Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = semi-circular bending test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7033 KiB  
Article
A Study on the Low-Intensity Cracking Resistance of Drainage Asphalt Mixtures by Graphene/Rubber Powder Compound Modified Asphalt
by Jingcheng Chen, Yongqiang Cheng, Ke Liang, Xiaojian Cao, Yanchao Wang and Qiangru Shen
Materials 2025, 18(15), 3451; https://doi.org/10.3390/ma18153451 - 23 Jul 2025
Viewed by 245
Abstract
In order to investigate the influence of graphene/rubber powder compound modified asphalt on the low-temperature cracking resistance of drainage asphalt mixtures, graphene/rubber powder compound modified asphalt mixtures were prepared using graphene/rubber powder compound modified asphalt for drainage asphalt mixtures, and compared with SBS-modified [...] Read more.
In order to investigate the influence of graphene/rubber powder compound modified asphalt on the low-temperature cracking resistance of drainage asphalt mixtures, graphene/rubber powder compound modified asphalt mixtures were prepared using graphene/rubber powder compound modified asphalt for drainage asphalt mixtures, and compared with SBS-modified asphalt and rubber powder-modified asphalt, and the low-temperature cracking resistance of graphene/rubber powder compound modification asphalt mixtures was investigated through the Marshall Stability Test, Semi-circular Bending Test (SCB), and Freeze–Thaw Split Test. Research was carried out. At the same time, a scanning electric microscope (SEM) was adopted to analyze the micro-mechanism of the graphene/rubber powder compound modified asphalt mixtures under the microscopic condition. The findings showed that graphene dispersed the aggregation of rubber powder effectively in the microscopic state and improved the stability of the composite modified asphalt. The addition of graphene improved the fracture energy of rubber powder composite modified asphalt by 15.68% under the condition of −15 °C to 0 °C, which effectively slowed down the decrease of fracture energy; at −15 °C and −10 °C, the largest stresses were improved by 7.50% and 26.71%, respectively, compared to the drainage asphalt mixtures prepared as rubber powder-modified asphalt and SBS-modified asphalt. After a freeze–thaw cycle, the maximum stress decrease of graphene/rubber powder compound modified asphalt was 21.51% and 10.37% at −15 °C and 0 °C, respectively. When compared to rubber powder-modified asphalt, graphene/rubber powder compound modified asphalt significantly improved the low-intensity cracking resistance of drainage asphalt mixtures at low temperatures, slowed down the decrease of the maximum stress, and its low-temperature cracking resistance was more stable. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 2102 KiB  
Article
Crumb Rubber (CR) and Low-Density Polyethylene (LDPE)-Modified Asphalt Pavement Assessment: A Mechanical, Environmental, and Life Cycle Cost Analysis Study
by Maram Saudy, Minas Guirguis, Ayman Saeed, Abdallah Elshenawy, Farida Elkaramany, Nadeen Dawoud, Mohamed Darwish and Mohamed AbouZeid
Sustainability 2025, 17(13), 5785; https://doi.org/10.3390/su17135785 - 24 Jun 2025
Viewed by 524
Abstract
Due to the growing consumption of plastic and rubber products, effective waste management solutions are crucial. This study evaluates the use of crumb rubber (CR), low-density polyethylene (LDPE), and their combination (CR+LDPE), as asphalt binder modifiers for improving pavement performance and sustainability. The [...] Read more.
Due to the growing consumption of plastic and rubber products, effective waste management solutions are crucial. This study evaluates the use of crumb rubber (CR), low-density polyethylene (LDPE), and their combination (CR+LDPE), as asphalt binder modifiers for improving pavement performance and sustainability. The analyses covered two critical pavement layers: the wearing surface (WS) and the treated base (TB). The methodology included (1) Binder Development and Testing; (2) Superpave Mix Design; (3) mechanical testing, including Indirect Tensile Strength Testing and Semi-Circular Bending Testing; (4) life cycle cost analysis; and (5) carbon footprint analysis. The results revealed that CR+LDPE significantly enhanced the fatigue resistance of the TB mixes, with a fracture energy increase of 47%, and increased the flexibility index by 53% in the WS. CR increased the flexibility index by about 146% in the TB layer, while LDPE increased the fracture energy by 21% in the WS layer. The life cycle cost analysis demonstrated that using LDPE, CR, and CR+LDPE reduced the life cycle costs by about 16% in the WS layer. Meanwhile, the life cycle carbon footprint analysis showed that using LDPE and CR+LDPE reduced the carbon footprint by about 87% and 81% for the TB and WS layers, respectively. The study findings highlight the mechanical, economic, and environmental benefits of incorporating wastes into asphalt pavements. Full article
(This article belongs to the Special Issue Sustainable Development of Asphalt Materials and Pavement Engineering)
Show Figures

