Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = self-cured acrylic resins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 298 KB  
Article
Surface Roughness and Microbial Adhesion on Four Provisional Prosthodontic Restorative Materials
by Ola Al Hatem, Joe C. Ontiveros, Donald M. Belles, Maria D. Gonzalez and Ransome van der Hoeven
Dent. J. 2025, 13(11), 498; https://doi.org/10.3390/dj13110498 - 27 Oct 2025
Viewed by 327
Abstract
Objective: The aim of this study was to evaluate surface roughness (Ra) and microbial adhesion on four provisional prosthodontic materials in comparison to zirconium oxide. Methods: Four provisional prosthodontic restorative materials were evaluated in this study: poly methyl methacrylate (PMMA) acrylic [...] Read more.
Objective: The aim of this study was to evaluate surface roughness (Ra) and microbial adhesion on four provisional prosthodontic materials in comparison to zirconium oxide. Methods: Four provisional prosthodontic restorative materials were evaluated in this study: poly methyl methacrylate (PMMA) acrylic resin (ALIKE; GC America Inc., Alsip, IL, USA), dimethacrylate (Bis-acryl) resin (Integrity; Dentsply Sirona, Charlotte, NC, USA), 3D-printed temporary crown and bridge resin (Formlabs Inc., Somerville, MA, USA), prepolymerized poly methyl methacrylate (milled PMMA) (Harvest Dental Laboratory Products, Brea, CA, USA), and zirconium oxide (Ivoclar Vivadent AG, Liechtenstein, Germany). A total of 90 samples were prepared and divided into two groups per material (treated and untreated). Provisional material samples were prepared per manufacturer’s instructions, polished with the same sequence using acrylic burs followed by Acrylipro silicone polishers (Brasseler, Savannah, GA, USA), and pumice with a goat brush. Zirconia was polished with a green grinding stone (ZR Grinders; Brassseler, Savannah, GA, USA), followed by a feather lite (Dialite ZR polisher; Brasseler, Savannah, GA, USA). The Ra of all samples was measured using a digital profilometer. Sterilized samples were incubated in Todd Hewitt yeast extract (THY) broth containing Candida albicans SC5314 and Streptococcus mutans BM71 at 37 °C under anaerobic conditions for 72 h. Subsequently, the number of colony-forming units (CFU) adhered to each sample was determined by serial dilution plating. Normality and homoscedasticity were assessed prior to statistical analysis. Welch’s ANOVA was then performed to evaluate differences among all samples, followed by Games–Howell post hoc tests for pairwise comparisons. A p < 0.05 was considered significant in all experiments. Results: Zirconia demonstrated the lowest surface roughness and significantly reduced adhesion of S. mutans and C. albicans compared to all other materials (p < 0.001). Milled PMMA exhibited significantly lower roughness and microbial adhesion than conventional PMMA (p < 0.001), with no significant difference from Printed PMMA in microbial adhesion. Additional pairwise differences were observed between Bis-acryl and PMMA (p = 0.0425), Milled and Printed PMMA (p < 0.0001), and Bis-acryl and Printed PMMA (p < 0.0001). Conclusions: Zirconia and milled PMMA showed superior surface properties and reduced microbial adhesion, supporting their use in long-term provisional restorations. Materials with higher microbial retention, such as self-curing PMMA, bis-acryl, and 3D-printed resins, may be less suitable for extended use. These findings guide material selection to improve clinical outcomes and highlight the need for further in vivo research. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Graphical abstract

