Influence of the Fiber Post Length on the Fracture Strength of Endodontically Treated Teeth
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haralur, S.B.; Al Ahmari, M.A.; AlQarni, S.A.; Althobati, M.K. The Effect of Intraradicular Multiple Fiber and Cast Posts on the Fracture Resistance of Endodontically Treated Teeth with Wide Root Canals. BioMed Res. Int. 2018, 2018, 1671498. [Google Scholar] [CrossRef] [PubMed]
- Jurema, A.L.B.; Filgueiras, A.T.; Santos, K.A.; Bresciani, E.; Caneppele, T.M.F. Effect of intraradicular fiber post on the fracture resistance of endodontically treated and restored anterior teeth: A systematic review and meta-analysis. J. Prosthet. Dent. 2022, 128, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Theodosopoulou, J.N.; Chochlidakis, K.M. A systematic review of dowel (post) and core materials. J. Prosthodont. 2009, 18, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, A.; Xu, C.; Zhang, F.-Q. Dental fiber-post resin base material: A review. J. Adv. Prosthodont. 2014, 6, 60–65. [Google Scholar] [CrossRef]
- Naumann, M.; Schmitter, M.; Frankenberger, R.; Krastl, G. “Ferrule Comes First. Post Is Second!” Fake News and Alternative Facts? A Systematic Review. J. Endod. 2018, 44, 212–219. [Google Scholar] [CrossRef]
- Nahar, R.; Mishra, S.K.; Chowdhary, R. Evaluation of stress distribution in an endodontically treated tooth restored with four different post systems and two different crowns- A finite element analysis. J. Oral Biol. Craniofacial Res. 2020, 10, 719–726. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Bedini, R.; Pameijer, C.H.; Somma, F. Flexural properties of endodontic posts and human root dentin. Dent. Mater. 2007, 23, 1129–1135. [Google Scholar] [CrossRef]
- Ona, M.; Wakabayashi, N.; Yamazaki, T.; Takaichi, A.; Igarashi, Y. The influence of elastic modulus mismatch between tooth and post and core restorations on root fracture. Int. Endod. J. 2012, 38, 11–19. [Google Scholar] [CrossRef]
- Bhopatkar, J.; Ikhar, A.; Nikhade, P.; Chandak, M.; Heda, A. Esthetic Reconstruction of Badly Mutilated Endodontically Treated Teeth Using Glass Fiber Reinforced Post: A Case Report. Cureus 2022, 14, e27662. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Shetty, S.; Coutinho, I. Factors determining post selection: A literature review. J. Prosthet. Dent. 2003, 90, 556–562. [Google Scholar] [CrossRef]
- Pierrisnard, L.; Bohin, F.; Renault, P.; Barquins, M. Corono-radicular reconstruction of pulpless teeth: A mechanical study using finite element analysis. J. Prosthet. Dent. 2002, 88, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, L.A.d.A.; Vansan, L.P.; Paulino, S.M.; Neto, M.D.S. Fracture resistance of weakened roots restored with a transilluminating post and adhesive restorative materials. J. Prosthet. Dent. 2006, 96, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Standlee, J.; Caputo, A.; Collard, E.; Pollack, M. Analysis of stress distribution by endodontic posts. Oral Surg. Oral Med. Oral Pathol. 1972, 33, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Freedman, G.A. Esthetic Post-and-Core Treatment. Dent. Clin. N. Am. 2001, 45, 103–116. [Google Scholar] [CrossRef]