Figure 1

18 pages, 2814 KiB  
Article
Evaluation of Crack Resistance Performance of Semi-Flexible Pavement Materials
by Songqiang Chen, Jianfei Zheng, Xi Wu and Lufan Li
Materials 2025, 18(12), 2796; https://doi.org/10.3390/ma18122796 - 13 Jun 2025
Viewed by 420
Abstract
Semi-flexible pavement (SFP) materials have garnered extensive application and research attention owing to their exceptional deformation resistance. The crack resistance of SFP materials constitutes a critical aspect of their road performance. This study conducts a comprehensive analysis of the crack resistance of SFP [...] Read more.
Semi-flexible pavement (SFP) materials have garnered extensive application and research attention owing to their exceptional deformation resistance. The crack resistance of SFP materials constitutes a critical aspect of their road performance. This study conducts a comprehensive analysis of the crack resistance of SFP materials through material characterization and structural mechanical response evaluation. To assess the cracking behavior of SFP materials across the entire temperature spectrum, three experimental methodologies were employed: low-temperature flexural tensile testing, indirect tensile testing, and semi-circular bending tensile testing. Experimental findings reveal that SFP materials exhibit superior crack resistance compared to SMA-13 under ambient and elevated temperature conditions, while demonstrating inferior performance relative to SMA-13 in low-temperature environments. Through a comparative analysis of structural mechanical responses between SMA-13 and SFP pavements, it was determined that the implementation of a single-layer SFP material can reduce pavement tensile strain by 30–50%. This investigation provides comprehensive insights into the crack resistance characteristics of SFP materials and offers valuable guidance for material selection in pavement structural design. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 6189 KiB  
Article
Research on Crack Resistance of Foamed Rubber Asphalt Cold Recycled Mixtures Based on Semi-Circular Bending Test
by Zhen Shen, Shikun Wang, Zhe Hu and Xiaokang Zhao
Materials 2025, 18(12), 2684; https://doi.org/10.3390/ma18122684 - 6 Jun 2025
Viewed by 458
Abstract
Foamed asphalt cold recycled mixtures can provide an effective approach for the reutilization of reclaimed asphalt pavement (RAP), but conventional asphalt foaming technology primarily exploits matrix asphalt as the raw material. To address this issue, this study explores rubberized asphalt with cold recycling [...] Read more.
Foamed asphalt cold recycled mixtures can provide an effective approach for the reutilization of reclaimed asphalt pavement (RAP), but conventional asphalt foaming technology primarily exploits matrix asphalt as the raw material. To address this issue, this study explores rubberized asphalt with cold recycling technology to develop a foamed rubber asphalt cold recycled mixture (FRCM). The semi-circular bending (SCB) test was employed to investigate its cracking resistance. Load–crack mouth opening displacement (CMOD)–time curves under various temperatures were analyzed, and digital image technique was resorted to monitor crack propagation and growth rates. Fracture toughness, fracture energy, and flexibility index were compared with those of traditional foamed matrix asphalt cold recycled mixture (FMCM). The results show that, under the same test temperature, the FRCM exhibits slower crack propagation; larger peak load; and higher fracture toughness, fracture energy, and flexibility index in comparison with the FMCM. These improvements are more pronounced at low temperatures. For both mixtures, fracture toughness and fracture energy are decreased with increasing the temperature, while the flexibility index shows the opposite trend. The rigid zone accounts for a larger portion of fracture energy at low temperatures. The findings provide technical references for improving the cracking resistance of cold recycled asphalt layers using rubberized asphalt. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

