Monoamine oxidase
MAPK Mitogen-activated protein kinase
MCAO Middle cerebral artery occlusion
MCI Mild cognitive impairment
MMPs Matrix metalloproteinases
MMSE Mini-mental state examination
MS Multiple sclerosis
MTDL Multi-target directed-ligand
NEP Neprilysin
NO Nitric oxide
NOS Nitric oxide synthase
NVU Neurovascular unit
O2

- Superoxide
OGD Oxygen–glucose deprivation
OH· Hydroxyl radical
PAO Polyamine oxidase
PLN Peripheral lymph node
PNAd Peripheral lymph addressin
PrAO Primary amine oxidase
PSEN Presenilin
RAGE Receptor for advanced glycation end products
ROS Reactive free radicals
SAH Subarachnoid hemorrhage
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SAMP8 Senescence accelerated mouse-prone 8
SSAO Semicarbazide-sensitive amine oxidase
STAT3 Signal transducer and activator of transcription 3
tMCAO Transient MCAO
TNF-α Tumor necrosis factor α
tPA Tissue plasminogen activator
TPQ Topa-quinone
VAP-1 Vascular adhesion protein-1
VCAM-1 Vascular cell adhesion protein 1
VEGF Vascular endothelial growth factor
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