Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = self-adjuvanting property

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1171 KiB  
Article
Virus-like Particles Produced in the Baculovirus System Protect Hares from European Brown Hare Syndrome Virus (EBHSV) Infection
by Giulio Severi, Lucia Anzalone, Laura Madeo, Anna Serroni, Claudia Colabella, Antonella Di Paolo, Pier Mario Mangili, Elisabetta Manuali, Andrea Felici, Monica Cagiola, Antonio Lavazza, Lorenzo Capucci, Giovanni Pezzotti and Antonio De Giuseppe
Vaccines 2025, 13(7), 731; https://doi.org/10.3390/vaccines13070731 - 5 Jul 2025
Viewed by 415
Abstract
Background/Objectives: European Brown Hare Syndrome (EBHS) is an acute and highly contagious viral disease of hares that causes considerable economic losses on wild and captive-reared hares. No preventive treatments are currently available to defeat the disease. Immunoprophylactic and biosafety measures could be applied [...] Read more.
Background/Objectives: European Brown Hare Syndrome (EBHS) is an acute and highly contagious viral disease of hares that causes considerable economic losses on wild and captive-reared hares. No preventive treatments are currently available to defeat the disease. Immunoprophylactic and biosafety measures could be applied to prevent EBHS only in captive-reared hares, where vaccination is proposed as an effective strategy. Due to the lack of a cellular substrate for virus growth, commercially available vaccines are autovaccines produced from inactivated liver suspensions of hares dead for EBHS. Therefore, using a recombinant vaccine based on VP60 major capsid protein seems a viable alternative to overcome such a problem. Methods: the 6xHis C-terminal tagged VP60 protein of EBHSV was expressed and produced in baculovirus, purified by affinity chromatography and the self-assembled recombinant (rEVP60-His6) protein. To establish the protective properties of rEVP60-His6-based VLPs, hares were immunised with 50 and 100 µg of VLPs and parenterally challenged with EBHSV. Results: all hares vaccinated with 100 µg of VLPs survived after the experimental infection, demonstrating the excellent protective ability of this prototype VLPs-based vaccine. Conclusions: self-assembled EBHSV rEVP60-His6 protein was successfully produced following a rapid, simple, low-cost protocol. Although the protective efficacy of such VLPs were experimentally demonstrated, some key aspects remain to be clarified, including the duration of protection, the entity of the antibody response, and the ability to stimulate cell-mediated response. Last, an additional aspect to be evaluated is whether the use of an adjuvant can determine whether its presence improves the performance of the recombinant VLPs vaccine. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

26 pages, 1458 KiB  
Review
Innovation in mRNA Vaccines and RNAi via Protein Nanocages
by Sohrab Ahmadivand
Vaccines 2025, 13(6), 653; https://doi.org/10.3390/vaccines13060653 - 18 Jun 2025
Viewed by 916
Abstract
Self-assembling protein nanocages (SAPNs) are distinct natural structures formed by the self-assembly of identical subunits, providing a highly efficient platform and a novel strategy for vaccine development and RNAi therapy. Their internal cavity allows for precise cargo encapsulation, while the externally modifiable surface [...] Read more.
Self-assembling protein nanocages (SAPNs) are distinct natural structures formed by the self-assembly of identical subunits, providing a highly efficient platform and a novel strategy for vaccine development and RNAi therapy. Their internal cavity allows for precise cargo encapsulation, while the externally modifiable surface supports multivalent antigen presentation, thereby enhancing stability, targeted delivery, and immune activation. In addition to serving as stable subunit vaccines with multivalent antigen display, SAPNs can be incorporated into mRNA vaccines (SAPN-RNA vaccines) by pre-fusing with the antigen. This strategy stabilizes secreted antigenic proteins with prolonged presentation to the immune system, and improves vaccine efficacy while reducing off-target effects and minimizing required doses. Additionally, SAPNs can overcome cellular uptake barriers, enhance DNA vaccine efficacy, and enable the co-delivery of antigens and adjuvants. Functionalization with adjuvants or targeting ligands further improves their immunostimulatory properties and specificity. The SAPN-RNAi strategy optimizes siRNA delivery by promoting lysosomal escape, enhancing targeted uptake, and protecting siRNA from degradation through SAPN encapsulation. This review examines the structural and functional properties of protein nanocages and their applications in vaccine design and RNAi delivery, emphasizing their synergistic effects, and exploring current progress, challenges, and future directions. In conclusion, SAPNs represent a versatile multifunctional platform with broad applicability across subunit, mRNA and DNA vaccines, adjuvant co-delivery, and RNAi therapeutics, with significant potential against viral infections. Full article
(This article belongs to the Collection Advance in Nanoparticles as Vaccine Adjuvants)
Show Figures