17 pages, 3009 KiB  
Article
Toughening Effect of Micro-Cracks on Low-Temperature Crack Propagation in Asphalt Concrete
by Jianhuan Du, Xianxing Dai, Qingyang Liu and Zhu Fu
Materials 2025, 18(11), 2429; https://doi.org/10.3390/ma18112429 - 22 May 2025
Viewed by 372
Abstract
Asphalt concrete has a unique low-temperature fracture mechanism due to the complex interaction between macro- and micro-cracks. This study investigated the toughening effect of micro-cracks on the crack propagation behavior of asphalt concrete at low temperatures. The Taylor model was applied to establish [...] Read more.
Asphalt concrete has a unique low-temperature fracture mechanism due to the complex interaction between macro- and micro-cracks. This study investigated the toughening effect of micro-cracks on the crack propagation behavior of asphalt concrete at low temperatures. The Taylor model was applied to establish a modulus damage model of asphalt concrete. In combination with the discrete element method (DEM), a 2D microstructure damage model of asphalt concrete with heterogeneity (aggregate, mortar, and voids) and multi-level (aggregate gradation) characteristics was constructed. A virtual semi-circular bending (SCB) test was performed to reveal the toughening effect of the micro-cracks in terms of macroscopic and microscopic parameters, such as the modulus damage variable, dynamic parameters associated with the main crack propagation, and stress field distribution, laying a foundation for predicting the propagation behavior and path of macroscopic cracks in asphalt concrete. The results showed that (1) the proposed modulus damage model based on the Taylor model produced results that were in good agreement with the numerical simulation (virtual SCB test) results. With an increase in the micro-crack density, the influence of the main cracks on the modulus damage of asphalt concrete gradually reduced, indicating that the micro-cracks exhibited a toughening effect on the main crack propagation; (2) At the meso-scale, the toughening effect of the micro-cracks extended the duration of the crack propagation stage and macro-crack formation stage; that is, the toughening effect of the micro-cracks had a shielding effect on the main crack propagation; (3) The toughening effect could inhibit the shear stress field, contributing to preventing the deterioration in the modulus of asphalt concrete. Full article
(This article belongs to the Special Issue Novel Materials in Highway Engineering)
Show Figures

Figure 1

23 pages, 10421 KiB  
Article
Multi-Scale Modeling and Damage Mechanisms of Asphalt Pavements Under Coupled Salt–Thermal–Mechanical Effects
by Jin Ma, Jiaqi Chen, Mingfeng Tang and Yu Liu
Materials 2025, 18(10), 2337; https://doi.org/10.3390/ma18102337 - 17 May 2025
Cited by 1 | Viewed by 557
Abstract
Salts can have detrimental effects on asphalt pavements, leading to permanent damage that compromises their durability and sustainability. This study investigates the damage mechanisms of asphalt pavements under coupled salt–thermal–mechanical effects using multi-scale modeling. Pull-off and semicircular bending (SCB) tests were conducted to [...] Read more.
Salts can have detrimental effects on asphalt pavements, leading to permanent damage that compromises their durability and sustainability. This study investigates the damage mechanisms of asphalt pavements under coupled salt–thermal–mechanical effects using multi-scale modeling. Pull-off and semicircular bending (SCB) tests were conducted to determine material parameters and validate numerical models. Experimental data demonstrated that after 48 h of salt treatment at −10 °C, specimens exhibited reductions in cohesive strength ranging from 23.5% to 26% and adhesive strength decreasing by 25% to 44% compared to untreated controls. More severe degradation was observed at 0 °C, with cohesive strength diminishing by up to 63.8% and adhesive strength declining by up to 71.6%. A multi-scale finite element (FE) pavement model incorporating cohesive zone modeling (CZM) was developed to simulate damage behavior within asphalt concrete. Salt diffusion analysis revealed limited penetration depth within short exposure periods, and results showed that salt penetration reached only about 10 mm into the pavement layers after 48 h. Results indicated significant reductions in adhesive and cohesive strengths due to salt exposure, with damage susceptibility increasing under combined thermal fluctuations and mechanical loading. Additionally, the effects of moving load magnitude and speed on pavement damage were examined, showing higher damage accumulation at lower speeds and heavier loads. This research provides insights into pavement deterioration mechanisms, contributing to improved durability and maintenance strategies for asphalt pavements in salt environments. Full article
Show Figures

