Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = seasonal haze

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 2191 KiB  
Review
Photochemical Haze Formation on Titan and Uranus: A Comparative Review
by David Dubois
Int. J. Mol. Sci. 2025, 26(15), 7531; https://doi.org/10.3390/ijms26157531 - 4 Aug 2025
Viewed by 94
Abstract
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional [...] Read more.
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional and seasonal variability, creating environments favorable for the production of complex organic molecules under low-temperature conditions. Among them, Uranus—the smallest of the ice giants—has, since Voyager 2, emerged as a compelling target for future exploration due to unanswered questions regarding the composition and structure of its atmosphere, as well as its ring system and diverse icy moon population (which includes four possible ocean worlds). Titan, as the only moon to harbor a dense atmosphere, presents some of the most complex and unique organics found in the solar system. Central to the production of these organics are chemical processes driven by low-energy photons and electrons (<50 eV), which initiate reaction pathways leading to the formation of organic species and gas phase precursors to high-molecular-weight compounds, including aerosols. These aerosols, in turn, remain susceptible to further processing by low-energy UV radiation as they are transported from the upper atmosphere to the lower stratosphere and troposphere where condensation occurs. In this review, I aim to summarize the current understanding of low-energy (<50 eV) photon- and electron-induced chemistry, drawing on decades of insights from studies of Titan, with the objective of evaluating the relevance and extent of these processes on Uranus in anticipation of future observational and in situ exploration. Full article
(This article belongs to the Special Issue Chemistry Triggered by Low-Energy Particles)
Show Figures

Figure 1

18 pages, 4489 KiB  
Article
Influence of Regional PM2.5 Sources on Air Quality: A Network-Based Spatiotemporal Analysis in Northern Thailand
by Khuanchanok Chaichana, Supanut Chaidee, Sayan Panma, Nattakorn Sukantamala, Neda Peyrone and Anchalee Khemphet
Mathematics 2025, 13(15), 2468; https://doi.org/10.3390/math13152468 - 31 Jul 2025
Viewed by 255
Abstract
Northern Thailand frequently suffers from severe PM2.5 air pollution, especially during the dry season, due to agricultural burning, local emissions, and transboundary haze. Understanding how pollution moves across regions and identifying source–receptor relationships are critical for effective air quality management. This study investigated [...] Read more.
Northern Thailand frequently suffers from severe PM2.5 air pollution, especially during the dry season, due to agricultural burning, local emissions, and transboundary haze. Understanding how pollution moves across regions and identifying source–receptor relationships are critical for effective air quality management. This study investigated the spatial and temporal dynamics of PM2.5 in northern Thailand. Specifically, it explored how pollution at one monitoring station influenced concentrations at others and revealed the seasonal structure of PM2.5 transmission using network-based analysis. We developed a Python-based framework to analyze daily PM2.5 data from 2022 to 2023, selecting nine representative stations across eight provinces based on spatial clustering and shape-based criteria. Delaunay triangulation was used to define spatial connections among stations, capturing the region’s irregular geography. Cross-correlation and Granger causality were applied to identify time-lagged relationships between stations for each season. Trophic coherence analysis was used to evaluate the hierarchical structure and seasonal stability of the resulting networks. The analysis revealed seasonal patterns of PM2.5 transmission, with certain stations, particularly in Chiang Mai and Lampang, consistently acting as source nodes. Provinces such as Phayao and Phrae were frequently identified as receptors, especially during the winter and rainy seasons. Trophic coherence varied by season, with the winter network showing the highest coherence, indicating a more hierarchical but less stable structure. The rainy season exhibited the lowest coherence, reflecting greater structural stability. PM2.5 spreads through structured, seasonal pathways in northern Thailand. Network patterns vary significantly across seasons, highlighting the need for adaptive air quality strategies. This framework can help identify influential monitoring stations for early warning and support more targeted, season-specific air quality management strategies in northern Thailand. Full article
(This article belongs to the Special Issue Application of Mathematical Theory in Data Science)
Show Figures