Figure 1

17 pages, 2995 KiB  
Article
Engineered Outer Membrane Vesicles for Antigen Delivery: Exploratory Study on Adjuvant Activity and Systemic Reactogenicity
by Lu Lu, Lina Zhai, Qikun Ou, Shuli Sang, Chen Cao, Yiyan Guan, Yunyun Mao, Yanfang Zhai, Kai Li, Rui Yu and Yanchun Wang
Vaccines 2025, 13(6), 552; https://doi.org/10.3390/vaccines13060552 - 22 May 2025
Viewed by 630
Abstract
Background: Outer Membrane Vesicles (OMVs), nanosized particles derived from Gram-negative bacteria, are promising vaccine carriers due to innate immunogenicity and self-adjuvant properties. Yet the systematic evaluations of OMV-associated toxicity remain limited. Methods: We developed a CRISPR/Cas9-engineered Salmonella enterica serovar Typhimurium ΔmsbB mutant (Mut4_STM) [...] Read more.
Background: Outer Membrane Vesicles (OMVs), nanosized particles derived from Gram-negative bacteria, are promising vaccine carriers due to innate immunogenicity and self-adjuvant properties. Yet the systematic evaluations of OMV-associated toxicity remain limited. Methods: We developed a CRISPR/Cas9-engineered Salmonella enterica serovar Typhimurium ΔmsbB mutant (Mut4_STM) to produce detoxified OMVs (Mut4_OMVs) with enhanced yield. Subcutaneous immunization of BALB/c mice with Mut4_OMVs to evaluate safety, and the adjuvant efficacy was also determined by injecting Mut4_OMVs with Yersinia pestis F1Vmut or Bacillus anthracis PA_D4 antigens, mixing formulation, respectively. Results: Mut4_OMVs showed a 9-fold protein yield increase over wild-type OMVs. While all mice injected with wild-type OMVs died, 100% survival was observed in those receiving Mut4_OMVs. However, dose-dependent pathological alterations became evident in specific organs as the administration dose escalated, such as induced splenic extramedullary hematopoiesis and renal edema. Despite residual toxicity, 2–3 doses of 10 μg Mut4_OMVs elicited antigen-specific antibody titers comparable to aluminum adjuvant controls and superior T-cell immune responses. Conclusion: While Mut4_OMVs retain potent adjuvant activity, their residual toxicity necessitates further biocompatibility optimization for safe vaccine applications. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