Figure 1

22 pages, 5134 KiB  
Article
A Study on the Fracture Properties of Cement Asphalt Emulsion Mixture Based on the SCB Test
by Yunliang Li, Qichen Wang, Xu Li, Yue Zhao, Wenyang Yu, Baocheng Liu and Yiqiu Tan
Materials 2025, 18(9), 1967; https://doi.org/10.3390/ma18091967 - 25 Apr 2025
Viewed by 434
Abstract
Cement asphalt emulsion mixture (CAEM) is a composite material composed of asphalt emulsion, cement, and graded aggregates. Currently, CAEM is primarily applied as a base course material for highways to improve the cracking resistance of pavement structures. To achieve this goal, the fracture [...] Read more.
Cement asphalt emulsion mixture (CAEM) is a composite material composed of asphalt emulsion, cement, and graded aggregates. Currently, CAEM is primarily applied as a base course material for highways to improve the cracking resistance of pavement structures. To achieve this goal, the fracture performance of CAEM plays a crucial role. Experimental studies have demonstrated that the fracture behavior of CAEM exhibits a significant correlation with the amount of asphalt emulsion and binder used. The influence of asphalt emulsion and binder content on the fracture parameters of CAEM was investigated through semi-circular bending (SCB) tests, combined with analyses of peak load and fracture energy. Furthermore, the influences of temperature, loading rate, and notch depth on fracture performance were evaluated. The microstructure of the cured binder was characterized by scanning electron microscopy (SEM), while the deformation behavior of CAEM was assessed through creep tests. The experimental results indicate that, to ensure satisfactory fracture resistance in CAEM, the optimal content of asphalt emulsion should be controlled within the range of 2.0~3.0%, with a corresponding binder content of 6.0%. This study provides theoretical and practical guidance for the material design optimization of CAEM, with a specific focus on enhancing fracture resistance performance. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 5403 KiB  
Article
Research on the Anisotropic Fracture Mechanical Properties of Shale Based on Three-Point Bending Experiments of Semi-Circular Disks
by Xinyue Wang, Lianke Cui, Lianzhi Yang and Fanmin He
Materials 2025, 18(7), 1570; https://doi.org/10.3390/ma18071570 - 30 Mar 2025
Viewed by 485
Abstract
The three-point bending test is a key method for determining parameters related to the mechanical fracture properties of rocks. In this study, shale outcrops from Changning County, Sichuan Province, China, were selected. Three-point bending experiments were performed on shale semi-circular disks with a [...] Read more.
The three-point bending test is a key method for determining parameters related to the mechanical fracture properties of rocks. In this study, shale outcrops from Changning County, Sichuan Province, China, were selected. Three-point bending experiments were performed on shale semi-circular disks with a central straight crack, tested both perpendicular and parallel to the bedding direction. The corresponding load–displacement curves and crack opening displacements were obtained. The opening displacements of the specimens were measured through digital image technology, and the tensile strength and stiffness of the specimens were further calculated. A finite element model of the three-point bending test was developed. By integrating the finite element model with the experimentally obtained load–displacement curves, the anisotropic elastic moduli of the shale were inversely determined. Fracture toughness was calculated using two approaches: a formula from the International Society for Rock Mechanics and numerical methods using the finite element model, which was appropriately configured with the previously obtained elastic modulus values. The stress intensity factors for each specimen were calculated and compared. The energy release rate of shale was computed based on the fracture toughness. Results showed that both the fracture toughness and energy release rate of shale were greater in the perpendicular bedding direction than in the parallel direction. As an example, one specimen’s elastic modulus, opening displacement, and energy release rate obtained from experiments were input into the numerical simulation of the three-point bending test. The simulated load–displacement curve matched the experimental results well. This study provides a comprehensive approach to evaluating the anisotropic mechanical fracture properties of shale formations, which is essential for improving the accuracy of hydraulic fracture prediction models and enhancing the efficiency of shale gas extraction. Full article
Show Figures