- Radovic, I.; Mazzitelli, C.; Chieffi, N.; Ferrari, M. Evaluation of the adhesion of fiber posts cemented using different adhesive approaches. Eur. J. Oral Sci. 2008, 116, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Samran, A.; Najjar, M.O.; Samran, A.; Al-Akhali, M.; Al-Maweri, S.A.; Özcan, M. Influence of Different Post Luting Cements on the Fracture Strength of Endodontically Treated Teeth: An In Vitro Study. Eur. Endod. J. 2018, 3, 113–117. [Google Scholar] [CrossRef] [PubMed]
- AlHelal, A.A.; AlZaben, A.A.; AlObaid, S.A.; Bakhsh, O.Y.; AlSaiari, H.N.; AlQahtani, A.S.; AlNassar, T.M.; Alsayed, H.D. Comparison of fracture resistance of fiber-reinforced post and core with different cementation techniques: In vitro study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 8832–8840. [Google Scholar]
- Santos-Filho, P.C.F.; Veríssimo, C.; Raposo, L.H.A.; Noritomi, M.P.Y.; Martins, L.R.M. Influence of Ferrule, Post System, and Length on Stress Distribution of Weakened Root-filled Teeth. J. Endod. 2014, 40, 1874–1878. [Google Scholar] [CrossRef]
- Guldener, K.A.; Lanzrein, C.L.; Guldener, B.E.S.; Lang, N.P.; Ramseier, C.A.; Salvi, G.E. Long-term Clinical Outcomes of Endodontically Treated Teeth Restored with or without Fiber Post–retained Single-unit Restorations. J. Endod. 2016, 43, 188–193. [Google Scholar] [CrossRef]
- Daher, R.; Feilzer, A.J.; Krejci, I. Novel non-invasive reinforcement of MOD cavities on endodontically treated teeth. J. Dent. 2016, 54, 77–85. [Google Scholar] [CrossRef][Green Version]
- Bitter, K.; Hambarayan, A.; Neumann, K.; Blunck, U.; Sterzenbach, G. Various irrigation protocols for final rinse to improve bond strengths of fiber posts inside the root canal. Eur. J. Oral Sci. 2013, 121, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Stansbury, J.W.; Burke, F.J.T. Self-adhesive resin cements—Chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liao, W.; Dai, N.; Xie, Y.M. Comparison of Mechanical Properties and Energy Absorption of Sheet-Based and Strut-Based Gyroid Cellular Structures with Graded Densities. Materials 2019, 12, 2183. [Google Scholar] [CrossRef] [PubMed]
- Bruno, L.; Canullo, L.; Mayer, Y.; Schoenbaum, T.; Giuzio, F.; Maletta, C. Static and Fatigue Mechanical Performance of Abutments Materials for Dental Restorations. Materials 2023, 16, 3713. [Google Scholar] [CrossRef]
- Diniz, A.C.; Bauer, J.; Veloso, S.D.A.R.; Abreu-Pereira, C.A.; Carvalho, C.N.; Leitão, T.J.; Firoozmand, L.M.; Maia-Filho, E.M. Effect of Bioactive Filler Addition on the Mechanical and Biological Properties of Resin-Modified Glass Ionomer. Materials 2023, 16, 1765. [Google Scholar] [CrossRef]
- Dawod, N.; Miculescu, M.; Antoniac, I.V.; Miculescu, F.; Agop-Forna, D. Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure. Materials 2023, 16, 5556. [Google Scholar] [CrossRef]
- Zubrzycki, J.; Klepka, T.; Marchewka, M.; Zubrzycki, R. Tests of Dental Properties of Composite Materials Containing Nano-hybrid Filler. Materials 2023, 16, 348. [Google Scholar] [CrossRef]
- Hinz, S.; Bensel, T.; Bömicke, W.; Boeckler, A.F. In Vitro Analysis of the Mechanical Properties of Hypoallergenic Denture Base Resins. Materials 2022, 15, 3611. [Google Scholar] [CrossRef]
