Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = self-adhesive tape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3467 KiB  
Article
Carbon Nanotube Elastic Fabric Motion Tape Sensors for Low Back Movement Characterization
by Elijah Wyckoff, Sara P. Gombatto, Yasmin Velazquez, Job Godino, Kevin Patrick, Emilia Farcas and Kenneth J. Loh
Sensors 2025, 25(12), 3768; https://doi.org/10.3390/s25123768 - 17 Jun 2025
Viewed by 487
Abstract
Monitoring posture and movement accurately and efficiently is essential for both physical therapy and athletic training evaluation and interventions. Motion Tape (MT), a self-adhesive wearable skin-strain sensor made of piezoresistive graphene nanosheets (GNS), has demonstrated promise in capturing low back posture and movements. [...] Read more.
Monitoring posture and movement accurately and efficiently is essential for both physical therapy and athletic training evaluation and interventions. Motion Tape (MT), a self-adhesive wearable skin-strain sensor made of piezoresistive graphene nanosheets (GNS), has demonstrated promise in capturing low back posture and movements. However, to address some of its limitations, this work explores alternative materials by replacing GNS with multi-walled carbon nanotubes (MWCNT). This study aimed to characterize the electromechanical properties of MWCNT-based MT. Cyclic load tests for different peak tensile strains ranging from 1% to 10% were performed on MWCNT-MT made with an aqueous ink of 2% MWCNT. Additional tests to examine load rate sensitivity and fatigue were also conducted. After characterizing the properties of MWCNT-MT, a human subject study with 10 participants was designed to test its ability to capture different postures and movements. Sets of six sensors were made from each material (GNS and MWCNT) and applied in pairs at three levels along each side of the lumbar spine. To record movement of the lower back, all participants performed forward flexion, left and right bending, and left and right rotation movements. The results showed that MWCNT-MT exceeded GNS-MT with respect to consistency of signal stability even when strain limits were surpassed. In addition, both types of MT could assess lower back movements. Full article
(This article belongs to the Special Issue Sensing Technologies for Human Evaluation, Testing and Assessment)
Show Figures

Figure 1

10 pages, 1647 KiB  
Article
Application of Olivine Powder as a Filler for Silicone Pressure-Sensitive Adhesives
by Adrian Krzysztof Antosik
J. Compos. Sci. 2024, 8(12), 501; https://doi.org/10.3390/jcs8120501 - 2 Dec 2024
Viewed by 853
Abstract
In this work, new self-adhesive materials were obtained based on cross-linked silicone self-adhesives obtained by modifying the composition with the addition of a silicon filler, olivine. Silicone pressure-sensitive resin DOWSIL 7358 was used as a basis and modified with various amounts of olivine. [...] Read more.
In this work, new self-adhesive materials were obtained based on cross-linked silicone self-adhesives obtained by modifying the composition with the addition of a silicon filler, olivine. Silicone pressure-sensitive resin DOWSIL 7358 was used as a basis and modified with various amounts of olivine. New materials (self-adhesive tape samples) were characterized in terms of peel adhesion, tack, cohesion at room and elevated temperatures, SAFT test (shear adhesion failure temperature), pot life (storage stability), and shrinkage (dimensional stability). During the tests, an increase in thermal resistance (>225 °C) and a drastic reduction in shrinkage values (below 0.5%) were noted for all modified samples tested. All tests were performed in compliance with international standards, e.g., FINAT FTM 1, FINAT FTM 8, FINAT FTM 9, FINAT FTM 14, and GTF 6001. This allows us to conclude that the new material has significant application potential due to the good performance results. The results of adhesion and tack were in ranges accepted in the PSA industry, cohesion was kept at an unchanged level (above 72 h), and a great increase in the thermal resistance was observed (from 147 °C for pure resin to high above 225 °C for even the smallest additions of the olivine powder. Moreover, the shrinkage of prepared adhesive films was reduced significantly. In the available literature, there are no references to the modification of adhesives using powdered silicon minerals of natural origin, which is a novelty due to their higher bulk density compared to commercial powdered silicon fillers. Full article
Show Figures

Figure 1

9 pages, 2256 KiB  
Communication
Progressive and Asymmetrical Deadlift Loads Captured by Wearable Motion Tape Sensors
by Elijah Wyckoff, David Sten, Regan Wareham and Kenneth J. Loh
Sensors 2024, 24(23), 7700; https://doi.org/10.3390/s24237700 - 2 Dec 2024
Cited by 3 | Viewed by 1536
Abstract
Weight training is widely adopted and highly effective for enhancing both muscular strength and endurance. A popular weightlifting exercise is the deadlift, which targets multiple muscle groups including the lower back, glutes, and hamstrings. However, incorrect technique (i.e., poor form) can slow training [...] Read more.
Weight training is widely adopted and highly effective for enhancing both muscular strength and endurance. A popular weightlifting exercise is the deadlift, which targets multiple muscle groups including the lower back, glutes, and hamstrings. However, incorrect technique (i.e., poor form) can slow training progress, result in asymmetrical muscle development, and cause serious injuries. The objective of this study was to validate that a self-adhesive, elastic fabric, wearable, skin-strain sensor called Motion Tape (MT) could monitor a person’s posture while performing deadlift exercises. Two pairs of Motion Tape were attached on the front and back sides of the pelvis at each posterior superior iliac spine to record muscle engagement during deadlift exercises. The results of this preliminary study confirmed that the MT identified asymmetry in muscle engagement during deadlifting repetitions. In addition, the sensors could quantify the different levels of effort exerted according to the deadlift weight load. Full article
(This article belongs to the Special Issue Wearable Sensors for Optimising Rehabilitation and Sport Training)
Show Figures

Figure 1

11 pages, 498 KiB  
Article
Motion Tape Strain During Trunk Muscle Engagement in Young, Healthy Participants
by Spencer Spiegel, Elijah Wyckoff, Jay Barolo, Audrey Lee, Emilia Farcas, Job Godino, Kevin Patrick, Kenneth J. Loh and Sara P. Gombatto
Sensors 2024, 24(21), 6933; https://doi.org/10.3390/s24216933 - 29 Oct 2024
Cited by 1 | Viewed by 1063
Abstract
Background: Motion Tape (MT) is a low-profile, disposable, self-adhesive wearable sensor that measures skin strain. Preliminary studies have validated MT for measuring lower back movement. However, further analysis is needed to determine if MT can be used to measure lower back muscle engagement. [...] Read more.
Background: Motion Tape (MT) is a low-profile, disposable, self-adhesive wearable sensor that measures skin strain. Preliminary studies have validated MT for measuring lower back movement. However, further analysis is needed to determine if MT can be used to measure lower back muscle engagement. The purpose of this study was to measure differences in MT strain between conditions in which the lower back muscles were relaxed versus maximally activated. Methods: Ten participants without low back pain were tested. A matrix of six MTs was placed on the lower back, and strain data were captured under a series of conditions. The first condition was a baseline trial, in which participants lay prone and the muscles of the lower back were relaxed. The subsequent trials were maximum voluntary isometric contractions (MVICs), in which participants did not move, but resisted the examiner force in extension or rotational directions to maximally engage their lower back muscles. The mean MT strain was calculated for each condition. A repeated measures ANOVA was conducted to analyze the effects of conditions (baseline, extension, right rotation, and left rotation) and MT position (1–6) on the MT strain. Post hoc analyses were conducted for significant effects from the overall analysis. Results: The results of the ANOVA revealed a significant main effect of condition (p < 0.001) and a significant interaction effect of sensor and condition (p = 0.01). There were significant differences in MT strain between the baseline condition and the extension and rotation MVIC conditions, respectively, for sensors 4, 5, and 6 (p = 0.01–0.04). The largest differences in MT strain were observed between baseline and rotation conditions for sensors 4, 5, and 6. Conclusions: MT can capture maximal lower back muscle engagement while the trunk remains in a stationary position. Lower sensors are better able to capture muscle engagement than upper sensors. Furthermore, MT captured muscle engagement during rotation conditions better than during extension. Full article
(This article belongs to the Special Issue Advances in Mobile Sensing for Smart Healthcare)
Show Figures