Figure 1

26 pages, 13416 KiB  
Article
An Evaluation of the Fracture Properties of Asphalt Concrete Mixes Using the Semi-Circular Bending Method and Digital Image Correlation
by Piotr Zieliński, Marek Klimczak, Marcin Tekieli and Mateusz Strzępek
Materials 2025, 18(5), 967; https://doi.org/10.3390/ma18050967 - 21 Feb 2025
Cited by 2 | Viewed by 452
Abstract
The semi-circular bending method (SCB) is a useful test for evaluating the cracking resistance of asphalt mixtures with added reclaimed asphalt shingles. A mixture of the asphalt concrete AC 16 with 50/70 paving bitumen was used for the binder course test as a [...] Read more.
The semi-circular bending method (SCB) is a useful test for evaluating the cracking resistance of asphalt mixtures with added reclaimed asphalt shingles. A mixture of the asphalt concrete AC 16 with 50/70 paving bitumen was used for the binder course test as a reference mix. The purpose of the paper is to evaluate two aging conditions (short-term and long-term) of the above-mentioned asphalt mixtures in relation to their fracture properties. Laboratory experiments are enhanced with the application of image processing techniques (digital image correlation and image segmentation) that account for the asphalt mixture heterogeneity. Consequently, they can provide a more detailed description of the specimen performance. Statistical analyses of the laboratory results indicate that the best sensitivity in terms of differentiating the tested mixtures, especially taking into account the aging conditions of the mixtures, was observed for the post-peak parameters such as the flexibility index (FI), toughness index (TI), and, above all, cracking resistance index (CRI), for which the average coefficient of the result variability is approximately 10%, while for the FI and TI parameters it is approximately 30%. Digital image correlation analyses provided a confirmative illustration of the aforementioned observation. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

11 pages, 2391 KiB  
Article
Impacts of Milled Aggregate Gradations and Foamed Asphalt Contents of Cold In-Place Recycling Layer on the Performance of Asphalt Overlays
by Hosin Lee, Byungkyu Moon, Ashley Buss and Charles T. Jahren
Infrastructures 2025, 10(2), 40; https://doi.org/10.3390/infrastructures10020040 - 13 Feb 2025
Viewed by 858
Abstract
This paper presents gradations of both Hot In-place Recycling (HIR) and Cold In-place Recycling (CIR) and analysis of cores collected from CIR/Hot Mix Asphalt (HMA) overlay sections in Iowa. Milling samples were obtained from an HIR recycling project on IA 22 in Wellman, [...] Read more.
This paper presents gradations of both Hot In-place Recycling (HIR) and Cold In-place Recycling (CIR) and analysis of cores collected from CIR/Hot Mix Asphalt (HMA) overlay sections in Iowa. Milling samples were obtained from an HIR recycling project on IA 22 in Wellman, Iowa. It was concluded that the average gradation of HIR millings was coarser than that of CIR millings by retaining the original aggregate gradations. Cores were then extracted from CIR pavement with foamed asphalt overlaid by HMA at the right wheel path and between wheel paths at eight locations on US 34 in Mills and Wapello Counties. The cores were cut into discs to isolate the pavement layers, and the discs were fabricated into semicircular bending test specimens. Based on the Semicircular Bending (SCB) tests performed on both CIR and HMA specimens, CIR specimens with higher asphalt binder contents exhibited higher flexibility index values. Since CIR pavement layers were found to be more flexible than the HMA overlay layers, it can be speculated that CIR layers may serve as a stress-relieving layer and mitigate reflective cracking. Full article
Show Figures