20 pages, 5226 KB  
Article
Design and Performance of 3D-Printed Hybrid Polymers Exhibiting Shape Memory and Self-Healing via Acrylate–Epoxy–Thiol–Ene Chemistry
by Ricardo Acosta Ortiz, Alan Isaac Hernández Jiménez, José de Jesús Ku Herrera, Roberto Yañez Macías and Aida Esmeralda García Valdez
Polymers 2025, 17(19), 2594; https://doi.org/10.3390/polym17192594 - 25 Sep 2025
Cited by 1 | Viewed by 818
Abstract
This study presents a novel strategy for designing photocurable resins tailored for the additive manufacturing of smart thermoset materials. A quaternary formulation was developed by integrating bis(2-methacryloyl)oxyethyl disulfide (DADS) with an epoxy/thiol-ene system (ETES) composed of diglycidyl ether of bisphenol A (EP), pentaerythritol [...] Read more.
This study presents a novel strategy for designing photocurable resins tailored for the additive manufacturing of smart thermoset materials. A quaternary formulation was developed by integrating bis(2-methacryloyl)oxyethyl disulfide (DADS) with an epoxy/thiol-ene system (ETES) composed of diglycidyl ether of bisphenol A (EP), pentaerythritol tetrakis(3-mercaptopropionate) (PTMP), and 4,4′-methylenebis(N,N-diallylaniline) (ACA4). This unique combination enables the simultaneous activation of four polymerization mechanisms: radical photopolymerization, thiol-ene coupling, thiol-Michael addition, and anionic ring-opening, within a single resin matrix. A key innovation lies in the exothermic nature of DADS photopolymerization, which initiates and sustains ETES curing at room temperature, enabling 3D printing without thermal assistance. This represents a significant advancement over conventional systems that require elevated temperatures or post-curing steps. The resulting hybrid poly(acrylate–co-ether–co-thioether) network exhibits enhanced mechanical integrity, shape memory behavior, and intrinsic self-healing capabilities. Dynamic Mechanical Analysis revealed a shape fixity and recovery of 93%, while self-healing tests demonstrated a 94% recovery of viscoelastic properties, as evidenced by near-overlapping storage modulus curves compared to a reference sample. This integrated approach broadens the design space for multifunctional photopolymers and establishes a versatile platform for advanced applications in soft robotics, biomedical devices, and sustainable manufacturing. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

33 pages, 3734 KB  
Article
Preparation and Performance Characterization of Melamine-Formaldehyde-Microencapsulated Waterborne Topcoat–Brass Powder–Waterborne Acrylic Coating
by Wenjing Chang, Yan Han, Xiaoxing Yan and Jun Li
Coatings 2025, 15(8), 951; https://doi.org/10.3390/coatings15080951 - 14 Aug 2025
Cited by 2 | Viewed by 1045
Abstract
A novel self-healing brass powder/waterborne acrylic decorative coating for wooden substrates was developed, in which γ-methacryloxypropyltrimethoxysilane (KH570)-modified brass powder (with a coupling agent concentration of 6% and reaction solution pH of 5) was employed as the filler, and melamine-formaldehyde (MF) resin-encapsulated water-based paint [...] Read more.
A novel self-healing brass powder/waterborne acrylic decorative coating for wooden substrates was developed, in which γ-methacryloxypropyltrimethoxysilane (KH570)-modified brass powder (with a coupling agent concentration of 6% and reaction solution pH of 5) was employed as the filler, and melamine-formaldehyde (MF) resin-encapsulated water-based paint microcapsules were utilized as the healing agent. The brass powder content and the core–wall ratio of the topcoat microcapsules were identified as the predominant factors affecting both the optical and mechanical properties of the self-healing brass powder/waterborne acrylic coating on Basswood surfaces. Therefore, the brass powder content was selected as the primary influencing factor. With concentration gradients of 0.5%, 1%, 3%, 5%, 7%, 9%, and 10%, and under constant conditions of 3% microcapsule content and room temperature curing, the effect of brass powder content on the properties of self-healing microcapsule coatings with different core–wall ratios was investigated. The waterborne acrylic wood coating containing 3% brass powder and 3% microcapsules with a core–wall ratio of 0.58:1 exhibited superior overall performance. This optimized formulation not only maintained excellent optical properties but also significantly enhanced mechanical performance, while preserving outstanding aging resistance, liquid resistance, and self-healing capability. The coating demonstrated the following comprehensive performance metrics: a glossiness of 24.0 GU, color difference (ΔE) of 2.13, chromatic aberration (ΔE*) of 13.68, visible light reflectance of 0.5879, dominant wavelength of 587.47 nm, visible light transmittance of 74.33%, pencil hardness of H grade, impact resistance of 2 kg·cm, adhesion rating of class 2, surface roughness of 2.600 μm, along with excellent aging resistance and liquid resistance properties, while achieving a self-healing efficiency of 19.62%. The coating also exhibited a smooth and uniform microscopic morphology, with the chemical bonds of both the modified brass powder and microcapsules remaining intact within the coating matrix. Full article
(This article belongs to the Special Issue Novel Microcapsule Technology in Coatings)
Show Figures