Figure 1

21 pages, 5607 KiB  
Article
Comparative Analysis of the Cutaneous Microbiome in Psoriasis Patients and Healthy Individuals—Insights into Microbial Dysbiosis: Final Results
by Diana Sabina Radaschin, Alina Viorica Iancu, Alexandra Mariana Ionescu, Gabriela Gurau, Elena Niculet, Florin Ciprian Bujoreanu, Cristina Beiu, Alin Laurentiu Tatu and Liliana Gabriela Popa
Int. J. Mol. Sci. 2024, 25(19), 10583; https://doi.org/10.3390/ijms251910583 - 1 Oct 2024
Cited by 5 | Viewed by 1997
Abstract
Psoriasis is one of the most frequent chronic inflammatory skin diseases and exerts a significant psychological impact, causing stigmatization, low self-esteem and depression. The pathogenesis of psoriasis is remarkably complex, involving genetic, immune and environmental factors, some of which are still incompletely explored. [...] Read more.
Psoriasis is one of the most frequent chronic inflammatory skin diseases and exerts a significant psychological impact, causing stigmatization, low self-esteem and depression. The pathogenesis of psoriasis is remarkably complex, involving genetic, immune and environmental factors, some of which are still incompletely explored. The cutaneous microbiome has become more and more important in the pathogenesis of inflammatory skin diseases such as acne, rosacea, atopic dermatitis and psoriasis. Dysbiosis of the skin microbiome could be linked to acute flare ups in psoriatic disease, as recent studies suggest. Given this hypothesis, we conducted a study in which we evaluated the cutaneous microbiome of psoriasis patients and healthy individuals. In our study, we collected multiple samples using swab sampling, adhesive tape and punch biopsies. Our results are similar to other studies in which the qualitative and quantitative changes found in the cutaneous microbiome of psoriasis patients are different than healthy individuals. Larger, standardized studies are needed in order to elucidate the microbiome changes in psoriasis patients, clarify their role in the pathogenesis of psoriasis, decipher the interactions between the commensal microorganisms of the same and different niches and between microbiomes and the host and identify new therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular Research on Skin Disease: From Pathology to Therapy)
Show Figures

Figure 1

15 pages, 9452 KiB  
Article
Preparation of Robust Superhydrophobic Coatings Using Hydrophobic and Tough Micro/Nano Particles
by Tianyi Feng, Yifan Liu, Siyan Ye, Liping Sheng, Binrui Wu and Lingcai Huang
Coatings 2024, 14(9), 1156; https://doi.org/10.3390/coatings14091156 - 8 Sep 2024
Cited by 4 | Viewed by 2309
Abstract
Superhydrophobic nanocomposite coatings, prepared using adhesive and fillers, offer advantages including ease of fabrication and suitability for large-scale applications, but compared with other types of artificial superhydrophobic surfaces, poor durability still limits these surfaces from practical applications. The utilization of micro/nanoscale particles with [...] Read more.
Superhydrophobic nanocomposite coatings, prepared using adhesive and fillers, offer advantages including ease of fabrication and suitability for large-scale applications, but compared with other types of artificial superhydrophobic surfaces, poor durability still limits these surfaces from practical applications. The utilization of micro/nanoscale particles with both intrinsic hydrophobicity and robust mechanical properties to prepare coatings should significantly contribute to enhanced durability. Herein, rough and hydrophobic particles with micro/nano hierarchical structures were prepared at first, and robust superhydrophobic surfaces were fabricated using the prepared particles and additional nanoparticles. The initially prepared particles formed a rough framework of the coating, while additional nanoparticles provided inevitable nanoscale structures. A series of mechanical tests were carried out to validate the durability, and the surface with 20 wt.% NPs exhibited the best performance, withstanding 30 tape peeling tests, a 2.47 m sandpaper rubbing test (at a pressure of 5 kPa), the impact of 200 g of grit dropped from a height of 20 cm, and a 2 h acidic immersion. These appealing materials may attract attention for self-cleaning, high-speed water impact resistance, anti-icing, and anti-fouling applications in the coatings industry. Full article
(This article belongs to the Special Issue Superhydrophobic Surfaces and Coatings)
Show Figures