Figure 1

11 pages, 2266 KiB  
Article
Multiplanar Semicircular New-Generation Implant System Developed for Proximal Femur Periprosthetic Fractures: A Biomechanical Study
by Ahmet Burak Satılmış, Ahmet Ülker, Zafer Uzunay, Tolgahan Cengiz, Abdurrahim Temiz, Mustafa Yaşar, Tansel Mutlu and Uygar Daşar
Medicina 2025, 61(1), 110; https://doi.org/10.3390/medicina61010110 - 14 Jan 2025
Viewed by 1321
Abstract
Background and Objectives: The study aimed to evaluate a newly designed semicircular implant for the fixation of Vancouver Type B1 periprosthetic femoral fractures (PFFs) in total hip arthroplasty (THA) patients. To determine its strength and clinical applicability, the new implant was compared [...] Read more.
Background and Objectives: The study aimed to evaluate a newly designed semicircular implant for the fixation of Vancouver Type B1 periprosthetic femoral fractures (PFFs) in total hip arthroplasty (THA) patients. To determine its strength and clinical applicability, the new implant was compared biomechanically with conventional fixation methods, such as lateral locking plate fixation and a plate combined with cerclage wires. Materials and Methods: Fifteen synthetic femur models were used in this biomechanical study. A Vancouver Type B1 periprosthetic fracture was simulated by osteotomy 5 mm distal to the femoral stem. The models were divided into three groups: Group I (lateral locking plate fixation), Group II (lateral locking plate with cerclage wires), and Group III (new semicircular implant system). All fixation methods were subjected to axial loading, lateral bending, and torsional force testing using an MTS biomechanical testing device. Failure load and displacement were measured to assess stability. Results: The semicircular implant (Group III) demonstrated a significantly higher failure load (778.8 ± 74.089 N) compared to the lateral plate (Group I: 467 ± 68.165 N) and plate with cerclage wires (Group II: 652.4 ± 65.474 N; p < 0.001). The new implant also exhibited superior stability under axial, lateral bending, and torsional forces. The failure load for Group III was more robust, with fractures occurring at the screw level rather than plate or screw detachment. Conclusions: Compared to traditional fixation methods, the newly designed semicircular implant demonstrated superior biomechanical performance in stabilizing Vancouver Type B1 periprosthetic femoral fractures. It withstood higher physiological loads, offered better structural stability, and could be an alternative to existing fixation systems in clinical practice. Further studies, including cadaveric and in vivo trials, are recommended to confirm these results and assess the long-term clinical outcomes. Full article
(This article belongs to the Special Issue New Strategies in the Management of Geriatric Bone Fracture)
Show Figures

Figure 1

19 pages, 7596 KiB  
Article
Influence of Different Fibers on Performance of Bitumen Binders and Thin-Overlay Bitumen Mixtures
by Jianguo Wei, Jing Mao, Yanlong Han, Ping Li, Wenjie Wu and Chengxi Yi
Appl. Sci. 2025, 15(1), 22; https://doi.org/10.3390/app15010022 - 24 Dec 2024
Viewed by 1043
Abstract
Thin-layer covers easily crack under traffic load, shortening their service life. Incorporating fiber materials into the mix can enhance crack resistance thanks to their abundance, affordability, and flexibility. However, different types of fibers have different performances in bitumen and mixtures due to different [...] Read more.
Thin-layer covers easily crack under traffic load, shortening their service life. Incorporating fiber materials into the mix can enhance crack resistance thanks to their abundance, affordability, and flexibility. However, different types of fibers have different performances in bitumen and mixtures due to different material properties. To explore this problem, basalt fiber, polypropylene fiber, and glass fiber were selected in this paper. The surface characteristics, internal structure, and adsorption capacity of oily substances were observed via scanning electron microscopy and oil absorption rate testing. The effects of fibers on the high-temperature and low-temperature properties of styrene-butadiene-styrene block copolymer-modified bitumen were investigated using the dynamic shear rheometer and the force ductility method. Ultimately, through indirect tensile testing and semi-circular bending tests, and the introduction of the toughness index and fracture toughness, a comprehensive evaluation was conducted on how varying fiber types and content affect the crack resistance and toughness of bitumen mixtures. The results show that the density and dispersion of the bundle fibers are the key to the oil absorption capacity under similar internal and external structural conditions. The oil absorption rate of polypropylene fiber is the best, reaching 5.423. Fiber incorporation can significantly improve the high-temperature rheological properties of bitumen. At 4% dosage, G*/sinδ increased by about 107.04% on average at 76 °C. At low temperatures, the increase in fiber content leads to a decrease in bitumen elasticity, and the influence of glass fiber is more obvious. The area of toughness did not reach 2000 N·mm at 4% dosage. After adding fibers, the toughness index and fracture toughness of the mixture increased by more than 2% and 35%, respectively. The maximum increases in fracture energy and crack initiation energy of the mixture are 14.29% and 47.29%, respectively. It shows that the fiber enhances the toughness, crack resistance, and crack propagation resistance of the mixture. The research results can provide some reference for the application of fiber-reinforced bitumen mixtures. Full article
(This article belongs to the Special Issue Fracture Mechanics of Asphalt Pavement Materials and Structures)
Show Figures