Figure 1

17 pages, 3105 KB  
Article
Cell Viability of Wharton’s Jelly-Derived Mesenchymal Stem Cells (WJ-MSCs) on 3D-Printed Resins for Temporary Dental Restorations
by Mónica Antonio-Flores, Andrés Eliú Castell-Rodríguez, Gabriela Piñón-Zárate, Beatriz Hernández-Téllez, Abigailt Flores-Ledesma, Enrique Pérez-Martínez, Carolina Sámano-Valencia, Gerardo Quiroz-Petersen and Katia Jarquín-Yáñez
J. Compos. Sci. 2025, 9(8), 404; https://doi.org/10.3390/jcs9080404 - 1 Aug 2025
Viewed by 1730
Abstract
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly [...] Read more.
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly used but clinically relevant cell line in dental biomaterials research. The aim of this study was to evaluate the cell viability of WJ-MSCs seeded on 3D-printed resins intended for temporary restorations. Resin discs of three commercial 3D-printing resins (NextDent C&B, Leaf Dental C&B, and UNIZ Temp) and a conventional self-curing acrylic resin (NicTone) were used. WJ-MSCs were cultured on the specimens for 1, 4, and 10 days. Cell viability was assessed using the PrestoBlue assay, Live/Dead immunofluorescence staining, and 7AAD/Annexin V staining. Cell adhesion was evaluated using scanning electron microscopy. Direct exposure to the 3D-printed resins and the self-curing acrylic caused slight reductions in cell viability compared to the control group in both microscopic analyses. 7AAD/Annexin V showed the highest percentage of viable WBCs for the conventional acrylic (34%), followed by UNIZ (35%), NextDent (42%), and Leaf Dental (36%) (ANOVA p < 0.05 Tukey’s post-hoc test p < 0.05). These findings suggest that 3D-printed resins could be considered safe for use in temporary restorations. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

13 pages, 3366 KB  
Article
Compatibility of Dual-Cure Core Materials with Self-Etching Adhesives
by Zachary K. Greene, Augusto A. Robles and Nathaniel C. Lawson
Dent. J. 2025, 13(7), 276; https://doi.org/10.3390/dj13070276 - 20 Jun 2025
Cited by 1 | Viewed by 1599
Abstract
Background/Objectives: A material incompatibility has been established between self-etching adhesives and amine-containing dual-cure resin composite materials used for core buildups. This study aims to compare the dentin bond strength of several amine-containing and amine-free core materials using self-etching adhesives with different pHs. [...] Read more.
Background/Objectives: A material incompatibility has been established between self-etching adhesives and amine-containing dual-cure resin composite materials used for core buildups. This study aims to compare the dentin bond strength of several amine-containing and amine-free core materials using self-etching adhesives with different pHs. Methods: Extracted human molars were mounted in acrylic and ground flat with 320-grit silicon carbide paper. Next, 520 specimens (n = 10/group) were assigned to a dual-cure core buildup material group (10 amine-containing, 2 amine-free, and 1 reference light-cure only bulk fill flowable composite) and assigned to a self-etching adhesive subgroup (pH levels of approximately 1.0, 3.0, and 4.0). Within 4 h of surface preparation, the adhesive corresponding to the specimen’s subgroup was applied and light-cured. Composite buttons for the assigned dual-cure core material of each group were placed using a bonding clamp apparatus, allowed to self-cure for 2 h at 37 °C, and then unclamped. An additional group with one adhesive (pH = 3.0) was prepared in which the dual-cure core materials were light-cured. The bonded specimens were stored in water at 37 °C for 24 h. The specimens were mounted on a testing clamp and de-bonded in a universal testing machine with a load applied to a circular notched-edge blade at a crosshead speed of 1 mm/min until bond failure. The maximum load divided by the area of the button was recorded as the shear bond strength. The data was analyzed via 2-way ANOVA. Results: The analysis of bond strength via 2-way ANOVA determined statistically significant differences between the adhesives, the core materials, and their interaction (p < 0.01). There was a general trend in shear bond strength for the adhesives, where pH 4.0 > 3.0 > 1.0. The amine-free core materials consistently demonstrated higher shear bond strengths as compared to the other core materials when chemically cured only. Light-curing improved bond strength for some materials with perceived incompatibility. Conclusions: The results of this study suggest that an incompatibility can exist between self-etching adhesives and dual-cure resin composite core materials. A decrease in the pH of the utilized adhesive corresponded to a decrease in the bond strength of dual-cure core materials when self-curing. This incompatibility may be minimized with the use of core materials formulated with amine-free chemistry. Alternatively, the dual-cure core materials may be light-cured. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