Figure 1

15 pages, 15437 KiB  
Article
Fluorine-Free and Robust Photothermal Superhydrophobic Coating Based on Biochar for Anti-/De-Icing
by Yuhang Lei, Lina Hu, Shuming Du, Dong Xu and Jingxiao Yang
Coatings 2024, 14(7), 838; https://doi.org/10.3390/coatings14070838 - 4 Jul 2024
Cited by 2 | Viewed by 1957
Abstract
Environmental pollution can be caused by the improper disposal of agricultural waste and the use of fluorinated chemicals. Icing is a natural phenomenon, but the accumulation of ice on the surface of electrical equipment can damage the equipment and reduce power generation efficiency. [...] Read more.
Environmental pollution can be caused by the improper disposal of agricultural waste and the use of fluorinated chemicals. Icing is a natural phenomenon, but the accumulation of ice on the surface of electrical equipment can damage the equipment and reduce power generation efficiency. Preparation of biochar anti-icing coatings with a fluorine-free process promotes resource utilization and environmental protection. In this study, superhydrophobic coatings with photothermal effect prepared based on biochar as a filler, which was blended with multi-walled carbon nanotubes (MWCNTs) and polyurea adhesive. The coating exhibits remarkable durability, as well as anti-icing, antifrosting, and self-cleaning characteristics. Utilizing fluorine-free chemicals enhances the environmentally friendly nature of the coating. The coating exhibits a contact angle of 155°, and the temperature can increase to 47.6 °C within a duration of 10 min. It can complete ice detachment in 128 s and defrosting in 210 s. The coating demonstrated exceptional durability when exposed to mechanical abrasion using sandpaper and steel brushes, water jet impact, acid and alkali corrosion, and tape-peeling tests. This study streamlines the procedure for creating photothermal superhydrophobic coatings, which contributes to environmental conservation and sustainable development. Additionally, it broadens the possibilities for recycling and reusing rejected crops. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

18 pages, 14387 KiB  
Article
Development of a Systematic Approach for the Assessment of Adhesive Tape Suitability to Ensure Airtightness
by Milda Jucienė, Vaida Dobilaitė, Jurga Kumžienė, Karolis Banionis, Valdas Paukštys and Aurelija Stonkuvienė
Buildings 2024, 14(5), 1346; https://doi.org/10.3390/buildings14051346 - 9 May 2024
Cited by 1 | Viewed by 1245
Abstract
Ensuring the tightness of buildings using self-adhesive tapes is one of the cost-effective, efficient, and reliable solutions. There is a lack of research, standards, and methodologies for construction adhesive tape, especially for assessing the functional properties of the tape after ageing. The aim [...] Read more.
Ensuring the tightness of buildings using self-adhesive tapes is one of the cost-effective, efficient, and reliable solutions. There is a lack of research, standards, and methodologies for construction adhesive tape, especially for assessing the functional properties of the tape after ageing. The aim of this work is to evaluate the tightness of different building surfaces and adhesive tape systems by conducting artificial ageing. It was found that adhesive tapes with an acrylic adhesive base ensured a fully sealed system. In all cases, tapes applied to surfaces such as plywood, gypsum plasterboard, cement-bonded particle board, plastered cement-bonded particle board, and plastic board provided sufficient sealing. The air permeability of the tapes on the OSB was two to seven times higher than that of the defined sealed system with other surfaces. In most cases, air permeability increased on OSB, gypsum plasterboard, and plastered cement-bonded particle board after ageing. The least problematic surface is the plastic board. In all tested cases, adequate sealing was observed after ageing, with only three of all tested tapes not providing sufficient bonding strength. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