Figure 1

21 pages, 7199 KiB  
Article
Characterization of Interface Transition Zone in Asphalt Mixture Using Mechanical and Microscopic Methods
by Mujaheed Yunusa, Wenqi Hou, Guoqing Jing and Hao Wu
Materials 2024, 17(21), 5197; https://doi.org/10.3390/ma17215197 - 25 Oct 2024
Cited by 1 | Viewed by 3292
Abstract
An enormous surge in the pavement sector requires the evaluation of interface bonding in asphalt composite, since the assessment of bonding brings considerable cost savings. Microscopic and mechanical analyses were performed to study the status of the interface transition zone of four groups [...] Read more.
An enormous surge in the pavement sector requires the evaluation of interface bonding in asphalt composite, since the assessment of bonding brings considerable cost savings. Microscopic and mechanical analyses were performed to study the status of the interface transition zone of four groups of asphalt mixtures, using thin-slice preparation to obtain asphalt mixture slices with a flat surface for microscopic analysis. The interface transition zones were characterized using good knowledge of blending or diffusion phenomena by conducting tests both at the micro and macro levels to determine mixture quality. Asphalt mixture components were observed using fluorescence microscopy imaging and evaluated by the gray value change law. Asphalt mixture groups, (virgin, recycled of 30% aged and 70% unaged, 6%, and 4% rejuvenator dosage mixtures) under the same process parameters, which are a mixing time of 270 s and a mixing temperature of 150 °C, been considered optimum for component fusion in a hot asphalt mixture were used. This study relied on the influence of morphology law, assessed through rutting tests for high temperature performance, semi-circular bending tests for low temperature performance, and pull-off tests for interface bonding strength. The relationship between interface transition zones and macro performance was studied. The self-developed pull-off method was a research innovation which can be used as an alternative to study interface transition zones in asphalt mixtures, and provides the necessary data needed with 3D surface failure mode calculations. The device measured the bonding strength of a single aggregate in distinct positions using the bitumen penetration test method. The main goals were to determine a correction factor, identify the appropriate alteration, and compute the actual fracture surface area. Using scanning electron microscopy for interface characterization and micro-morphologies of mortar transition zone, our analysis provides adequate knowledge about interface position and the components present. The applied approaches to characterize asphalt mixture interfaces proved workable and reliable, as all methods have similar trends with useful information to determine asphalt pavement quality. Full article
Show Figures