26 pages, 4855 KiB  
Article
Dexborneol Amplifies Pregabalin’s Analgesic Effect in Mouse Models of Peripheral Nerve Injury and Incisional Pain
by Zhen Shen, Yun-Dan Guo, Ming-Ze Tang, Ping Zhou, Yu-Xin Su, Hao-Ran Shen, Tao Li, Wei Jiang, Yan-Xing Han, Cai Tie, Jing-Jing Cui, Tian-Le Gao and Jian-Dong Jiang
Antioxidants 2024, 13(7), 803; https://doi.org/10.3390/antiox13070803 - 2 Jul 2024
Cited by 2 | Viewed by 2051
Abstract
Pregabalin is a medication primarily used in the treatment of neuropathic pain and anxiety disorders, owing to its gabapentinoid properties. Pregabalin monotherapy faces limitations due to its variable efficacy and dose-dependent adverse reactions. In this study, we conducted a comprehensive investigation into the [...] Read more.
Pregabalin is a medication primarily used in the treatment of neuropathic pain and anxiety disorders, owing to its gabapentinoid properties. Pregabalin monotherapy faces limitations due to its variable efficacy and dose-dependent adverse reactions. In this study, we conducted a comprehensive investigation into the potentiation of pregabalin’s analgesic effects by dexborneol, a neuroprotective bicyclic monoterpenoid compound. We performed animal experiments where pain models were induced using two methods: peripheral nerve injury, involving axotomy and ligation of the tibial and common peroneal nerves, and incisional pain through a longitudinal incision in the hind paw, while employing a multifaceted methodology that integrates behavioral pharmacology, molecular biology, neuromorphology, and lipidomics to delve into the mechanisms behind this potentiation. Dexborneol was found to enhance pregabalin’s efficacy by promoting its transportation to the central nervous system, disrupting self-amplifying vicious cycles via the reduction of HMGB1 and ATP release, and exerting significant anti-oxidative effects through modulation of central lipid metabolism. This combination therapy not only boosted pregabalin’s analgesic property but also notably decreased its side effects. Moreover, this therapeutic cocktail exceeded basic pain relief, effectively reducing neuroinflammation and glial cell activation—key factors contributing to persistent and chronic pain. This study paves the way for more tolerable and effective analgesic options, highlighting the potential of dexborneol as an adjuvant to pregabalin therapy. Full article
Show Figures

Graphical abstract

18 pages, 2099 KiB  
Article
Persistence of Chronic Lymphocytic Leukemia Stem-like Populations under Simultaneous In Vitro Treatment with Curcumin, Fludarabine, and Ibrutinib: Implications for Therapy Resistance
by Àngel Bistué-Rovira, Laura G. Rico, Jorge Bardina, Jordi Juncà, Isabel Granada, Jolene A. Bradford, Michael D. Ward, Roser Salvia, Francesc Solé and Jordi Petriz
Int. J. Mol. Sci. 2024, 25(4), 1994; https://doi.org/10.3390/ijms25041994 - 7 Feb 2024
Cited by 1 | Viewed by 2155
Abstract
Leukemic stem cells (LSCs) possess similar characteristics to normal hematopoietic stem cells, including self-renewal capacity, quiescence, ability to initiate leukemia, and drug resistance. These cells play a significant role in leukemia relapse, persisting even after apparent remission. LSCs were first described in 1994 [...] Read more.
Leukemic stem cells (LSCs) possess similar characteristics to normal hematopoietic stem cells, including self-renewal capacity, quiescence, ability to initiate leukemia, and drug resistance. These cells play a significant role in leukemia relapse, persisting even after apparent remission. LSCs were first described in 1994 by Lapidot et al. Although they have been extensively studied in acute leukemia, more LSC research is still needed in chronic lymphocytic leukemia (CLL) to understand if reduced apoptosis in mature cells should still be considered as the major cause of this disease. Here, we provide new evidence suggesting the existence of stem-like cell populations in CLL, which may help to understand the disease as well as to develop effective treatments. In this study, we identified a potential leukemic stem cell subpopulation using the tetraploid CLL cell line I83. This subpopulation is characterized by diploid cells that were capable of generating the I83 tetraploid population. Furthermore, we adapted a novel flow cytometry analysis protocol to detect CLL subpopulations with stem cell properties in peripheral blood samples and primary cultures from CLL patients. These cells were identified by their co-expression of CD19 and CD5, characteristic markers of CLL cells. As previously described, increased alkaline phosphatase (ALP) activity is indicative of stemness and pluripotency. Moreover, we used this method to investigate the potential synergistic effect of curcumin in combination with fludarabine and ibrutinib to deplete this subpopulation. Our results confirmed the effectiveness of this ALP-based analysis protocol in detecting and monitoring leukemic stem-like cells in CLL. This analysis also identified limitations in eradicating these populations using in vitro testing. Furthermore, our findings demonstrated that curcumin significantly enhanced the effects of fludarabine and ibrutinib on the leukemic fraction, exhibiting synergistic effects (combination drug index, CDI 0.97 and 0.37, respectively). Our results lend support to the existence of potential stem-like populations in CLL cell lines, and to the idea that curcumin could serve as an effective adjuvant in therapies aimed at eliminating these populations and improving treatment efficacy. Full article
(This article belongs to the Special Issue Trends and Prospects of Flow Cytometry in Cell and Molecular Biology)
Show Figures

Figure 1

13 pages, 3122 KiB  
Article
Refining Immunogenicity through Intradermal Delivery of Outer Membrane Vesicles against Shigella flexneri in Mice
by Yadira Pastor, Alba Calvo, Josune Salvador-Erro and Carlos Gamazo
Int. J. Mol. Sci. 2023, 24(23), 16910; https://doi.org/10.3390/ijms242316910 - 29 Nov 2023
Cited by 2 | Viewed by 1654
Abstract
Shigellosis remains a global health concern, especially in low- and middle-income countries. Despite improvements in sanitation, the absence of a licensed vaccine for human use has prompted global health organizations to support the development of a safe and effective multivalent vaccine that is [...] Read more.
Shigellosis remains a global health concern, especially in low- and middle-income countries. Despite improvements in sanitation, the absence of a licensed vaccine for human use has prompted global health organizations to support the development of a safe and effective multivalent vaccine that is cost-effective and accessible for limited-resource regions. Outer Membrane Vesicles (OMVs) have emerged in recent years as an alternative to live attenuated or whole-inactivated vaccines due to their immunogenicity and self-adjuvating properties. Previous works have demonstrated the safety and protective capacity of OMVs against Shigella flexneri infection in mouse models when administered through mucosal or intradermal routes. However, some immunological properties, such as the cellular response or cross-protection among different Shigella strains, remained unexplored. In this study, we demonstrate that intradermal immunization of OMVs with needle-free devices recruits a high number of immune cells in the dermis, leading to a robust cellular response marked by antigen-specific cytokine release and activation of effector CD4 T cells. Additionally, functional antibodies are generated, neutralizing various Shigella serotypes, suggesting cross-protective capacity. These findings highlight the potential of OMVs as a promising vaccine platform against shigellosis and support intradermal administration as a simple and painless vaccination strategy to address this health challenge. Full article
Show Figures

Figure 1

16 pages, 2996 KiB  
Article
Synthesis and Optimization of Next-Generation Low-Molecular-Weight Pentablock Copolymer Nanoadjuvants
by Alaric C. Siddoway, Brianna M. White, Balaji Narasimhan and Surya K. Mallapragada
Vaccines 2023, 11(10), 1572; https://doi.org/10.3390/vaccines11101572 - 9 Oct 2023
Cited by 4 | Viewed by 1848
Abstract
Polymeric nanomaterials such as Pluronic®-based pentablock copolymers offer important advantages over traditional vaccine adjuvants and have been increasingly investigated in an effort to develop more efficacious vaccines. Previous work with Pluronic® F127-based pentablock copolymers, functionalized with poly(diethyl aminoethyl methacrylate) (PDEAEM) [...] Read more.
Polymeric nanomaterials such as Pluronic®-based pentablock copolymers offer important advantages over traditional vaccine adjuvants and have been increasingly investigated in an effort to develop more efficacious vaccines. Previous work with Pluronic® F127-based pentablock copolymers, functionalized with poly(diethyl aminoethyl methacrylate) (PDEAEM) blocks, demonstrated adjuvant capabilities through the antigen presentation and crosslinking of B cell receptors. In this work, we describe the synthesis and optimization of a new family of low-molecular-weight Pluronic®-based pentablock copolymer nanoadjuvants with high biocompatibility and improved adjuvanticity at low doses. We synthesized low-molecular-weight Pluronic® P123-based pentablock copolymers with PDEAEM blocks and investigated the relationship between polymer concentration, micellar size, and zeta potential, and measured the release kinetics of a model antigen, ovalbumin, from these nanomaterials. The Pluronic® P123-based pentablock copolymer nanoadjuvants showed higher biocompatibility than the first-generation Pluronic® F127-based pentablock copolymer nanoadjuvants. We assessed the adjuvant capabilities of the ovalbumin-containing Pluronic® P123-based pentablock copolymer-based nanovaccines in mice, and showed that animals immunized with these nanovaccines elicited high antibody titers, even when used at significantly reduced doses compared to Pluronic® F127-based pentablock copolymers. Collectively, these studies demonstrate the synthesis, self-assembly, biocompatibility, and adjuvant properties of a new family of low-molecular-weight Pluronic® P123-based pentablock copolymer nanomaterials, with the added benefits of more efficient renal clearance, high biocompatibility, and enhanced adjuvanticity at low polymer concentrations. Full article
(This article belongs to the Special Issue Advances in the Use of Nanoparticles for Vaccine Platform Development)
Show Figures

Figure 1

15 pages, 520 KiB  
Review
Cyclodextrin in Vaccines: Enhancing Efficacy and Stability
by Gamze Varan
Future Pharmacol. 2023, 3(3), 597-611; https://doi.org/10.3390/futurepharmacol3030038 - 24 Aug 2023
Cited by 3 | Viewed by 3443
Abstract
Cyclodextrins, a family of cyclic oligosaccharides, have received considerable interest in the field of pharmaceuticals due to their unique molecular structure and versatile properties. In the context of vaccines, cyclodextrins can effectively encapsulate antigens, ensuring their protection from degradation and improving their immunogenicity. [...] Read more.
Cyclodextrins, a family of cyclic oligosaccharides, have received considerable interest in the field of pharmaceuticals due to their unique molecular structure and versatile properties. In the context of vaccines, cyclodextrins can effectively encapsulate antigens, ensuring their protection from degradation and improving their immunogenicity. Cyclodextrins offer stability advantages to vaccines by preventing the degradation of labile vaccine components during storage and transportation. Furthermore, cyclodextrins can serve as adjuvants, potentiating the immune response triggered by vaccines. Their unique structure and interaction with the immune system enhance the recognition of antigens by immune cells, leading to an improved activation of both innate and adaptive immune responses. This adjuvant effect contributes to the development of robust and long-lasting immune protection against targeted pathogens. Owing to the distinctive attributes inherent to nanoparticles, their integration into vaccine formulations has assumed an imperative role. Through the encapsulation of vaccine antigens/adjuvants within cyclodextrin nanoparticles, the potency and stability of vaccines can be notably enhanced. In particular, the capacity of amphiphilic cyclodextrins to form nanoparticles through self-assembly without surfactants or co-solvents is a captivating prospect for their application as carrier systems for antigens. In conclusion, cyclodextrins present a promising platform for enhancing the efficacy and stability of vaccines. Their ability to encapsulate antigens, stabilize labile vaccine components and act as adjuvants demonstrates their potential to revolutionize vaccine formulation and delivery. Further research and development in this field will facilitate the translation of cyclodextrin-based vaccine technologies into practical and impactful immunization strategies, ultimately benefiting global health and disease prevention. Full article
(This article belongs to the Special Issue Cyclodextrin-Based Approach in Biotechnology)
Show Figures

Graphical abstract

28 pages, 3856 KiB  
Review
Bioengineered Bovine Papillomavirus L1 Protein Virus-like Particle (VLP) Vaccines for Enhanced Induction of CD8 T Cell Responses through Cross-Priming
by Raphael P. Viscidi, Treva Rowley and Ioannis Bossis
Int. J. Mol. Sci. 2023, 24(12), 9851; https://doi.org/10.3390/ijms24129851 - 7 Jun 2023
Cited by 2 | Viewed by 3202
Abstract
Safe and effective T cell vaccines are needed for the treatment or prevention of cancers as well as infectious agents where vaccines for neutralizing antibodies have performed poorly. Recent research highlights an important role for tissue-resident memory T cells (TRM cells) in [...] Read more.
Safe and effective T cell vaccines are needed for the treatment or prevention of cancers as well as infectious agents where vaccines for neutralizing antibodies have performed poorly. Recent research highlights an important role for tissue-resident memory T cells (TRM cells) in protective immunity and the role of a subset of dendritic cells that are capable of cross-priming for the induction of TRM cells. However, efficient vaccine technologies that operate through cross-priming and induce robust CD8+ T cell responses are lacking. We developed a platform technology by genetically engineering the bovine papillomavirus L1 major capsid protein to insert a polyglutamic acid/cysteine motif in place of wild-type amino acids in the HI loop. Virus-like particles (VLPs) are formed by self-assembly in insect cells infected with a recombinant baculovirus. Polyarginine/cysteine-tagged antigens are linked to the VLP by a reversible disulfide bond. The VLP possesses self-adjuvanting properties due to the immunostimulatory activity of papillomavirus VLPs. Polyionic VLP vaccines induce robust CD8+ T cell responses in peripheral blood and tumor tissues. A prostate cancer polyionic VLP vaccine was more efficacious than other vaccines and immunotherapies for the treatment of prostate cancer in a physiologically relevant murine model and successfully treated more advanced diseases than the less efficacious technologies. The immunogenicity of polyionic VLP vaccines is dependent on particle size, reversible linkage of the antigen to the VLP, and an interferon type 1 and Toll-like receptor (TLR)3/7-dependent mechanism. Full article
(This article belongs to the Special Issue Biomaterials for Biosensing and Other Biomedical Applications)
Show Figures

Figure 1

13 pages, 1955 KiB  
Article
The Development of Surface-Modified Liposomes as an Intranasal Delivery System for Group A Streptococcus Vaccines
by Jieru Yang, Jennifer C. Boer, Mattaka Khongkow, Sarunya Phunpee, Zeinab G. Khalil, Sahra Bashiri, Cyril Deceneux, Georgia Goodchild, Waleed M. Hussein, Robert J. Capon, Uracha Ruktanonchai, Magdalena Plebanski, Istvan Toth and Mariusz Skwarczynski
Vaccines 2023, 11(2), 305; https://doi.org/10.3390/vaccines11020305 - 30 Jan 2023
Cited by 6 | Viewed by 2813
Abstract
Intranasal vaccine administration can overcome the disadvantages of injectable vaccines and present greater efficiency for mass immunization. However, the development of intranasal vaccines is challenged by poor mucosal immunogenicity of antigens and the limited availability of mucosal adjuvants. Here, we examined a number [...] Read more.
Intranasal vaccine administration can overcome the disadvantages of injectable vaccines and present greater efficiency for mass immunization. However, the development of intranasal vaccines is challenged by poor mucosal immunogenicity of antigens and the limited availability of mucosal adjuvants. Here, we examined a number of self-adjuvanting liposomal systems for intranasal delivery of lipopeptide vaccine against group A Streptococcus (GAS). Among them, two liposome formulations bearing lipidated cell-penetrating peptide KALA and a new lipidated chitosan derivative (oleoyl-quaternized chitosan, OTMC) stimulated high systemic antibody titers in outbred mice. The antibodies were fully functional and were able to kill GAS bacteria. Importantly, OTMC was far more effective at stimulating antibody production than the classical immune-stimulating trimethyl chitosan formulation. In a simple physical mixture, OTMC also enhanced the immune responses of the tested vaccine, without the need for a liposome delivery system. The adjuvanting capacity of OTMC was further confirmed by its ability to stimulate cytokine production by dendritic cells. Thus, we discovered a new immune stimulant with promising properties for mucosal vaccine development. Full article
(This article belongs to the Collection Advance in Nanoparticles as Vaccine Adjuvants)
Show Figures