16 pages, 4184 KB  
Article
Low Shrinkage Transparent UV-Cured 3D Printing Hard Silicone Resins
by Haibo Wu, Qili Shen, Zhu Liu, Xiantai Zhou, Yanxiong Fang, Hongping Xiang and Xiaoxuan Liu
Polymers 2025, 17(8), 1123; https://doi.org/10.3390/polym17081123 - 21 Apr 2025
Cited by 1 | Viewed by 1355
Abstract
Acrylated silicone elastomers for UV-curing 3D printing have gathered considerable attention in biomedical applications due to their exceptional mechanical and thermal stability. However, traditional manufacturing methods for these resins often face challenges such as stringent conditions and self-polymerization. In this study, various acrylate [...] Read more.
Acrylated silicone elastomers for UV-curing 3D printing have gathered considerable attention in biomedical applications due to their exceptional mechanical and thermal stability. However, traditional manufacturing methods for these resins often face challenges such as stringent conditions and self-polymerization. In this study, various acrylate silicone resins (LMDT-AE) and silicone oils (PDMS-AE) were synthesized through ring-opening hydrolysis-polycondensation. The structures of LMDT-AE and PDMS-AE, with varying AE contents (molar ratio of organic groups to silicon atoms), were characterized using FTIR, 1H NMR, 13C NMR, and GPC. Additionally, their physical properties, including viscosity, density, refractive index, and transparency, were thoroughly examined. The 3D-AE silicone resin composed of LMDT-AE-2.0 and PDMS-AE-20/1, in a mass ratio of 2:1, demonstrated superior mechanical properties, thermal stability, and curing shrinkage rate compared to other formulations. This curing silicone resin is capable of producing 3D physical entities with smooth surfaces and well-defined contours. It is shown that the successful preparation of transparent and high-strength UV-cured silicone resin based on free radical polymerization can provide a potential path for high-precision biological 3D printing. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Additive Manufacturing)
Show Figures

Figure 1

16 pages, 5148 KB  
Article
Development of Self-Healing Porcelain Using UV-Curable Resin: A Biomimetic Approach with Dual-Layer Structure
by Rui Tsutsumi, Mitsunori Yada, Hiromichi Ichinose, Yushi Oishi and Takayuki Narita
J. Compos. Sci. 2025, 9(3), 99; https://doi.org/10.3390/jcs9030099 - 23 Feb 2025
Viewed by 1481
Abstract
This study presents a novel self-healing mechanism for porcelain ceramics using UV-curable resin to address the inherent brittleness of ceramic materials. A biomimetic double-layered structure was designed, consisting of a high-density outer layer for mechanical strength and a highly porous inner layer for [...] Read more.
This study presents a novel self-healing mechanism for porcelain ceramics using UV-curable resin to address the inherent brittleness of ceramic materials. A biomimetic double-layered structure was designed, consisting of a high-density outer layer for mechanical strength and a highly porous inner layer for resin storage. The porous layer, achieved through nylon microparticle addition and subsequent volatilization during sintering, reached a porosity of 67%. As confirmed by FT-IR spectroscopy and EDS analysis, UV-curable acrylic resin was successfully incorporated into the porous structure. Three-point bending tests demonstrated efficient healing with a recovery rate of 56% after 5 min of UV irradiation. Both cured resin weight and post-healing bending strength increased logarithmically with UV irradiation time. The bending strength after healing was strongly dependent on the cured resin weight and polymerization depth within the specimen, as evidenced by the correlation between increased polymerization area and higher bending strength. This approach offers a promising solution for developing more reliable and durable ceramic materials, which will be particularly beneficial for aerospace and medical applications where maintenance cost reduction and extended product life are crucial. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