Figure 1

22 pages, 8159 KiB  
Article
Sustainability of Asphalt Mixtures Containing 50% RAP and Recycling Agents
by Ibrahim Elnaml, Louay N. Mohammad, Gaylon Baumgardner, Samuel Cooper and Samuel Cooper
Recycling 2024, 9(5), 85; https://doi.org/10.3390/recycling9050085 - 25 Sep 2024
Cited by 2 | Viewed by 2231
Abstract
The substitution of virgin asphalt binder with reclaimed asphalt pavement (RAP) has environmental and economic merits, however, cracking susceptibility arises due to the aged asphalt binder within RAP. The objectives of this study are to (1) enhance the cracking resistance of asphalt mixtures [...] Read more.
The substitution of virgin asphalt binder with reclaimed asphalt pavement (RAP) has environmental and economic merits, however, cracking susceptibility arises due to the aged asphalt binder within RAP. The objectives of this study are to (1) enhance the cracking resistance of asphalt mixtures containing 50% RAP utilizing recycling agents (RAs) derived from six petroleum-based and bio-based materials, (2) conduct an environmental impact assessment (represented by global warming potential “GWP”) for high-RAP mixtures including RAs, and (3) estimate the cost effectiveness of including high-RAP content in asphalt mixtures. Based on the RAP asphalt binder performance grade (PG), base asphalt binder PG, and RAP content, the RA contents were determined to achieve a target asphalt binder of PG 76-22. A control mixture was benchmarked for comparison, specified for high-traffic volume roads, and contained PG 76-22 polymer-modified asphalt binder. The engineering performance of studied asphalt mixtures was evaluated using the Hamburg wheel-tracking (HWT), semi-circular bend, Illinois flexibility index, Ideal cracking tolerance, and thermal stress-restrained specimen tensile strength tests. It was found that petroleum-derived aromatic oil, soy-based oil, and tall oil fatty acid-based RAs demonstrated a successful restoration of aged RAP asphalt binder without compromising the permanent deformation resistance. The 50% RAP mixtures emitted less GWP by 41% and 42.9% using petroleum- and bio-oil RAs, respectively, and achieved a 31% cost reduction compared to the control mixtures. Full article
Show Figures

Figure 1

21 pages, 4792 KiB  
Article
Fiber Showdown: A Comparative Analysis of Glass vs. Polypropylene Fibers in Hot-Mix Asphalt Fracture Resistance
by Hesham Akram, Hozayen A. Hozayen, Akmal Abdelfatah and Farag Khodary
Buildings 2024, 14(9), 2732; https://doi.org/10.3390/buildings14092732 - 31 Aug 2024
Cited by 1 | Viewed by 1907
Abstract
Cracks in asphalt mixtures compromise the structural integrity of roads, increase maintenance costs, and shorten pavement lifespan. These cracks allow for water infiltration, accelerating pavement deterioration and jeopardizing vehicle safety. This research aims to evaluate the impact of synthetic fibers, specifically glass fiber [...] Read more.
Cracks in asphalt mixtures compromise the structural integrity of roads, increase maintenance costs, and shorten pavement lifespan. These cracks allow for water infiltration, accelerating pavement deterioration and jeopardizing vehicle safety. This research aims to evaluate the impact of synthetic fibers, specifically glass fiber (GF) and polypropylene fiber (PPF), on the crack resistance of Hot-Mix Asphalt (HMA). An optimal asphalt binder content of 5% was used in all sample designs. Using the dry mixing technique, GFs and PPFs were incorporated into the HMA at dosages of 0.50%, 1.00%, and 1.50% by weight of the aggregate. The effects of these fibers on the mechanical fracture properties of the HMA were assessed using Semi-Circular Bending (SCB), Indirect Tensile Asphalt Cracking Tests (IDEAL-CTs), and Three-Point Bending (3-PB) tests. This study focused on fracture parameters such as fracture work, peak load, fracture energy, and crack indices, including the Flexibility Index (FI) and Crack Resistance Index (CRI). The results from the SCB and IDEAL-CT tests showed that increasing GF content from 0.5% to 1.5% significantly enhances the flexibility and crack resistance of HMA, with FI, CRI, and CT Index values increasing by 247.5%, 55%, and 101.35%, respectively. Conversely, increasing PPF content increases the mixture’s stiffness and reduces its crack resistance. The PP-1 mixture exhibited higher FI and CT Index values, with increases of 31.1% and 10%, respectively, compared to the PP-0.5 mixture, based on SCB and IDEAL-CT test results. The SCB, IDEAL-CT, and 3-PB test results concluded that fibers significantly influence the fracture properties of bituminous mixtures, with a 1% reinforcement dosage of both PPFs and GFs being optimal for enhancing performance across various applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop