The Characteristics of the Chemical Composition of PM2.5 during a Severe Haze Episode in Suzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Instrumentation
2.2. Data Analysis
3. Results and Discussions
3.1. An Overview of the Meteorology and Gaseous Pollutants
3.2. Characteristics of PM2.5 Composition
3.2.1. Major Composition
3.2.2. Metal Ions
3.2.3. Source Analysis
3.3. Analysis of Ion Balance
3.4. Formation Mechanism of Nitrate
3.5. Aerosol Liquid Water Content and pH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, R.; Wei, Z.; Chen, M.; Meng, H.; Wu, Y.; Ge, X. Aging Effects on the Toxicity Alteration of Different Types of Organic Aerosols: A Review. Curr. Pollut. Rep. 2023, 9, 590–601. [Google Scholar] [CrossRef]
- Nie, D.; Wu, Y.; Chen, M.; Liu, H.; Zhang, K.; Ge, P.; Yuan, Y.; Ge, X. Bioaccessibility and health risk of trace elements in fine particulate matter in different simulated body fluids. Atmos. Environ. 2018, 186, 1–8. [Google Scholar] [CrossRef]
- Yao, L.; Kong, S.; Zheng, H.; Chen, N.; Zhu, B.; Xu, K.; Cao, W.; Zhang, Y.; Zheng, M.; Cheng, Y.; et al. Co-benefits of reducing PM2.5 and improving visibility by COVID-19 lockdown in Wuhan. NPJ Clim. Atmos. Sci. 2021, 4, 40. [Google Scholar] [CrossRef]
- Liao, K.-J.; Tagaris, E.; Manomaiphiboon, K.; Napelenok, S.L.; Woo, J.-H.; He, S.; Amar, P.; Russell, A.G. Sensitivities of Ozone and Fine Particulate Matter Formation to Emissions under the Impact of Potential Future Climate Change. Environ. Sci. Technol. 2007, 41, 8355–8361. [Google Scholar] [CrossRef]
- Gadi, R.; Shivani; Sharma, S.K.; Mandal, T.K. Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2.5): A complete year study over National Capital Region of India. Chemosphere 2019, 221, 583–596. [Google Scholar] [CrossRef]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- Cai, M.; Su, B.; Hu, G.; Wu, Y.; Wang, M.; Tian, Y.; Lin, H. Long term exposure to PM2.5 chemical components associated with prevalence of cardiovascular diseases in China. Innov. Med. 2024, 2, 100077. [Google Scholar] [CrossRef]
- Yao, Y.; Lv, X.; Qiu, C.; Li, J.; Wu, X.; Zhang, H.; Yue, D.; Liu, K.; Eshak, E.S.; Lorenz, T.; et al. The effect of China’s Clean Air Act on cognitive function in older adults: A population-based, quasi-experimental study. Lancet Healthy Longev. 2022, 3, e98–e108. [Google Scholar] [CrossRef]
- Wu, J.; Bei, N.; Hu, B.; Liu, S.; Wang, Y.; Shen, Z.; Li, X.; Liu, L.; Wang, R.; Liu, Z.; et al. Aerosol-photolysis interaction reduces particulate matter during wintertime haze events. Proc. Natl. Acad. Sci. USA 2020, 117, 9755–9761. [Google Scholar] [CrossRef]
- Zhan, J.; Chang, W.; Li, W.; Wang, Y.; Chen, L.; Yan, J. Impacts of Meteorological Conditions, Aerosol Radiative Feedbacks, and Emission Reduction Scenarios on the Coastal Haze Episodes in Southeastern China in December 2013. J. Appl. Meteorol. Climatol. 2017, 56, 1209–1229. [Google Scholar] [CrossRef]
- Tan, J.; Duan, J.; He, K.; Ma, Y.; Duan, F.; Chen, Y.; Fu, J. Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou. J. Environ. Sci. 2009, 21, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Zhang, L.; Engling, G.; Zhang, R.; Yang, Y.; Cao, J.; Zhu, C.; Wang, Q.; Luo, L. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmos. Res. 2013, 122, 270–283. [Google Scholar] [CrossRef]
- Okuljar, M.; Garmash, O.; Olin, M.; Kalliokoski, J.; Timonen, H.; Niemi, J.V.; Paasonen, P.; Kontkanen, J.; Zhang, Y.; Hellén, H.; et al. Influence of anthropogenic emissions on the composition of highly oxygenated organic molecules in Helsinki: A street canyon and urban background station comparison. Atmos. Chem. Phys. 2023, 23, 12965–12983. [Google Scholar] [CrossRef]
- Schulze, B.C.; Wallace, H.W.; Bui, A.T.; Flynn, J.H.; Erickson, M.H.; Alvarez, S.; Dai, Q.; Usenko, S.; Sheesley, R.J.; Griffin, R.J. The impacts of regional shipping emissions on the chemical characteristics of coastal submicron aerosols near Houston, TX. Atmos. Chem. Phys. 2018, 18, 14217–14241. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. Int. J. Environ. Res Public Health 2017, 14, 1510. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of Urban Fine Particulate Matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef]
- Hu, W.; Hu, M.; Hu, W.-W.; Zheng, J.; Chen, C.; Wu, Y.; Guo, S. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing. Atmos. Chem. Phys. 2017, 17, 9979–10000. [Google Scholar] [CrossRef]
- Nguyen, D.-L.; Czech, H.; Pieber, S.M.; Schnelle-Kreis, J.; Steinbacher, M.; Orasche, J.; Henne, S.; Popovicheva, O.B.; Abbaszade, G.; Engling, G.; et al. Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: A case study in northwestern Vietnam. Atmos. Chem. Phys. 2021, 21, 8293–8312. [Google Scholar] [CrossRef]
- Li, K.; Chen, L.; White, S.J.; Zheng, X.; Lv, B.; Lin, C.; Bao, Z.; Wu, X.; Gao, X.; Ying, F.; et al. Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou. Environ. Pollut. 2018, 232, 42–54. [Google Scholar] [CrossRef]
- Yu, H.; Dai, W.; Ren, L.; Liu, D.; Yan, X.; Xiao, H.; He, J.; Xu, H. The Effect of Emission Control on the Submicron Particulate Matter Size Distribution in Hangzhou during the 2016 G20 Summit. Aerosol. Air Qual. Res. 2018, 18, 2038–2046. [Google Scholar] [CrossRef]
- Wang, Y.C.; Huang, R.J.; Ni, H.Y.; Chen, Y.; Wang, Q.Y.; Li, G.H.; Tie, X.X.; Shen, Z.X.; Huang, Y.; Liu, S.X.; et al. Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China. Atmos. Environ. 2017, 158, 128–137. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, P.; Su, J.; Dong, Q.; Du, X.; Zhang, Y. Aerosol pH and its driving factors in Beijing. Atmos. Chem. Phys. 2019, 19, 7939–7954. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2021, 8, nwaa137. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, L.; Liu, J.; Gao, W.; Song, T.; Sun, Y.; Li, L.; Li, X.; Wang, Y.; Liu, L.; et al. Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environ. Int. 2020, 134, 105283. [Google Scholar] [CrossRef] [PubMed]
- Marais, E.A.; Jacob, D.J.; Jimenez, J.L.; Campuzano-Jost, P.; Day, D.A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P.S.; Miller, C.C.; et al. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: Application to the southeast United States and co-benefit of SO2 emission controls. Atmos. Chem. Phys. 2016, 16, 1603–1618. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Tripathi, S.N.; Kanawade, V.P.; Haslett, S.L.; Dada, L.; Ciarelli, G.; Kumar, V.; Singh, A.; Bhattu, D.; Rastogi, N.; et al. Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions. Nat. Geosci. 2023, 16, 224–230. [Google Scholar] [CrossRef]
- Petit, J.E.; Favez, O.; Sciare, J.; Canonaco, F.; Croteau, P.; Močnik, G.; Jayne, J.; Worsnop, D.; Leoz-Garziandia, E. Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF2) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer. Atmos. Chem. Phys. 2014, 14, 13773–13787. [Google Scholar] [CrossRef]
- Ge, X.; He, Y.; Sun, Y.; Xu, J.; Wang, J.; Shen, Y.; Chen, M. Characteristics and formation mechanisms of fine particulate nitrate in typical urban areas in China. Atmosphere 2017, 8, 62. [Google Scholar] [CrossRef]
- Chan, Y.C.; Evans, M.J.; He, P.; Holmes, C.D.; Jaeglé, L.; Kasibhatla, P.; Liu, X.Y.; Sherwen, T.; Thornton, J.A.; Wang, X.; et al. Heterogeneous Nitrate Production Mechanisms in Intense Haze Events in the North China Plain. J. Geophys. Res. Atmos. 2021, 126, e2021JD034688. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, F.; Shen, Y.; Shen, J.; Xu, B.; Kuang, B.; Xu, Z.; Jin, L.; Tang, Q.; Tian, X.; et al. Aerosol liquid water in PM(2.5) and its roles in secondary aerosol formation at a regional site of Yangtze River Delta. J. Environ. Sci. 2024, 138, 684–696. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Weber, R.J.; Russell, A. Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability. Atmos. Chem. Phys. 2020, 20, 3249–3258. [Google Scholar] [CrossRef]
- Su, J.; Zhao, P.; Ge, S.; Ding, J. Aerosol liquid water content of PM(2.5) and its influencing factors in Beijing, China. Sci. Total Environ. 2022, 839, 156342. [Google Scholar] [CrossRef] [PubMed]
- Costabile, F.; Bertoni, G.; Desantis, F.; Wang, F.; Weimin, H.; Fenglei, L.; Allegrini, I. A preliminary assessment of major air pollutants in the city of Suzhou, China. Atmos. Environ. 2006, 40, 6380–6395. [Google Scholar] [CrossRef]
- Tian, M.; Wang, H.; Chen, Y.; Yang, F.; Zhang, X.; Zou, Q.; Zhang, R.; Ma, Y.; He, K. Characteristics of aerosol pollution during heavy haze events in Suzhou, China. Atmos. Chem. Phys. 2016, 16, 7357–7371. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, N.; Tang, L.; Yao, S.; Wang, Z.; Zhang, R.; Yang, X.; Hua, Y.; Zhou, H. Seasonal Characterization and Source Apportionment of VOCs in Suzhou’s Qingjian Lake Area. Environ. Sci. Technol. 2018, 41, 126–134. (In Chinese) [Google Scholar] [CrossRef]
- Shi, Y.; Chen, J.; Hu, D.; Wang, L.; Yang, X.; Wang, X. Airborne submicron particulate (PM1) pollution in Shanghai, China: Chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility. Sci. Total Environ. 2014, 473–474, 199–206. [Google Scholar] [CrossRef]
- Chen, H.; Wu, D.; Yu, J. Comparison of characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012. Theor. Appl. Climatol. 2015, 124, 451–459. [Google Scholar] [CrossRef]
- Kong, L.; Yang, Y.; Zhang, S.; Zhao, X.; Du, H.; Fu, H.; Zhang, S.; Cheng, T.; Yang, X.; Chen, J.; et al. Observations of linear dependence between sulfate and nitrate in atmospheric particles. J. Geophys. Res. Atmos. 2014, 119, 341–361. [Google Scholar] [CrossRef]
- Birch, M.E.; Cary, R.A. Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol. Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl−-H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef]
- Zhang, J.; Tong, L.; Huang, Z.; Zhang, H.; He, M.; Dai, X.; Zheng, J.; Xiao, H. Seasonal variation and size distributions of water-soluble inorganic ions and carbonaceous aerosols at a coastal site in Ningbo, China. Sci. Total Environ. 2018, 639, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Wee, D.; Kim, Y.; Lee, J. Development and application of three-dimensional potential source contribution function (3D-PSCF). Environ. Sci. Pollut. Res. 2016, 23, 16946–16954. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Lee, J.Y.; Wee, D.; Kim, Y.P. Estimation of the contribution of biomass fuel burning activities in North Korea to the air quality in Seoul, South Korea: Application of the 3D-PSCF method. Atmos. Res. 2019, 230, 104628. [Google Scholar] [CrossRef]
- Potier, E.; Waked, A.; Bourin, A.; Minvielle, F.; Péré, J.C.; Perdrix, E.; Michoud, V.; Riffault, V.; Alleman, L.Y.; Sauvage, S. Characterizing the regional contribution to PM10 pollution over northern France using two complementary approaches: Chemistry transport and trajectory-based receptor models. Atmos. Res. 2019, 223, 1–14. [Google Scholar] [CrossRef]
- Petit, J.E.; Favez, O.; Albinet, A.; Canonaco, F. A user-friendly tool for comprehensive evaluation of the geographical origins of atmospheric pollution: Wind and trajectory analyses. Environ. Modell. Softw. 2017, 88, 183–187. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Beevers, S.D. Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ. Model. Softw. 2013, 40, 325–329. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Liu, J.; Hu, B.; Wen, T.; Tang, G.; Zhang, J.; Wu, F.; Ji, D.; Wang, L.; et al. Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmos. Chem. Phys. 2017, 17, 12941–12962. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.; Sha, T.; Liu, Y. Significant Promotion of Light Absorption Ability and Formation of Triplet Organics and Reactive Oxygen Species in Atmospheric HULIS by Fe(III) Ions. Environ. Sci. Technol. 2022, 56, 16652–16664. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, B.; Lei, Y.; Li, C.; Wang, H.; Huang, C.; Zhou, M.; Miao, Q.; Wei, H.; Wu, Y.; et al. Characteristics, formation, and sources of PM2.5 in 2020 in Suzhou, Yangtze River Delta, China. Environ. Res. 2022, 212, 113545. [Google Scholar] [CrossRef]