18 pages, 14835 KB  
Article
Influence of Food Pigments and Thermal Aging on the Color Stability of Denture Base Resins
by Beatriz Costa, Cristina Bettencourt Neves, João Carlos Roque, Vitor Anes and Virgínia Santos
Appl. Sci. 2025, 15(3), 1503; https://doi.org/10.3390/app15031503 - 1 Feb 2025
Cited by 1 | Viewed by 2050
Abstract
Color stability of acrylic resins is essential for preserving the aesthetic appearance of denture bases over time. This study explores how food pigments and thermal changes affect the color stability of commonly used denture base resins. Four acrylic resins were tested: three heat-cured [...] Read more.
Color stability of acrylic resins is essential for preserving the aesthetic appearance of denture bases over time. This study explores how food pigments and thermal changes affect the color stability of commonly used denture base resins. Four acrylic resins were tested: three heat-cured acrylic resins with different characteristics (Zhermack® Villacryl H Plus V2, H Plus V4, and H Rapid FN V4) and one self-cured acrylic resin (Zhermack® Villacryl S V4). To simulate the oral environment, the resins underwent 1000 thermal cycles between 5 °C and 55 °C, followed by a 7-day immersion period in beverages such as coffee, red wine, a caramel-colored soft drink (cola), and distilled water (control), forming sixteen group of specimens (n = 5). Color changes (∆E) were measured using the VITA Easyshade V® spectrophotometer, following the CIEDE2000 standard. The findings revealed that thermal aging caused noticeable color changes in all resins (p < 0.001). Red wine led to the most intense discoloration, followed by coffee. The caramel-colored soft drink caused moderate staining, while distilled water had a negligible effect. The type of polymerization did not affect the degree of discoloration, as no significant differences were found between the resins after exposure to beverages (p > 0.05). Overall, this study highlights how both internal and external factors impact the appearance of acrylic resins. Thermal aging can accelerate polymer degradation, while pigments in beverages cause visible staining. Among the tested beverages, red wine proved to be the most aggressive due to its high pigment concentration and low pH. These findings emphasize the need for improved material formulations to enhance the longevity and aesthetic performance of dentures. Full article
Show Figures

Figure 1

11 pages, 2190 KB  
Article
Does Applying Morpholine to Saliva-Contaminated Acrylic Resin Improve the Repair Bond Strength?
by Awiruth Klaisiri, Nantawan Krajangta, Kasidit Assawarattanaphan, Jaratchom Sriperm, Wisarut Prawatvatchara, Niyom Thamrongananskul and Tool Sriamporn
J. Compos. Sci. 2024, 8(9), 349; https://doi.org/10.3390/jcs8090349 - 6 Sep 2024
Cited by 1 | Viewed by 1335
Abstract
The current study evaluates the effect of morpholine on saliva-contaminated acrylic resin repaired with light-cured resin composites. Sixty rods of self-curing acrylic resin were fabricated and assigned into four groups of fifteen specimens and surface-treated with saliva, phosphoric acid (PH), morpholine (MR), liquid [...] Read more.
The current study evaluates the effect of morpholine on saliva-contaminated acrylic resin repaired with light-cured resin composites. Sixty rods of self-curing acrylic resin were fabricated and assigned into four groups of fifteen specimens and surface-treated with saliva, phosphoric acid (PH), morpholine (MR), liquid MMA monomer, and a universal adhesive agent (UA, Singlebond Universal) based on the following techniques: group 1, saliva; group 2, saliva + PH + MMA + UA; group 3, saliva + MMA + UA; and group 4, saliva + MR + MMA + UA. An Ultradent model was placed at the center of the specimen, and then the resin composite was pressed and light-cured for 20 s. A mechanical testing device was used to evaluate the samples’ shear bond strength (SBS) scores. The debonded specimen areas were inspected under a stereomicroscope to identify their failure mechanisms. The data were assessed by employing the one-way ANOVA approach, and the significance level (p < 0.05) was established with Tukey’s test. The greatest SBS scores for group 2 (30.46 ± 2.26 MPa) and group 4 (32.10 ± 2.72 MPa) did not differ statistically significantly from one another. The lowest SBS recorded for group 1 was 1.38 ± 0.87 MPa. All of the fractured samples in group 1 had an adhesive failure profile. Groups 2 and 4 had the greatest percentages of cohesive failures. This study concluded that applying phosphoric acid and morpholine to sandblasted self-curing acrylic resin contaminated with saliva before MMA and universal adhesive agents are applied is the most efficient protocol for stimulating SBS when it is repaired with light-cured resin composites. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