12 pages, 5557 KiB  
Communication
Preparation and Corrosion Resistance of Superhydrophobic Coatings on 7005 Aluminum Alloy
by Huilan Huang, Feng Guo, Xintao Li, Peng Xia, Li Yang and Chuanbo Hu
Coatings 2024, 14(4), 499; https://doi.org/10.3390/coatings14040499 - 17 Apr 2024
Cited by 1 | Viewed by 1746
Abstract
Composite coatings on the surface of a semi-continuous cast 7005 aluminum alloy under different aging treatments (T6, RRA, and FSA) are presented and characterized in this research. SiO2 combined with stearic acid (STA) modified by KH550 was utilized to achieve multifunctional superhydrophobic [...] Read more.
Composite coatings on the surface of a semi-continuous cast 7005 aluminum alloy under different aging treatments (T6, RRA, and FSA) are presented and characterized in this research. SiO2 combined with stearic acid (STA) modified by KH550 was utilized to achieve multifunctional superhydrophobic coatings. Adhesive tape adhesion, blade scratch, and mechanical wear tests were utilized to assess the durability of the superhydrophobic coatings. The results showed that the prepared coatings exhibited excellent superhydrophobicity, self-cleaning ability, and mechanical properties, especially the T6 temper alloy. This alloy had the largest CA value (156.5°) and the lowest SA value (4.3°). The composite coatings still exhibited excellent superhydrophobicity under mechanical damage. Furthermore, the alloys with STA/SiO2 displayed marvelous corrosion resistance efficiency. The T6 temper alloy with a protection rate of 73.8% had an approximately one-order-of-magnitude decrement in carrion current density. The composite coating can be effectively utilized in various industrial fields, thus extending its potential impact. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

11 pages, 2149 KiB  
Article
Preparation of Durable Superhydrophobic Coatings Based on Discrete Adhesives
by Xuejuan Liu, Zhiguo Zhou, Ming Chen, Zheng Liu, Shuhui Jiang and Lei Wang
Coatings 2024, 14(4), 463; https://doi.org/10.3390/coatings14040463 - 11 Apr 2024
Cited by 7 | Viewed by 2906
Abstract
Due to the low adhesion observed at the interface between solid and liquid, superhydrophobic coatings hold significant promise for various applications, such as self-cleaning, anti-corrosion, anti-icing, and drag reduction. However, a notable challenge hindering their widespread adoption in these domains lies in their [...] Read more.
Due to the low adhesion observed at the interface between solid and liquid, superhydrophobic coatings hold significant promise for various applications, such as self-cleaning, anti-corrosion, anti-icing, and drag reduction. However, a notable challenge hindering their widespread adoption in these domains lies in their delicate durability. In this study, we propose a straightforward method for preparation. The fluorosilicone resin is initially discretized through a gradual introduction of nonsolvent into its solution, followed by thorough mixing and stirring with silica nanoparticles. The resulting mixture is then sprayed onto the substrate surface after drying, forming a self-similar, porous, and rough structure extending from top to bottom. This process yields a coating exhibiting excellent chemical and mechanical durability simultaneously. Using this approach, we achieved a superhydrophobic coating with a contact angle of 156° and a roll angle of 2.2°, with water droplet adhesion of only 10.8 ± 0.4 µN. Remarkably, the coating maintained excellent superhydrophobicity even after undergoing sandpaper abrasion (10 m), tape peeling (30 times), and prolonged water impact (60 min), showing its robust mechanical stability. Furthermore, following exposure to acid, alkali, and aqueous solutions (7 days), UV irradiation (10 days), and extreme temperature variations (–20 °C to 80 °C), the coatings retained their superhydrophobic properties and exhibited good chemical durability. This method offers a novel approach to enhance the durability and practicality of superhydrophobic coatings. Full article
(This article belongs to the Special Issue Hydrophobic and Anti-icing Coatings)
Show Figures

Figure 1

12 pages, 6439 KiB  
Article
Preparation and Self-Cleaning Properties of a Superhydrophobic Composite Coating on a Stainless Steel Substrate
by Fengqin Li, Yuxue Hu, Xiaoming Feng and Guizhong Tian
Coatings 2024, 14(2), 198; https://doi.org/10.3390/coatings14020198 - 2 Feb 2024
Cited by 2 | Viewed by 2017
Abstract
In order to improve the anti-fouling of stainless steel surfaces in outdoor or humid environments, a superhydrophobic modification is often used to improve its self-cleaning performance. However, the mechanical stability of superhydrophobic surfaces remains a challenge. In this paper, a two-step preparation method [...] Read more.
In order to improve the anti-fouling of stainless steel surfaces in outdoor or humid environments, a superhydrophobic modification is often used to improve its self-cleaning performance. However, the mechanical stability of superhydrophobic surfaces remains a challenge. In this paper, a two-step preparation method was adopted to prepare the micro–nanocomposite coating, which innovatively combined “top-down” and “bottom-up” approaches, and also coupled together two key factors that affect superhydrophobicity: a rough microstructure, and low surface energy. The silver mirror, adhesion, and pollution-resistance results show that the composite coating samples, which were obtained by optimizing the preparation process, have excellent water repellency and self-cleaning properties. Meanwhile, the samples demonstrate outstanding mechanical stability, and can resist damage from sandpaper and tape. The two-step preparation method was simple, fast, and efficient. This method could be popularized and applied to the preparation of superhydrophobic surfaces on metal substrates. Full article
(This article belongs to the Special Issue Recent Advances in Hydrophobic Surface and Materials)
Show Figures

Figure 1

16 pages, 4330 KiB  
Article
Influence of Talc on the Properties of Silicone Pressure-Sensitive Adhesives
by Adrian Krzysztof Antosik, Artur Grajczyk, Marzena Półka, Magdalena Zdanowicz, John Halpin and Marcin Bartkowiak
Materials 2024, 17(3), 708; https://doi.org/10.3390/ma17030708 - 1 Feb 2024
Cited by 6 | Viewed by 1632
Abstract
The article describes new silicone self-adhesive adhesives modified with the addition of talc. The obtained self-adhesive materials were characterized to determine their adhesive properties (adhesion, cohesion, and adhesion) and functional properties (pot life of the composition, shrinkage, and thermal properties of adhesives). Novel [...] Read more.
The article describes new silicone self-adhesive adhesives modified with the addition of talc. The obtained self-adhesive materials were characterized to determine their adhesive properties (adhesion, cohesion, and adhesion) and functional properties (pot life of the composition, shrinkage, and thermal properties of adhesives). Novel materials exhibited high thermal resistance above 225 °C while maintaining or slightly reducing other values (adhesion, cohesion, shrinkage, and tack). Selected composition: T 0.1 was used to prepare self-adhesives in industrial-scale production. Moreover, conducted test results revealed that the addition of talc delayed the thermal decomposition of the adhesive and provided reduced intensity of smoke emissions during combustion as well as the flammability of the adhesive layer. Full article
Show Figures

Figure 1

21 pages, 15978 KiB  
Article
Preparation and Performance of H-PDMS/PMHS/OTS Hybrid Nanosilica Hydrophobic and Self-Cleaning Coatings on Phosphogypsum Surface
by Guang Yang, Zhonghua Chen, Changwei Lv, Lei Deng, Xiaofeng Luo, Yi Li, Songtao He and Qibin Liu
Polymers 2023, 15(17), 3574; https://doi.org/10.3390/polym15173574 - 28 Aug 2023
Cited by 7 | Viewed by 2366
Abstract
Hemihydrate phosphogypsum, an industrial solid waste product of phosphoric acid production, is abundant and inexpensive. If the problem of poor water resistance is solved, this material could be substituted for cement and other traditional energy-consuming cementitious materials in the construction industry. This approach [...] Read more.
Hemihydrate phosphogypsum, an industrial solid waste product of phosphoric acid production, is abundant and inexpensive. If the problem of poor water resistance is solved, this material could be substituted for cement and other traditional energy-consuming cementitious materials in the construction industry. This approach would confer important economic and environmental benefits while promoting the resource utilization of phosphogypsum (PG). In this study, hydrophobic and self-cleaning coatings of H-PDMS/PMHS/OTS hybrid nanosilica were prepared on a post-hydroxylated PG surface using sol–gel and impregnation methods. The water contact angle, Fourier-transform infrared spectroscopy, Three-dimensional surface morphology and roughness analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, surface abrasion tests, and tape adhesion tests were used to evaluate the hydrophobicity of the coatings. The results demonstrated that the in situ reaction produced a hydrophobic siloxane/nanosilica hybrid network that bonded to the PG surface via hydrogen bonding, making the otherwise completely hydrophilic PG hydrophobic (PGH-3, contact angle (CA) = 144.1°). The PGH-3 sample exhibited excellent chemical stability, maintaining a contact angle greater than 135° under strongly acidic or alkaline conditions. The contact angle remained at 123.7° after 50 tape-bonding tests. After 100 wear cycles, the contact angle remained at 121.9°. This study presents an environmentally friendly method and a straightforward application procedure to impart hydrophobicity to solid waste PG. Its potential is thus demonstrated in the field of PG-based construction materials and the comprehensive utilization of solid waste. Full article
Show Figures