Figure 1

39 pages, 2503 KiB  
Review
Vaccination Strategies Based on Bacterial Self-Assembling Proteins as Antigen Delivery Nanoscaffolds
by Félix Lamontagne, Vinay Khatri, Philippe St-Louis, Steve Bourgault and Denis Archambault
Vaccines 2022, 10(11), 1920; https://doi.org/10.3390/vaccines10111920 - 13 Nov 2022
Cited by 19 | Viewed by 5462
Abstract
Vaccination has saved billions of human lives and has considerably reduced the economic burden associated with pandemic and endemic infectious diseases. Notwithstanding major advancements in recent decades, multitude diseases remain with no available effective vaccine. While subunit-based vaccines have shown great potential to [...] Read more.
Vaccination has saved billions of human lives and has considerably reduced the economic burden associated with pandemic and endemic infectious diseases. Notwithstanding major advancements in recent decades, multitude diseases remain with no available effective vaccine. While subunit-based vaccines have shown great potential to address the safety concerns of live-attenuated vaccines, their limited immunogenicity remains a major drawback that still needs to be addressed for their use fighting infectious illnesses, autoimmune disorders, and/or cancer. Among the adjuvants and delivery systems for antigens, bacterial proteinaceous supramolecular structures have recently received considerable attention. The use of bacterial proteins with self-assembling properties to deliver antigens offers several advantages, including biocompatibility, stability, molecular specificity, symmetrical organization, and multivalency. Bacterial protein nanoassemblies closely simulate most invading pathogens, acting as an alarm signal for the immune system to mount an effective adaptive immune response. Their nanoscale architecture can be precisely controlled at the atomic level to produce a variety of nanostructures, allowing for infinite possibilities of organized antigen display. For the bottom-up design of the proteinaceous antigen delivery scaffolds, it is essential to understand how the structural and physicochemical properties of the nanoassemblies modulate the strength and polarization of the immune responses. The present review first describes the relationships between structure and the generated immune responses, before discussing potential and current clinical applications. Full article
(This article belongs to the Collection Advance in Nanoparticles as Vaccine Adjuvants)
Show Figures

Figure 1

34 pages, 1712 KiB  
Review
Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy
by Andrew M. Hersh, Hallie Gaitsch, Safwan Alomari, Daniel Lubelski and Betty M. Tyler
Cancers 2022, 14(15), 3743; https://doi.org/10.3390/cancers14153743 - 31 Jul 2022
Cited by 30 | Viewed by 5798
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. [...] Read more.
Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival. Full article
(This article belongs to the Collection Treatment of Glioma)
Show Figures

Figure 1

32 pages, 2539 KiB  
Review
Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms
by Maria Chountoulesi, Stergios Pispas, Ioulia K. Tseti and Costas Demetzos
Pharmaceuticals 2022, 15(4), 429; https://doi.org/10.3390/ph15040429 - 31 Mar 2022
Cited by 44 | Viewed by 11843
Abstract
Lyotropic liquid crystals result from the self-assembly process of amphiphilic molecules, such as lipids, into water, being organized in different mesophases. The non-lamellar formed mesophases, such as bicontinuous cubic (cubosomes) and inverse hexagonal (hexosomes), attract great scientific interest in the field of pharmaceutical [...] Read more.
Lyotropic liquid crystals result from the self-assembly process of amphiphilic molecules, such as lipids, into water, being organized in different mesophases. The non-lamellar formed mesophases, such as bicontinuous cubic (cubosomes) and inverse hexagonal (hexosomes), attract great scientific interest in the field of pharmaceutical nanotechnology. In the present review, an overview of the engineering and characterization of non-lamellar lyotropic liquid crystalline nanosystems (LLCN) is provided, focusing on their advantages as drug delivery nanocarriers and innovative vaccine platforms. It is described that non-lamellar LLCN can be utilized as drug delivery nanosystems, as well as for protein, peptide, and nucleic acid delivery. They exhibit major advantages, including stimuli-responsive properties for the “on demand” drug release delivery and the ability for controlled release by manipulating their internal conformation properties and their administration by different routes. Moreover, non-lamellar LLCN exhibit unique adjuvant properties to activate the immune system, being ideal for the development of novel vaccines. This review outlines the recent advances in lipid-based liquid crystalline technology and highlights the unique features of such systems, with a hopeful scope to contribute to the rational design of future nanosystems. Full article
(This article belongs to the Special Issue Antiviral Drugs 2021)
Show Figures