17 pages, 4312 KB  
Article
Photon-Induced Photo-Acoustic Streaming vs. Shock Wave-Enhanced Emission Photo-Acoustic Streaming—The Effect of Three Final Irrigation Protocols on the Bond Strength of an Individually Formed Fiber Post
by Cassandra Lupita, Daliana Emanuela Bojoga, Alessandro Del Vecchio, Dan Ioan Stoia, Ion Grozav, Mariana Ioana Miron and Darinca Carmen Todea
Dent. J. 2024, 12(8), 237; https://doi.org/10.3390/dj12080237 - 26 Jul 2024
Cited by 1 | Viewed by 1845
Abstract
(1) Background: This study aimed to evaluate how laser-activated irrigation (LAI) influences the retention of a fiber post when used before an endodontic filling, as well as after post space preparation. (2) Materials and Methods: Sixty freshly extracted human incisors were selected. The [...] Read more.
(1) Background: This study aimed to evaluate how laser-activated irrigation (LAI) influences the retention of a fiber post when used before an endodontic filling, as well as after post space preparation. (2) Materials and Methods: Sixty freshly extracted human incisors were selected. The teeth were randomly assigned to three groups—CONVENTIONAL (CONV), PIPS or SWEEPS—and treated endodontically. Each group received irrigation with 1 × 5 mL EDTA (17%) and 3 × 5 mL NaOCl (5.25%). In the first group, the irrigants were not activated, while in the second and third group, LAI was adopted using PIPS and SWEEPS protocols (Lightwalker from Fotona, Ljubliana, Slovenia). After post space preparation, each group received the same irrigation protocol initially established. Sticky posts (everStick Post, GC AUSTRIA GmbH Swiss) were individually adapted to the corresponding post spaces and cemented using dual cure resin cement (Gradia Core, GC Austria GmbH Swiss). All specimens were vertically embedded into self-curing acrylate (Duracryl plus, Spofa Dent, Europe), and each was sectioned into three segments of type A and type B samples for debonding through push-out and pull-out tests. The results were statistically analyzed. (3) Results: The pull-out test showed the superiority of the SWEEPS group, with a mean fracture force of 133.0 ± 50.7 N, followed by the PIPS group, with 102 N, with a lower standard deviation of ± 34.5 N. The CONV group registered the lowest fracture force. Concerning the push-out test, the SWEEPS group showed superior shear stress in comparison to the other two groups (13.45 ± 4.29 MPa); the CONV group was inferior, with shear tension values of 8.31 ± 4.67 MPa. (4) Conclusions: It can be stated that the SWEEPS and PIPS protocols resulted in considerably higher fiber post retention than the conventional method, whereas the SWEEPS protocol was superior to the PIPS protocol. Full article
Show Figures

Figure 1

17 pages, 7782 KB  
Article
Self-Healing Thermal-Reversible Low-Temperature Polyurethane Powder Coating Based on Diels–Alder Reaction
by Katarzyna Pojnar, Barbara Pilch-Pitera, Shahla Ataei, Patrycja Gazdowicz, Beata Mossety-Leszczak, Beata Grabowska and Artur Bobrowski
Materials 2024, 17(14), 3555; https://doi.org/10.3390/ma17143555 - 18 Jul 2024
Cited by 2 | Viewed by 2523
Abstract
This work focused on obtaining a low-temperature powder coating characterized by self-healing properties. To achieve this, acrylic resin, blocked polyisocyanates (bPICs) with 1,2,4-triazole, and unsaturated commercial resin were used. The synthesis of bPICs with triazole enabled the low-temperature curing and reversible Diels–Alder (DA) [...] Read more.
This work focused on obtaining a low-temperature powder coating characterized by self-healing properties. To achieve this, acrylic resin, blocked polyisocyanates (bPICs) with 1,2,4-triazole, and unsaturated commercial resin were used. The synthesis of bPICs with triazole enabled the low-temperature curing and reversible Diels–Alder (DA) reaction at 160 °C. The chemical structure of bPICs was confirmed using 1H-NMR. The occurrence of the DA and retro-DA (rDA) reactions in the crosslinked polymer, at temperatures of 60–85 °C and 90–130 °C, respectively, was confirmed using Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and FT-IR spectroscopy. The self-healing properties of the powder coating were examined using polarized optical microscopy. Additionally, the occurrence of the DA and rDA reactions between triazole and unsaturated polyester resin was investigated through repeated self-healing tests. Full article
(This article belongs to the Special Issue Recent Advances and Emerging Challenges in Functional Coatings)
Show Figures