Figure 1

25 pages, 8643 KiB  
Article
Investigating Meteorological Factors Influencing Pollutant Concentrations and Copernicus Atmosphere Monitoring Service (CAMS) Model Forecasts in the Tehran Metropolis
by Sara Karami, Zahra Ghassabi, Noushin Khoddam and Maral Habibi
Atmosphere 2025, 16(3), 264; https://doi.org/10.3390/atmos16030264 - 24 Feb 2025
Cited by 1 | Viewed by 908
Abstract
In recent years, air pollution has become a significant issue for megacities. This study analyzed the air pollution levels in Tehran and the relationship between pollutant concentrations and atmospheric quantities during 2023. The correlation coefficients between wind speed, temperature, mean sea level pressure [...] Read more.
In recent years, air pollution has become a significant issue for megacities. This study analyzed the air pollution levels in Tehran and the relationship between pollutant concentrations and atmospheric quantities during 2023. The correlation coefficients between wind speed, temperature, mean sea level pressure (MSLP), and relative humidity (RH) were calculated against the concentrations of NO2, NOx, PM10, and PM2.5. Additionally, one case study was conducted for each pollutant. Approximately 72% of haze phenomena in Tehran were recorded in November, December, and January. The monthly pattern of PM10 concentration indicated higher levels in the southern and western parts of Tehran. For PM2.5, in addition to these areas, significant concentrations were also observed in the central and eastern parts. NO2 concentrations were found to be higher in the northeast and northern areas. An inverse relationship was found between wind speed and temperature with pollutant concentrations. Positive correlations between MSLP and pollutant concentrations suggested that the pollutant levels also increased as air pressure rose. RH showed a significant direct relationship with PM2.5 and NOx. Synoptic analysis revealed that PM10 case studies often occurred during the warm season, with a thermal low pressure situated over the Iranian plateau. During PM2.5 and NO2 pollution events, Tehran was influenced by high pressure, and 10 m wind speeds were weak. Finally, verification of the 24 h forecast of the CAMS model showed that, while the model accurately predicted the spatial distribution of pollutants in most cases, it consistently underestimated the concentration levels. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Monitoring and Observation)
Show Figures

Figure 1

17 pages, 3996 KiB  
Article
The Influence of Relative Humidity and Pollution on the Meteorological Optical Range During Rainy and Dry Months in Mexico City
by Blanca Adilen Miranda-Claudes and Guillermo Montero-Martínez
Atmosphere 2024, 15(11), 1382; https://doi.org/10.3390/atmos15111382 - 16 Nov 2024
Viewed by 1018
Abstract
The Meteorological Optical Range (MOR) is a measurement of atmospheric visibility. Visibility impairment has been linked to increased aerosol levels in the air. This study conducted statistical analyses using meteorological, air pollutant concentration, and MOR data collected in Mexico City from [...] Read more.
The Meteorological Optical Range (MOR) is a measurement of atmospheric visibility. Visibility impairment has been linked to increased aerosol levels in the air. This study conducted statistical analyses using meteorological, air pollutant concentration, and MOR data collected in Mexico City from August 2014 to December 2015 to determine the factors contributing to haze occurrence (periods when MOR < 10,000 m), defined using a light scatter sensor (PWS100). The outcomes revealed seasonal patterns in PM2.5 and relative humidity (RH) for haze occurrence along the year. PM2.5 levels during hazy periods in the dry season were higher compared to the wet season, aligning with periods of poor air quality (PM2.5 > 45 μg/m3). Pollutant-to-CO ratios suggested that secondary aerosols’ production, led by SO2 conversion to sulfate particles, mainly impacts haze occurrence during the dry season. Meanwhile, during the rainy season, the PWS100 registered haze events even with PM2.5 values close to 15 μg/m3 (considered good air quality). The broadened distribution of extinction efficiency during the wet period and its correlation with RH suggest that aerosol water vapor uptake significantly impacts visibility during this season. Therefore, attributing poor visibility strictly to poor air quality may not be appropriate for all times and locations. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