Graphical abstract

17 pages, 6835 KiB  
Article
Effect of Artificial Aging of Peel Adhesion of Self-Adhesive Tapes on Different Construction Surfaces
by Vaida Dobilaitė, Milda Jucienė, Karolis Banionis, Jurga Kumžienė, Valdas Paukštys, Aurelija Stonkuvienė and Kęstutis Miškinis
Appl. Sci. 2023, 13(15), 8947; https://doi.org/10.3390/app13158947 - 3 Aug 2023
Cited by 2 | Viewed by 2297
Abstract
It is important to develop research on sealing materials in order to find effective solutions to ensure the energy efficiency of buildings. The aim of this study is to investigate the peel adhesion of single-sided self-adhesive tapes to different construction surfaces and to [...] Read more.
It is important to develop research on sealing materials in order to find effective solutions to ensure the energy efficiency of buildings. The aim of this study is to investigate the peel adhesion of single-sided self-adhesive tapes to different construction surfaces and to determine the change in this characteristic due to climatic effects. Different construction tapes, mostly used externally in buildings, are glued to different substrates. The artificial aging of test samples was carried out, simulating the effects of moisture, heat, and cold; the intensity, duration, and sequence of the cyclic effects were determined, taking into account the statistical climatological data of the middle-latitude climate zone. The peel adhesion of the tapes was determined before and after different numbers of artificial aging cycles. The results show that the peel adhesion range is very wide, from 11 to 61 N/24 mm. In most cases, a lower-rated peeling adhesion was obtained by peeling the tape from plastered cement–sawdust board. The change in peel adhesion depends more on the surface to which the tape is glued than it does on the number of climatic exposure cycles selected for the test. Full article
(This article belongs to the Special Issue Innovative Building Materials)
Show Figures

Figure 1

14 pages, 5196 KiB  
Article
Composites Based on Cotton Microfibers Impregnated with Magnetic Liquid for Magneto-Tactile Sensors
by Ioan Bica and Gabriela-Eugenia Iacobescu
Materials 2023, 16(8), 3222; https://doi.org/10.3390/ma16083222 - 19 Apr 2023
Cited by 2 | Viewed by 1492
Abstract
In this paper, we report the preparation of two new composite materials based on cotton fibers and magnetic liquid consisting of magnetite nanoparticles and light mineral oil. Using the composites and two simple textolite plates plated with copper foil assembled with self-adhesive tape, [...] Read more.
In this paper, we report the preparation of two new composite materials based on cotton fibers and magnetic liquid consisting of magnetite nanoparticles and light mineral oil. Using the composites and two simple textolite plates plated with copper foil assembled with self-adhesive tape, electrical devices are manufactured. By using an original experimental setup, we measured the electrical capacitance and the loss tangent in a medium-frequency electric field superimposed on a magnetic field. We found that in the presence of the magnetic field, the electrical capacity and the electrical resistance of the device change significantly with the increase of the magnetic field, then, the electrical device is suitable to be used as a magnetic sensor. Furthermore, the electrical response functions of the sensor, for fixed values of the magnetic flux density, change linearly with the increase in the value of the mechanical deformation stress, which gives it a tactile function. When applying mechanical stresses of fixed values, by increasing the value of the magnetic flux density, the capacitive and resistive functions of the electrical device change significantly. So, by using the external magnetic field, the sensitivity of the magneto-tactile sensor increases, therefore the electrical response of this device can be amplified in the case of low values of mechanical tension. This makes the new composites promising candidates for the fabrication of magneto-tactile sensors. Full article
Show Figures

Figure 1

Back to TopTop