Figure 1

11 pages, 3561 KB  
Article
Influence of the Fiber Post Length on the Fracture Strength of Endodontically Treated Teeth
by Adrian-George Marinescu, Osama Abuabboud, Ștefana-Denisa Zimbru, Laura-Elena Cîrligeriu, Bianca-Adina Piț, Ioana-Amalia Borcean, Mihai Paven, Luminița-Maria Nica and Dan Ioan Stoia
Medicina 2023, 59(10), 1797; https://doi.org/10.3390/medicina59101797 - 9 Oct 2023
Cited by 6 | Viewed by 4419
Abstract
Background and Objectives: Although fiber posts are widely used in the restoration of endodontically treated teeth (ETT), their ideal cementation depth into the root canal is still debated in literature. The aim of the present study was to evaluate whether the different intra-radicular [...] Read more.
Background and Objectives: Although fiber posts are widely used in the restoration of endodontically treated teeth (ETT), their ideal cementation depth into the root canal is still debated in literature. The aim of the present study was to evaluate whether the different intra-radicular insertion lengths of the fiber posts influence the fracture strength of ETT. Materials and Methods: A total of 10 permanent human lower incisors with straight roots of similar length and volume extracted for periodontal reason were sectioned 2 mm above the cement–enamel junction (CEJ) to a total length of 18 mm and endodontically treated in the same manner, then randomly divided into two groups of five each (Groups 1 and 2, n = 5). Two sound incisors, with no endodontic treatment, were used as the control group (Group 3, n = 2). After one week of storage in a humid environment, spaces for fiber post no. 1 (Reforpost, Angelus, Londrina, PR, Brazil) were prepared in the first two groups at a depth of 5 mm (Group 1) and 7 mm (Group 2), and the fiber posts were adhesively cemented using self-adhesive resin cement (Maxcem Elite, Kerr GmbH, Herzogenrath, Germany). After 7 days, the samples were vertically positioned and fixed in a self-curing transparent acrylic resin, up to 2 mm below the CEJ level, and mechanically tested in compression after another week of storage using a displacement-controlled testing machine up to each sample’s fracture. The force–displacement curves were recorded for each sample, the means were calculated for each group and a statistical comparative analysis between groups was conducted. Results: Although no statistically significant differences between groups were observed, the highest mean fracture force (N) was recorded in Group 2 (1099.41 ± 481.89) in comparison to Group 1 (985.09 ± 330.28), even when compared to the sound, non-treated teeth (1045.69 ± 146.19). Conclusions: Within the limitations of this in vitro study, teeth where fiber posts were placed deeper into the root canal (7 mm) recorded slightly higher fracture forces in comparison with shorter lengths (5 mm). However, similar biomechanical performances obtained in the mechanical tests showed no statistical differences between the 7 mm and the 5 mm inserted posts. Full article
Show Figures

Figure 1

11 pages, 4550 KB  
Article
Bond Strength of Reline Materials to 3D-Printed Provisional Crown Resins
by Jorge Palavicini, Sherrod L. Quin, Wael Zakkour, Karim Zakkour, Safa Manafi Varkiani, Xiaoming Xu, Nathaniel C. Lawson and Amir Hossein Nejat
Polymers 2023, 15(18), 3745; https://doi.org/10.3390/polym15183745 - 13 Sep 2023
Cited by 11 | Viewed by 3760
Abstract
(1) Purpose: The aim of the present study was to compare the bond strength between two 3D-printed resins designed for long-term provisional crowns and three different reline materials. (2) Materials and Methods: Rectangular specimens were prepared from two 3D-printed resins (Envision Tech and [...] Read more.
(1) Purpose: The aim of the present study was to compare the bond strength between two 3D-printed resins designed for long-term provisional crowns and three different reline materials. (2) Materials and Methods: Rectangular specimens were prepared from two 3D-printed resins (Envision Tech and NextDent C&B) and a conventional self-cure PMMA. Transparent tubes filled with three different reline materials including composite resin, Bis-acryl, and PMMA were bonded to the 3D-printed specimens (n = 11 per group, total of 6 study groups). Tubes filled with PMMA were bonded to the prepared PMMA specimens which served as the control group (n = 11, control group). The specimens were subjected to a shear bond strength (SBS) test, and mode of failure was recorded using light microscopy. Statistical analysis was performed using a one-way ANOVA and post hoc Tukey’s tests (alpha = 0.05). (3) Results: The highest SBS value was achieved to both 3D-printed materials with the PMMA reline material. The bond to both 3D-printed materials was lower with Bis-acrylic or composite resin relines in comparison to that with PMMA (p-value < 0.05). No significant difference was found between the control PMMA group and either 3D-printed material when relined with PMMA (p-value > 0.05). (4) Conclusion: The tested 3D-printed resins achieved a clinically acceptable bond strength when relined with PMMA. Full article
(This article belongs to the Special Issue Polymers in Restorative Dentistry)
Show Figures