- Zicari, F.; Van Meerbeek, B.; Scotti, R.; Naert, I. Effect of fibre post length and adhesive strategy on fracture resistance of en-dodontically treated teeth after fatigue loading. J. Dent. 2012, 40, 312–321. [Google Scholar] [CrossRef]
- Büttel, L.; Krastl, G.; Lorch, H.; Naumann, M.; Zitzmann, N.U.; Weiger, R. Influence of post fit and post length on fracture resistance. Int. Endod. J. 2009, 42, 47–53. [Google Scholar] [CrossRef]
- Adanir, N.; Belli, S. Evaluation of different post lengths’ effect on fracture resistance of a glass fiber post system. Eur. J. Dent. 2008, 2, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wu, Y.; Smales, R.J. Identifying and reducing risks for potential fractures in endodontically treated teeth. J. Endod. 2010, 36, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.-H.; Chang, H.-S.; Min, K.-S.; Lee, Y.; Cho, H.-W.; Bae, J.-M. Effect of the number of residual walls on fracture resistances, failure patterns, and photoelasticity of simulated premolars restored with or without fiber-reinforced composite posts. J. Endod. 2010, 36, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Alshabib, A.; Althaqafi, K.A.; AlMoharib, H.S.; Mirah, M.; AlFawaz, Y.F.; Algamaiah, H. Dental Fiber-Post Systems: An In-Depth Review of Their Evolution, Current Practice and Future Directions. Bioengineering 2023, 10, 551. [Google Scholar] [CrossRef]
- Lin, J.; Matinlinna, J.P.; Shinya, A.; Botelho, M.G.; Zheng, Z. Effect of fiber post length and abutment height on fracture re-sistance of endodontically treated premolars prepared for zirconia crowns. J. Odontol. 2018, 106, 215–222. [Google Scholar] [CrossRef]
- Schiavetti, R.; Sannino, G. In vitro evaluation of ferrule effect and depth of post insertion on fracture resistance of fiber post. Comput. Math. Methods Med. 2012, 1, 816481. [Google Scholar] [CrossRef]
- Berman, L.H.; Hargreaves, K.M. Cohen’s Pathways of the Pulp, 12th ed.; Res-toration of the endodontically treated tooth; Elsevier: St. Louis, MO, USA, 2021; pp. 881–887. [Google Scholar]
- Dietschi, D.; Duc, O.; Krejci, I.; Sadan, A. Biomechanical considerations for the restoration of endodontically treated teeth: A systematic review of the literature—Part 1. Composition and micro- and macrostructure alterations. Quintessence Int. 2007, 38, 733–743. [Google Scholar]
- Reeh, E.; Douglas, W.; Messer, H. Stiffness of endodontically-treated teeth related to restoration technique. J. Dent. Res. 1989, 68, 1540–1544. [Google Scholar] [CrossRef]
- Hikita, K.; Van Meerbeek, B.; De Munck, J.; Ikeda, T.; Van Landuyt, K.; Maida, T.; Lambrechts, P.; Peumans, M. Bonding effectiveness of adhesive luting agents to enamel and dentin. Dent. Mater. 2007, 23, 71–80. [Google Scholar] [CrossRef]
- Radovic, I.; Monticelli, F.; Goracci, C.; Vulicevic, Z.R.; Ferrari, M. Self-adhesive resin cements: A literature review. J. Adhes. Dent. 2008, 10, 251–258. [Google Scholar] [CrossRef]
- Juloski, J.; Radovic, I.; Goracci, C.; Vulicevic, Z.R.; Ferrari, M. Ferrule effect: A literature review. J. Endod. 2012, 38, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Yang, S.; Hai, Q.; Wang, J. Effect of Ferrule Thickness on Fracture Resistance of Endodontically Treated Incisors Re-stored with Fiber Post and Metal Crown. Int. J. Prosthodont. 2020, 33, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Sarkis-Onofre, R.; Pereira-Cenci, T.; Cenci, M. Current concepts on the restoration of endodontically treated teeth. Int. J. En-dodnd. Rehabil. 2015, 1, 22–34. [Google Scholar]