15 pages, 4518 KiB  
Article
The Characteristics of the Chemical Composition of PM2.5 during a Severe Haze Episode in Suzhou, China
by Xiangpeng Huang, Yusheng Chen, Yue’e Li and Junfeng Wang
Atmosphere 2024, 15(10), 1204; https://doi.org/10.3390/atmos15101204 - 9 Oct 2024
Cited by 1 | Viewed by 1383
Abstract
During the past decade, the air quality has been greatly improved in China since the implementation of the “Clean Air Act”. However, haze events are still being reported in some regions of China, and the pollution mechanism remains unclear. In this study, we [...] Read more.
During the past decade, the air quality has been greatly improved in China since the implementation of the “Clean Air Act”. However, haze events are still being reported in some regions of China, and the pollution mechanism remains unclear. In this study, we investigate the chemical characteristics of the pollution mechanism of the PM2.5 composition in Suzhou from October 18 to December 15, 2020. A notable declining trend in temperature was observed from 18 to 27 November, which indicates the seasonal transition from fall to the winter season. Four representative periods were identified based on meteorological parameters and the PM2.5 mass concentrations. The heavy pollution period had the typical characteristics of a relatively low temperature, a high relative humidity, and mass loadings of atmospheric pollutants; nitrate was the dominant contributor to the haze pollution during this period. The nitrate formation mechanism was driven by the planetary boundary layer dynamics. The potential source contribution function model (PSCF) showed that the major PM2.5 composition originated from the northwest direction of the sampling site. The aerosol liquid water content presented increasing trends with an increasing relative humidity. The pH was the highest during the heavy pollution period, which was influenced by the aerosol liquid water content and the mass loadings of NO3, SO42−, NH4+, and Cl. The comprehensive analysis in this paper could improve our understanding of the nitrate pollution mechanism and environmental effects in this region. Full article
(This article belongs to the Special Issue Haze and Related Aerosol Air Pollution in Remote and Urban Areas)
Show Figures

Figure 1

27 pages, 11457 KiB  
Article
From Polar Day to Polar Night: A Comprehensive Sun and Star Photometer Study of Trends in Arctic Aerosol Properties in Ny-Ålesund, Svalbard
by Sandra Graßl, Christoph Ritter, Jonas Wilsch, Richard Herrmann, Lionel Doppler and Roberto Román
Remote Sens. 2024, 16(19), 3725; https://doi.org/10.3390/rs16193725 - 7 Oct 2024
Cited by 1 | Viewed by 2061
Abstract
The climate impact of Arctic aerosols, like the Arctic Haze, and their origin are not fully understood. Therefore, long-term aerosol observations in the Arctic are performed. In this study, we present a homogenised data set from a sun and star photometer operated in [...] Read more.
The climate impact of Arctic aerosols, like the Arctic Haze, and their origin are not fully understood. Therefore, long-term aerosol observations in the Arctic are performed. In this study, we present a homogenised data set from a sun and star photometer operated in the European Arctic, in Ny-Ålesund, Svalbard, of the 20 years from 2004–2023. Due to polar day and polar night, it is crucial to use observations of both instruments. Their data is evaluated in the same way and follows the cloud-screening procedure of AERONET. Additionally, an improved method for the calibration of the star photometer is presented. We found out, that autumn and winter are generally more polluted and have larger particles than summer. While the monthly median Aerosol Optical Depth (AOD) decreases in spring, the AOD increases significantly in autumn. A clear signal of large particles during the Arctic Haze can not be distinguished from large aerosols in winter. With autocorrelation analysis, we found that AOD events usually occur with a duration of several hours. We also compared AOD events with large-scale processes, like large-scale oscillation patterns, sea ice, weather conditions, or wildfires in the Northern Hemisphere but did not find one single cause that clearly determines the Arctic AOD. Therefore the observed optical depth is a superposition of different aerosol sources. Full article
Show Figures

Figure 1

17 pages, 12981 KiB  
Article
Vertical Distribution of Water Vapor During Haze Processes in Northeast China Based on Raman Lidar Measurements
by Tianpei Zhang, Zhenping Yin, Yubin Wei, Yaru Dai, Longlong Wang, Xiangyu Dong, Yuan Gao, Lude Wei, Qixiong Zhang, Di Hu and Yifan Zhou
Remote Sens. 2024, 16(19), 3713; https://doi.org/10.3390/rs16193713 - 6 Oct 2024
Cited by 1 | Viewed by 1280
Abstract
Haze refers to an atmospheric phenomenon with extremely low visibility, which has significant impacts on human health and safety. Water vapor alters the scattering properties of atmospheric particulate matter, thus affecting visibility. A comprehensive analysis of the role of water vapor in haze [...] Read more.
Haze refers to an atmospheric phenomenon with extremely low visibility, which has significant impacts on human health and safety. Water vapor alters the scattering properties of atmospheric particulate matter, thus affecting visibility. A comprehensive analysis of the role of water vapor in haze formation is of great scientific significance for forecasting severe pollution weather events. This study investigates the distribution characteristics and variations of water vapor during haze weather in Changchun City (44°N, 125.5°E) in autumn and winter seasons, aiming to reveal the relationship between haze and atmospheric water vapor content. Analysis of observational results for a period of two months (October to November 2023) from a three-wavelength Raman lidar deployed at the site reveals that atmospheric water vapor content is mainly concentrated below 5 km, accounting for 64% to 99% of the total water vapor below 10 km. Furthermore, water vapor content in air pollution exhibits distinct stratification characteristics with altitude, especially within the height range of 1–3 km, where significant water vapor variation layers exist, showing spatial consistency with inversion layers. Statistical analysis of haze events at the site indicates a high correlation between the concentration variations of PM2.5 and PM10 and the variations in average water vapor mixing ratio (WVMR). During haze episodes, the average WVMR within 3 km altitude is 3–4 times higher than that during clear weather. Analysis of spatiotemporal height maps of aerosols and water vapor during a typical haze event suggests that the relative stability of the atmospheric boundary layer may hinder the vertical transport and diffusion of aerosols. This, in turn, could lead to a sharp increase in aerosol extinction coefficients through hygroscopic growth, thereby possibly exacerbating haze processes. These observational findings indicate that water vapor might play a significant role in haze formation, emphasizing the potential importance of observing the vertical distribution of water vapor for better simulation and prediction of haze events. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

23 pages, 3244 KiB  
Article
Assessment of Hygroscopic Behavior of Arctic Aerosol by Contemporary Lidar and Radiosonde Observations
by Nele Eggers, Sandra Graßl and Christoph Ritter
Remote Sens. 2024, 16(16), 3087; https://doi.org/10.3390/rs16163087 - 21 Aug 2024
Cited by 2 | Viewed by 1120
Abstract
This study presents the hygroscopic properties of aerosols from the Arctic free troposphere by means of contemporary lidar and radiosonde observations only. It investigates the period from the Arctic Haze in spring towards the summer season in 2021. Therefore, a one-parameter growth curve [...] Read more.
This study presents the hygroscopic properties of aerosols from the Arctic free troposphere by means of contemporary lidar and radiosonde observations only. It investigates the period from the Arctic Haze in spring towards the summer season in 2021. Therefore, a one-parameter growth curve model is applied to lidar data from the Koldewey Aerosol Raman Lidar (AWIPEV in Ny-Ålesund, Svalbard) and simultaneous radiosonde measurements. Hygroscopic growth depends on different factors like aerosol diameter and chemical composition. To detangle this dependency, three trends in hygroscopicity are additionally investigated by classifying the aerosol first by its dry color ratio, and then by its season and altitude. Generally, we found a complex altitude dependence with the least hygroscopic particles in the middle of the troposphere. The most hygroscopic aerosol is located in the upper free troposphere. A hypothesis based on prior lifting of the particles is given. The expected trend with aerosol diameter is not observed, which draws attention to the complex dependence of hygroscopic growth on geographical region and altitude, and to the development of backscatter with the aerosol size itself. In a seasonal overview, two different modes of stronger or weaker hygroscopic particles are additionally observed. Furthermore, two special days are discussed using the Mie theory. They show, on the one hand, the complexity of analyzing hygroscopic growth by means of lidar data, but on the other hand, they demonstrate that it is in fact measurable with this approach. For these two case studies, we calculated that the aerosol effective radius increased from 0.16μm (dry) to 0.18μm (wet) and from 0.28μm to 0.32μm for the second case. Full article
Show Figures

Figure 1

12 pages, 4217 KiB  
Article
Decadal Trends in Ambient Air Pollutants and Their Association with COPD and Lung Cancer in Upper Northern Thailand: 2013–2022
by Pachara Sapbamrer, Pheerasak Assavanopakun and Jinjuta Panumasvivat
Toxics 2024, 12(5), 321; https://doi.org/10.3390/toxics12050321 - 28 Apr 2024
Cited by 2 | Viewed by 2957
Abstract
Air pollution in upper northern Thailand raises health concerns. This study examined trends and associations between air pollutants and respiratory diseases, focusing on COPD and lung cancer during haze (December–May) and non-haze (June–November) seasons in upper northern Thailand from 2013 to 2022. This [...] Read more.
Air pollution in upper northern Thailand raises health concerns. This study examined trends and associations between air pollutants and respiratory diseases, focusing on COPD and lung cancer during haze (December–May) and non-haze (June–November) seasons in upper northern Thailand from 2013 to 2022. This study utilized data from the Pollution Control Department and Chiang Mai Provincial Public Health. The key air pollutants included PM10, PM2.5, SO2, NO2, CO, and O3. Respiratory disease data included fatality rates for lung cancer and COPD and the re-admission rate for COPD. Results indicated peak air pollutant levels and COPD re-admission rates in March, with PM2.5 concentrations exceeding air quality standards from January to April. During haze periods, COPD fatality and re-admission rates significantly increased (mean difference: 0.43 and 4.23 per 1000-case population, respectively; p < 0.001), while lung cancer fatality rates were higher without statistical significance. Pearson correlation analysis found positive correlations between PM10, PM2.5, O3, and NO2 concentrations and COPD re-admission and fatality rates at 0–1 month lag times, with a declining trend observed at subsequent lag intervals of 2 to 3 months. Overall, this study highlights the predictable pattern of air pollution in the region, correlating with higher COPD fatality and re-admission rates. Full article
(This article belongs to the Special Issue Air Pollutant Exposure and Respiratory Diseases)
Show Figures

Figure 1

28 pages, 6033 KiB  
Article
The Variation in Atmospheric Turbidity over a Tropical Site in Nigeria and Its Relation to Climate Drivers
by Olanrewaju Olukemi SoneyeArogundade and Bernhard Rappenglück
Atmosphere 2024, 15(3), 367; https://doi.org/10.3390/atmos15030367 - 18 Mar 2024
Cited by 1 | Viewed by 2210
Abstract
Atmospheric turbidity exhibits substantial spatial–temporal variability due to factors such as aerosol emissions, seasonal changes, meteorology, and air mass transport. Investigating atmospheric turbidity is crucial for climatology, meteorology, and atmospheric pollution. This study investigates the variation in atmospheric turbidity over a tropical location [...] Read more.
Atmospheric turbidity exhibits substantial spatial–temporal variability due to factors such as aerosol emissions, seasonal changes, meteorology, and air mass transport. Investigating atmospheric turbidity is crucial for climatology, meteorology, and atmospheric pollution. This study investigates the variation in atmospheric turbidity over a tropical location in Nigeria, utilizing the Ångström exponent (α), the turbidity coefficient (β), the Linke turbidity factor (TL), the Ångström turbidity coefficient (βEST), the Unsworth–Monteith turbidity coefficient (KAUM), and the Schüepp turbidity coefficient (SCH). These parameters were estimated from a six-month uninterrupted aerosol optical depth dataset (January–June 2016) and a one-year dataset (January–December 2016) of solar radiation and meteorological data. An inverse correlation (R = −0.77) was obtained between α and β, which indicates different turbidity regimes based on particle size. TL and βEST exhibit pronounced seasonality, with higher turbidity during the dry season (TL = 9.62 and βEST = 0.60) compared to the rainy season (TL = 0.48 and βEST = 0.20) from May to October. Backward trajectories and wind patterns reveal that high-turbidity months align with north-easterly air flows from the Sahara Desert, transporting dust aerosols, while low-turbidity months coincide with humid maritime air masses originating from the Gulf of Guinea. Meteorological drivers like relative humidity and water vapor pressure are linked to turbidity levels, with an inverse exponential relationship observed between normalized turbidity coefficients and normalized water vapor pressure. This analysis provides insights into how air mass origin, wind patterns, and local climate factors impact atmospheric haze, particle characteristics, and solar attenuation variability in a tropical location across seasons. The findings can contribute to environmental studies and assist in modelling interactions between climate, weather, and atmospheric optical properties in the region. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

16 pages, 1761 KiB  
Article
Characteristics of PM2.5 Chemical Species in 23 Chinese Cities Identified Using a Vehicular Platform
by Hui Chen, Jingjing Liu, Peizhi Wang, Xiao Lin, Jingjin Ma and Chunying Wang
Sustainability 2024, 16(6), 2340; https://doi.org/10.3390/su16062340 - 12 Mar 2024
Cited by 3 | Viewed by 1798
Abstract
PM2.5 pollution remains a significant concern in China due to its adverse environmental and health implications. This study aims to explore in depth the differences in the causes of PM2.5 pollution between some regions in China based on high temporal resolution [...] Read more.
PM2.5 pollution remains a significant concern in China due to its adverse environmental and health implications. This study aims to explore in depth the differences in the causes of PM2.5 pollution between some regions in China based on high temporal resolution PM2.5 component information. We used a particulate matter chemical composition vehicle (PMCCV) as a mobile monitoring platform which travelled among 23 cities in China from March 2018 to December 2019 to collect PM2.5 concentrations and chemical composition data. Observations revealed that PM2.5 concentrations were notably higher in northern cities compared than their southern counterparts. Seasonal variation was evident, with peak concentrations during winter and troughs during summer. In regions experiencing severe winter pollution, such as Hebei and Shanxi (HB/SX), organic matter (OM) emerged as the dominant contributor (47.3%), escalating with increasing PM2.5 concentrations. OM significantly impacted PM2.5 levels during autumn in Jiangxi and Anhui (AH/JX) and across the monitoring period in Liuzhou, Guangxi (GX), with the former related to vehicle emissions and the latter related to bagasse reuse and biomass burning emissions. Conversely, nitrate (NO3) made the highest contribution to PM2.5 during winter in the AH/JX region (34.4%), which was attributed to reduced SO2 levels and favorable low-temperature conditions conducive to nitrate condensation. Notably, nitrate contribution to HB/SX rose notably in heavily polluted winter conditions and during light–moderate pollution episodes in the autumn. Sulfate (SO42−) was dominant among PM2.5 components during summer in the study regions (29.9% in HB/SX, 36.1% in HN/SD, and 49.7% in AH/JX). Additionally, pollution incidents in Chuzhou, Anhui Province, and Baoding, Hebei Province, underscored nitrates and organic matter, respectively, as the primary causes of sharp PM2.5 increases. These incidents highlighted the influence of large emissions of primary aerosols, gaseous precursors, and stagnant meteorological conditions as pivotal factors driving haze pollution in the HB/SX region. Full article
(This article belongs to the Special Issue Aerosols and Air Pollution)
Show Figures