Figure 1

11 pages, 5296 KB  
Article
Surface Modification Methods of Self-Cured Acrylic Resin Repaired with Resin Composite Using a Universal Adhesive
by Awiruth Klaisiri, Apichai Maneenacarith, Nantawan Krajangta, Alysha Sukkee, Nannita Stephannie Hardy, Tuksadon Wutikhun and Chayaporn Supachartwong
J. Compos. Sci. 2023, 7(9), 360; https://doi.org/10.3390/jcs7090360 - 29 Aug 2023
Cited by 4 | Viewed by 3679
Abstract
This research study’s purpose was to evaluate the mechanical and chemical surface treatment methods for self-cured acrylic resin repaired with a resin composite employing a universal adhesive agent. Eighty self-cured acrylic resins were built and designed into eight groups of ten specimens and [...] Read more.
This research study’s purpose was to evaluate the mechanical and chemical surface treatment methods for self-cured acrylic resin repaired with a resin composite employing a universal adhesive agent. Eighty self-cured acrylic resins were built and designed into eight groups of ten specimens and surface conditioned using sandblasting (SB) and/or with methylmethacrylate monomer (MMA) and/or universal adhesive (UA) as follows: Group 1, non-surface modified; Group 2, SB; Group 3, UA; Group 4, SB + UA; Group 5, MMA; Group 6, SB + MMA; Group 7, MMA + UA; Group 8, SB + MMA + UA. A template was put on the specimen center, and the pushed resin composites. Mechanical testing machinery was used to examine the samples’ shear bond strength (SBS) values. To examine failure patterns, the debonded specimen surfaces were examined using a scanning electron microscope. The one-way ANOVA method was used to evaluate these data, and Tukey’s test was used to determine the significance level (p < 0.05). The highest SBS was obtained in Group 8 (27.47 ± 2.15 MPa); however, it was statistically equivalent to Group 7 (25.85 ± 0.34 MPa). Group 1 (4.45 ± 0.46 MPa) had the lowest SBS, but it was not statistically significant compared to Group 2 (5.26 ± 0.92 MPa). High SBS values were frequently correlated with cohesive patterns. The application of MMA prior to UA is the best method for increasing the SBS between self-cured acrylic resin and resin composite interfaces. However, the use of SB is not significantly different from not using SB. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

13 pages, 9200 KB  
Article
Effect of Photoinitiator Concentration and Film Thickness on the Properties of UV-Curable Self-Matting Coating for Wood-Based Panels
by Haiqiao Zhang, Xinhao Feng, Yan Wu and Zhihui Wu
Forests 2023, 14(6), 1189; https://doi.org/10.3390/f14061189 - 8 Jun 2023
Cited by 9 | Viewed by 3399
Abstract
Matte coatings have found wide-ranging applications across diverse industries. In this study, self-matting films with surface wrinkles were produced by exposing UV-curable polyurethane acrylate (UV-WPUA) resin to 172 nm Xe2* excimer and medium-pressure mercury lamps. The gloss values, micromorphologies, water contact [...] Read more.
Matte coatings have found wide-ranging applications across diverse industries. In this study, self-matting films with surface wrinkles were produced by exposing UV-curable polyurethane acrylate (UV-WPUA) resin to 172 nm Xe2* excimer and medium-pressure mercury lamps. The gloss values, micromorphologies, water contact angles (WCAs), roughness values, and friction behaviors of UV-WPUA films with different photoinitiator (PI) concentrations and thickness were investigated for the first time. The results indicate that the gloss values of the films at the same thickness enhance with the increase of PI concentration, while the amplitude of wrinkles, roughness, and WCAs decrease; however, the friction coefficient shows insignificant variations. While the PI concentration is unchanged, an increase in film thickness results in a decrease in gloss value and an increase in roughness and friction coefficient. Nevertheless, the WCA is relatively constant. The PI concentration of 0.5 wt% (lowest gloss value of cured film) was utilized to prepare the UV-WPUA wood coating. The cured coating film exhibited low gloss (4.9 GU at 60° and 5.2 GU at 85°) and outstanding mechanical properties, including 3H pencil hardness, grade 0 adhesion, excellent wear resistance, and tensile property. These findings can be utilized to guide the development of self-matting wood coatings and the production of wood-based panels used in industrial finishing. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

Back to TopTop