- Kawasaki, T.; Sato, T.; Hisanaga, R.; Nomoto, S.; Yotsuya, M.; Yoshinari, M.; Takemoto, S. Influence of one-wall remaining coronal tooth with resin abutment and fiber post on static and dynamic fracture resistance. Dent. Mater. J. 2022, 41, 241–248. [Google Scholar] [CrossRef] [PubMed]
SAMPLE | GROUP 1 | GROUP 2 | GROUP 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Fmax | δ at Fmax | W | Fmax | δ at Fmax | W | Fmax | δ at Fmax | W | |
1 | 1430.81 | 0.69 | 349.74 | 1447.23 | 1.04 | 677.29 | 1141.25 | 0.58 | 327.96 |
2 | 1132.25 | 0.44 | 98.21 | 1437.52 | 0.87 | 535.41 | 950.14 | 0.66 | 304.13 |
3 | 938.19 | 0.51 | 201.92 | 1383.78 | 0.69 | 413.95 | - | - | - |
4 | 891.92 | 0.78 | 505.80 | 880.72 | 0.45 | 88.58 | |||
5 | 532.16 | 0.76 | 306.27 | 347.81 | 0.47 | 202.32 | |||
AV | 985.09 | 292.39 | 1099.41 | 383.51 | 1045.69 | 316.05 | |||
SD | 330.28 | 154.04 | 481.89 | 239.85 | 146.19 | 16.84 |
SUMMARY | Fracture force data | Absorbed energy data | |||||
Groups | Count | Sum | Average | Variance | Sum | Average | Variance |
1 | 5 | 4925.36 | 985.09 | 109,092.5 | 1461.96 | 292.39 | 23,729.22 |
2 | 5 | 5497.08 | 1099.41 | 232,223.4 | 1917.57 | 383.51 | 57,530.04 |
3 | 2 | 2091.39 | 1045.69 | 18,261.5 | 632.10 | 316.05 | 283.91 |
ANOVA | |||||||
Source of Variation | SS | df | MS | F | p-value | F crit | |
Fracture force data | |||||||
Between Groups | 32,695.35 | 2 | 16,347.67 | 0.106344 | 0.900229 | 4.256495 | |
Within Groups | 1,383,525 | 9 | 153,725 | ||||
Total | 1,416,221 | 11 | |||||
Absorbed energy data | |||||||
Between Groups | 21,558.15 | 2 | 10,779.07 | 0.298203 | 0.749208 | 4.256495 | |
Within Groups | 325,321 | 9 | 36,146.78 | ||||
Total | 346,879.1 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinescu, A.-G.; Abuabboud, O.; Zimbru, Ș.-D.; Cîrligeriu, L.-E.; Piț, B.-A.; Borcean, I.-A.; Paven, M.; Nica, L.-M.; Stoia, D.I. Influence of the Fiber Post Length on the Fracture Strength of Endodontically Treated Teeth. Medicina 2023, 59, 1797. https://doi.org/10.3390/medicina59101797
Marinescu A-G, Abuabboud O, Zimbru Ș-D, Cîrligeriu L-E, Piț B-A, Borcean I-A, Paven M, Nica L-M, Stoia DI. Influence of the Fiber Post Length on the Fracture Strength of Endodontically Treated Teeth. Medicina. 2023; 59(10):1797. https://doi.org/10.3390/medicina59101797
Chicago/Turabian StyleMarinescu, Adrian-George, Osama Abuabboud, Ștefana-Denisa Zimbru, Laura-Elena Cîrligeriu, Bianca-Adina Piț, Ioana-Amalia Borcean, Mihai Paven, Luminița-Maria Nica, and Dan Ioan Stoia. 2023. "Influence of the Fiber Post Length on the Fracture Strength of Endodontically Treated Teeth" Medicina 59, no. 10: 1797. https://doi.org/10.3390/medicina59101797
APA StyleMarinescu, A.-G., Abuabboud, O., Zimbru, Ș.-D., Cîrligeriu, L.-E., Piț, B.-A., Borcean, I.-A., Paven, M., Nica, L.-M., & Stoia, D. I. (2023). Influence of the Fiber Post Length on the Fracture Strength of Endodontically Treated Teeth. Medicina, 59(10), 1797. https://doi.org/10.3390/medicina59101797