Figure 1

19 pages, 15744 KiB  
Article
Assessment of the Temporal and Seasonal Variabilities in Air Pollution and Implications for Physical Activity in Lagos and Yaoundé
by Olalekan A. M. Popoola, Rose Alani, Felix Assah, Taibat Lawanson, Awah K. Tchouaffi, Clarisse Mapa-Tassou, Nfondoh Blanche, Damilola Odekunle, Richard Unuigboje, Victor A. Onifade, Toluwalope Ogunro, Meelan Thondoo, Roderic L. Jones and Tolu Oni
Atmosphere 2023, 14(11), 1693; https://doi.org/10.3390/atmos14111693 - 17 Nov 2023
Cited by 2 | Viewed by 2797
Abstract
Physical activity (PA) can reduce the risk of non-communicable diseases like heart diseases and diabetes. However, exposure to poor air quality (AQ) when engaging in PA could negate the health benefits. The risk associated with air pollution is relatively severe during physical activities [...] Read more.
Physical activity (PA) can reduce the risk of non-communicable diseases like heart diseases and diabetes. However, exposure to poor air quality (AQ) when engaging in PA could negate the health benefits. The risk associated with air pollution is relatively severe during physical activities because a higher inhaled pollution dose is experienced during PA compared to when sedentary. We conducted a yearlong AQ monitoring using a commercial low-cost AQ device. The devices were deployed near a public space used for PA as part of a study to understand the health risks encountered by people informally appropriating public spaces for PA in Lagos, Nigeria and Yaoundé, Cameroon. The parameters monitored included CO, NO, NO2, O3, PM2.5, PM10, CO2, pressure, temperature and relative humidity. We detected unique pollutant temporal profiles at the two locations, with a distinct weekday-to-weekend effect observed for the gaseous pollutants but not for the PM. Transboundary emissions related to the Harmattan haze dominated the background PM concentration in both cities in the dry season. Our findings underscore the importance of long-term AQ monitoring to inform action and offer insights into simple behavioural changes that can maximise the health benefits of PA while minimising the risk of air pollution exposure. Full article
Show Figures

Figure 1

17 pages, 7485 KiB  
Article
Studies on the Specificity of Outdoor Thermal Comfort during the Warm Season in High-Density Urban Areas
by Ruihan Wei, Jin Yan, Yanqiu Cui, Dexuan Song, Xin Yin and Ninghan Sun
Buildings 2023, 13(10), 2473; https://doi.org/10.3390/buildings13102473 - 28 Sep 2023
Cited by 5 | Viewed by 1987
Abstract
With the acceleration of urbanization in China, high density has become a significant feature of urban development. Although high-density development provides convenience, it also results in numerous environmental and climatic problems, such as the urban heat island effect, haze and extreme weather. These [...] Read more.
With the acceleration of urbanization in China, high density has become a significant feature of urban development. Although high-density development provides convenience, it also results in numerous environmental and climatic problems, such as the urban heat island effect, haze and extreme weather. These issues have reduced the comfort levels of the urban outdoor environment, led to increased energy consumption and had serious impacts on social development and the lives of residents. Improving the comfort of the outdoor urban environment is vital, especially in the current tendency for high-density urban developments. This paper focuses on a typical urban district in Shanghai, where we have gathered ambient meteorological data and human thermal sensation votes during spring and summer through monitoring and questionnaire research. Correlation analysis was conducted to examine the relationship between thermal sensation votes and comfort indexes (PET, UTCI). The findings indicated that the neutral PET during spring and summer was 22.30 °C and 24.55 °C, respectively, whilst the neutral UTCI was 18.75 °C and 26 °C, respectively, with the neutral temperature in summer being significantly higher than that in spring. Upon comparing the evaluation indices, it was found that the correlation between the UTCI and average thermal sensation votes was stronger; thus, the UTCI better represents people’s thermal sensation in the Shanghai area. Finally, regression analysis demonstrated that the acceptable PET range for 90% of cases during both seasons in Shanghai is between 25.0 °C and 32.1 °C, and the UTCI range is between 24.2 °C and 27.7 °C. This study presents theoretical criteria for evaluating environmental thermal comfort, laying the foundation for practical paths to optimize urban design for climate responsiveness in high-density urban areas. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 1540 KiB  
Article
An Experimental Framework of Particulate Matter Emission Factor Development for Traffic Modeling
by Sicong Zhu, Yongdi Qiao, Wenjie Peng, Qi Zhao, Zhen Li, Xiaoting Liu, Hao Wang, Guohua Song, Lei Yu, Lei Shi and Qing Lan
Atmosphere 2023, 14(4), 706; https://doi.org/10.3390/atmos14040706 - 12 Apr 2023
Cited by 1 | Viewed by 1763
Abstract
To estimate traffic facility-oriented particulate matter (PM) emissions, emission factors are both necessary and critical for traffic planners and the community of traffic professionals. This study used locally calibrated laser-scattering sensors to collect PM emission concentrations in a tunnel. Emission factors of both [...] Read more.
To estimate traffic facility-oriented particulate matter (PM) emissions, emission factors are both necessary and critical for traffic planners and the community of traffic professionals. This study used locally calibrated laser-scattering sensors to collect PM emission concentrations in a tunnel. Emission factors of both light-duty and heavy-duty vehicles were found to be higher in autumn compared to summer. Based on this study’s data analysis, PM emissions, in terms of mass, have a strong seasonal effect. The study also conducted a PM composition test on normal days and during haze events. Preliminary results suggested that the transformation of gaseous tailpipe emissions to PM is significant within the tunnel during a haze event. This study, therefore, recommends locally calibrated portable devices to monitor mobile-source traffic emissions. The study suggests that emission factor estimation of traffic modeling packages should consider the dynamic PM formation mechanism. The study also presents traffic policy implications regarding PM emission control. Full article
Show Figures