- Zhang, Q.; Jimenez, J.L.; Worsnop, D.R.; Canagaratna, M. A case study of urban particle acidity and its influence on secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 3213–3219. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.K.; Wu, W.S.; Wang, T. Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 2009, 9, 1711–1722. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, B.; Zhang, J.; Yu, Y.; Wang, Y. Characteristics of aerosol size distributions and chemical compositions during wintertime pollution episodes in Beijing. Atmos. Res. 2016, 168, 1–12. [Google Scholar] [CrossRef]
- Xu, J.-S.; Xu, H.-H.; Xiao, H.; Tong, L.; Snape, C.E.; Wang, C.-J.; He, J. Aerosol composition and sources during high and low pollution periods in Ningbo, China. Atmos. Res. 2016, 178–179, 559–569. [Google Scholar] [CrossRef]
- Huang, R.-J.; He, Y.; Duan, J.; Li, Y.; Chen, Q.; Zheng, Y.; Chen, Y.; Hu, W.; Lin, C.; Ni, H.; et al. Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing. Atmos. Chem. Phys. 2020, 20, 9101–9114. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Du, W.; Zhang, Q.; Wang, Q.; Fu, P.; Pan, X.; Li, J.; Jayne, J.; Worsnop, D. Long-term real-time measurements of aerosol particle composition in Beijing, China: Seasonal variations, meteorological effects, and source analysis. Atmos. Chem. Phys. 2015, 15, 10149–10165. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Wang, Y.; Chen, Y.; Wu, Z.; Shang, D.; Bian, Y.; Du, Z.; Schmitt, S.H.; Su, R.; Gkatzelis, G.I.; Schlag, P.; et al. Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility. Atmos. Chem. Phys. 2020, 20, 2161–2175. [Google Scholar] [CrossRef]
- Zheng, G.J.; Duan, F.K.; Su, H.; Ma, Y.L.; Cheng, Y.; Zheng, B.; Zhang, Q.; Huang, T.; Kimoto, T.; Chang, D.; et al. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys. 2015, 15, 2969–2983. [Google Scholar] [CrossRef]
- Xue, J.; Griffith, S.M.; Yu, X.; Lau, A.K.H.; Yu, J.Z. Effect of nitrate and sulfate relative abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a polluted receptor site. Atmos. Environ. 2014, 99, 24–31. [Google Scholar] [CrossRef]
- Xie, F.; Su, Y.; Tian, Y.; Shi, Y.; Zhou, X.; Wang, P.; Yu, R.; Wang, W.; He, J.; Xin, J.; et al. The shifting of secondary inorganic aerosol formation mechanisms during haze aggravation: The decisive role of aerosol liquid water. Atmos. Chem. Phys. 2023, 23, 2365–2378. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Y.; Li, Z.; Zhang, F.; Xu, W.; Sun, Y.; Fan, X.; Chen, G.; Wu, H.; Ren, J.; et al. Significant contribution of organics to aerosol liquid water content in winter in Beijing, China. Atmos. Chem. Phys. 2020, 20, 901–914. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Li, Y.; Wang, C.; Wang, W.; Yin, S.; Zhang, R. Effect of ammonia on fine-particle pH in agricultural regions of China: Comparison between urban and rural sites. Atmos. Chem. Phys. 2020, 20, 2719–2734. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Chen, Y.; Li, Y.; Wang, J. The Characteristics of the Chemical Composition of PM2.5 during a Severe Haze Episode in Suzhou, China. Atmosphere 2024, 15, 1204. https://doi.org/10.3390/atmos15101204
Huang X, Chen Y, Li Y, Wang J. The Characteristics of the Chemical Composition of PM2.5 during a Severe Haze Episode in Suzhou, China. Atmosphere. 2024; 15(10):1204. https://doi.org/10.3390/atmos15101204
Chicago/Turabian StyleHuang, Xiangpeng, Yusheng Chen, Yue’e Li, and Junfeng Wang. 2024. "The Characteristics of the Chemical Composition of PM2.5 during a Severe Haze Episode in Suzhou, China" Atmosphere 15, no. 10: 1204. https://doi.org/10.3390/atmos15101204
APA StyleHuang, X., Chen, Y., Li, Y., & Wang, J. (2024). The Characteristics of the Chemical Composition of PM2.5 during a Severe Haze Episode in Suzhou, China. Atmosphere, 15(10), 1204. https://doi.org/10.3390/atmos15101204