Figure 1

19 pages, 2791 KiB  
Article
Immunoadjuvant and Humoral Immune Responses of Garlic (Allium sativum L.) Lectins upon Systemic and Mucosal Administration in BALB/c Mice
by Shruthishree D. Padiyappa, Hemavathi Avalappa, Madhusudana Somegowda, Shankarappa Sridhara, Yeldur P. Venkatesh, Bettadatunga T. Prabhakar, Siddanakoppalu N. Pramod, Mona S. Almujaydil, Shadi Shokralla, Ashraf M. M. Abdelbacki, Hosam O. Elansary, Ahmed M. El-Sabrout and Eman A. Mahmoud
Molecules 2022, 27(4), 1375; https://doi.org/10.3390/molecules27041375 - 17 Feb 2022
Cited by 11 | Viewed by 3478
Abstract
Dietary food components have the ability to affect immune function; following absorption, specifically orally ingested dietary food containing lectins can systemically modulate the immune cells and affect the response to self- and co-administered food antigens. The mannose-binding lectins from garlic (Allium sativum [...] Read more.
Dietary food components have the ability to affect immune function; following absorption, specifically orally ingested dietary food containing lectins can systemically modulate the immune cells and affect the response to self- and co-administered food antigens. The mannose-binding lectins from garlic (Allium sativum agglutinins; ASAs) were identified as immunodulatory proteins in vitro. The objective of the present study was to assess the immunogenicity and adjuvanticity of garlic agglutinins and to evaluate whether they have adjuvant properties in vivo for a weak antigen ovalbumin (OVA). Garlic lectins (ASA I and ASA II) were administered by intranasal (50 days duration) and intradermal (14 days duration) routes, and the anti-lectin and anti-OVA immune (IgG) responses in the control and test groups of the BALB/c mice were assessed for humoral immunogenicity. Lectins, co-administered with OVA, were examined for lectin-induced anti-OVA IgG response to assess their adjuvant properties. The splenic and thymic indices were evaluated as a measure of immunomodulatory functions. Intradermal administration of ASA I and ASA II had showed a four-fold and two-fold increase in anti-lectin IgG response, respectively, vs. the control on day 14. In the intranasal route, the increases were 3-fold and 2.4-fold for ASA I and ASA II, respectively, on day 50. No decrease in the body weights of animals was noticed; the increases in the spleen and thymus weights, as well as their indices, were significant in the lectin groups. In the adjuvanticity study by intranasal administration, ASA I co-administered with ovalbumin (OVA) induced a remarkable increase in anti-OVA IgG response (~six-fold; p < 0.001) compared to the control, and ASA II induced a four-fold increase vs. the control on day 50. The results indicated that ASA was a potent immunogen which induced mucosal immunogenicity to the antigens that were administered intranasally in BALB/c mice. The observations made of the in vivo study indicate that ASA I has the potential use as an oral and mucosal adjuvant to deliver candidate weak antigens. Further clinical studies in humans are required to confirm its applicability. Full article
Show Figures

Figure 1

27 pages, 3745 KiB  
Review
Nanovaccines against Animal Pathogens: The Latest Findings
by Carmen Teresa Celis-Giraldo, Julio López-Abán, Antonio Muro, Manuel Alfonso Patarroyo and Raúl Manzano-Román
Vaccines 2021, 9(9), 988; https://doi.org/10.3390/vaccines9090988 - 4 Sep 2021
Cited by 20 | Viewed by 5922
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or [...] Read more.
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens. Full article
(This article belongs to the Special Issue Vaccines against Infectious Diseases and Cancer)
Show Figures

Figure 1

Back to TopTop