Figure 1

11 pages, 1748 KiB  
Communication
Seasonal Characteristics of Fine Particulate Carbonaceous Species in Taiyuan, North China
by Wenbo Li, Xinya Zhao, Fengbo Guo and Kankan Liu
Atmosphere 2023, 14(3), 593; https://doi.org/10.3390/atmos14030593 - 21 Mar 2023
Cited by 2 | Viewed by 1843
Abstract
To characterize seasonal carbonaceous aerosol pollution in Taiyuan, a typical city in North China that mainly relies heavily on coal, a total of 124 PM2.5 samples were collected from August 2018 to the next May. The annual mean PM2.5 concentration was [...] Read more.
To characterize seasonal carbonaceous aerosol pollution in Taiyuan, a typical city in North China that mainly relies heavily on coal, a total of 124 PM2.5 samples were collected from August 2018 to the next May. The annual mean PM2.5 concentration was 83.8 ± 48.5 μg m−3, with a seasonal rank of winter (117.4 ± 47.6 μg m−3) > spring (79.2 ± 34.3 μg m−3) > fall (67.3 ± 34.7 μg m−3) > summer (31.8 ± 6.5 μg m−3), suggesting that fine particulate pollution was still serious in cold seasons. Organic carbon (OC) and elemental carbon (EC) showed similar seasonal patterns with PM2.5. The mean concentration values of OC in summer, fall, winter, and spring were 5.1 ± 0.9, 11.8 ± 6.4, 22.1 ± 14.9, and 12.2 ± 6.7 μg m−3, respectively. The mean concentration values of EC in summer, fall, winter, and spring were 1.5 ± 0.3, 2.5 ± 1.6, 4.4 ± 2.8, and 2.4 ± 1.5 μg m−3, respectively. The proportion of total carbon aerosol (TCA) was about 31.7%, 33.8%, 30.0%, and 27.0% in PM2.5 in summer, fall, winter, and spring, respectively. The good correlation between OC vs. EC and the high value of OC/EC suggests that coal and biomass combustion were the main emissions in cold seasons, aggravated by adverse meteorological conditions and the dustpan-shaped terrain. The mean annual secondary organic carbon (SOC) concentration was 6.1 ± 7.1μg m−3, representing 38.7% of the OC content. The present results presented the serious carbonaceous particulate pollution, which might affect haze pollution in cold seasons. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

Back to TopTop