Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = sea urchin spine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2676 KiB  
Systematic Review
Prickly Defenders: A Review of Venomous Sea Urchins (Echinoidea)
by Sina Ehlert-Flaskämper, Cherie A. Motti and Richard J. Harris
Mar. Drugs 2025, 23(6), 253; https://doi.org/10.3390/md23060253 - 13 Jun 2025
Viewed by 873
Abstract
Sea urchins, Echinoidea, are widely known for their defensive spines and pedicellariae, with some species having co-evolved venom in conjunction with those appendages. Despite this, their venomous arsenal remains poorly understood. Research has predominately focused on pedicellariae venom, while the spines have been [...] Read more.
Sea urchins, Echinoidea, are widely known for their defensive spines and pedicellariae, with some species having co-evolved venom in conjunction with those appendages. Despite this, their venomous arsenal remains poorly understood. Research has predominately focused on pedicellariae venom, while the spines have been largely neglected within studies. This review consolidates current knowledge of the venom systems (spines and pedicellariae) of sea urchins, focusing on the morphology, known venom components, and their functional effects. While early studies have established the bioactivity of crude extracts and fractions, along with the partial characterisation of some toxins, most of these studies are outdated and were conducted with very basic methodologies. Modern venomics presents an opportunity to meet this challenge, enabling development of a comprehensive database on venomous urchins and their toxins. This advancement will facilitate research into targeted early treatments and therapies for victims of sea urchin stings, ultimately improving health outcomes and enhancing our scientific understanding of venom toxins and their broader implications for human health and bioinnovation. Full article
(This article belongs to the Special Issue Chemical Defense in Marine Organisms, 3rd Edition)
Show Figures

Figure 1

12 pages, 2980 KiB  
Article
Morphological Insights into Echinometra lucunter Spines Reveal Cellular Sources of Bioactive Molecules
by Juliana Mozer Sciani, Marta Maria Antoniazzi, Carlos Jared, José Roberto Machado Cunha da Silva and Daniel Carvalho Pimenta
Oceans 2025, 6(2), 33; https://doi.org/10.3390/oceans6020033 - 5 Jun 2025
Viewed by 521
Abstract
Echinometra lucunter, the most abundant sea urchin in Brazil, causes numerous accidents by puncture wounds, primarily on hands and feet. Beyond mechanical trauma, recent research has identified bioactive molecules in spine extracts and coelomic fluid contributing to these inflammatory reactions. This study [...] Read more.
Echinometra lucunter, the most abundant sea urchin in Brazil, causes numerous accidents by puncture wounds, primarily on hands and feet. Beyond mechanical trauma, recent research has identified bioactive molecules in spine extracts and coelomic fluid contributing to these inflammatory reactions. This study investigated spine morphology to better understand the envenomation and defense processes for the animal. Using various microscopy techniques, the spines were revealed to be mineral structures with longitudinal canals and a sponge-like central mesh rich in granular cells. These cells extend from the spine’s center to its edges, terminating in fimbriae-like structures, likely involved in molecular exchange with the environment. The spine tip is more cellular than the base, suggesting a defensive role, while the base provides structural support. Several cell types were identified, including granulocytes, red spherulocytes, and phagocytic amoebocytes, also found in the coelomic fluid. Other cells displayed prominent Golgi apparatuses and secretory granules, indicating specialized secretory functions, likely the source of bioactive molecules involved in chemical defense and spine regeneration. Understanding this cellular structure is crucial for comprehending the urchin’s envenomation and defense mechanisms. Full article
Show Figures

Figure 1

13 pages, 1313 KiB  
Article
Blue-Green Algae as Stimulating and Attractive Feeding Substrates for a Mediterranean Commercial Sea Urchin Species, Paracentrotus lividus
by Paolo Solari, Giorgia Sollai, Viviana Pasquini, Angelica Giglioli, Roberto Crnjar and Piero Addis
Life 2023, 13(7), 1510; https://doi.org/10.3390/life13071510 - 5 Jul 2023
Cited by 3 | Viewed by 2225
Abstract
Sea urchins rely on chemical senses to localize suitable food resources, therefore representing model species for chemosensory studies. In the present study, we investigated the chemical sensitivity of the Mediterranean sea urchin Paracentrotus lividus to the blue-green alga Aphanizomenon flos-aquae, namely “Klamath”, [...] Read more.
Sea urchins rely on chemical senses to localize suitable food resources, therefore representing model species for chemosensory studies. In the present study, we investigated the chemical sensitivity of the Mediterranean sea urchin Paracentrotus lividus to the blue-green alga Aphanizomenon flos-aquae, namely “Klamath”, and to a few amino acids chosen from the biochemical composition of the same algae. To this end, we used the “urchinogram” method, which estimates the movement rate of the sea urchins in response to chemicals. Our results showed that Klamath represents a strong chemical stimulus for P. lividus as it elicits an overall movement of spines, pedicellariae, and tube feet coupled, in some cases, to a coordinated locomotion of the animals. Sea urchins also displayed a sensitivity, even if to a lesser extent, to leucine, threonine, arginine, and proline, thus implying that the amino acids contained in Klamath may account, at least in part, for the stimulating effects exerted by the whole algae. Additionally, our results show that Klamath, as well as spirulina, another blue-green alga with high nutritional value, is very attractive for this sea urchin species. These findings gain further importance considering the potential profit of echinoderms for commercial consumers and their growing role in aquaculture. Klamath and spirulina combine high nutritional profiles with attractive and stimulating abilities and may be considered potential valuable feed supplements in sea urchin aquaculture. Full article
(This article belongs to the Special Issue Algae—a Step Forward in the Sustainability of Resources)
Show Figures

Figure 1

15 pages, 1752 KiB  
Article
The “Bald Disease” of the Sea Urchin Paracentrotus lividus: Pathogenicity, Molecular Identification of the Causative Agent and Therapeutic Approach
by Serena Federico, Francesca Glaviano, Roberta Esposito, Enea Tentoni, Pasquale Santoro, Davide Caramiello, Maria Costantini and Valerio Zupo
Microorganisms 2023, 11(3), 763; https://doi.org/10.3390/microorganisms11030763 - 16 Mar 2023
Cited by 7 | Viewed by 3379
Abstract
In recent decades, various species of Mediterranean sea urchins, including Paracentrotus lividus, have been subject to widespread seasonal episodes of mass mortality whose causative agents are still unclear. In particular, P. lividus is subject to late winter events of mortality, due to [...] Read more.
In recent decades, various species of Mediterranean sea urchins, including Paracentrotus lividus, have been subject to widespread seasonal episodes of mass mortality whose causative agents are still unclear. In particular, P. lividus is subject to late winter events of mortality, due to a disease manifested by a massive loss of spines and the presence of greenish amorphous material on the tests (i.e., the sea urchin skeleton consisting of spongeous calcite). Documented mortality events show a seasonal epidemic diffusion and might produce economic losses also in aquaculture facilities, besides the environmental constraints to its diffusion. We collected individuals showing conspicuous lesions on the body surface and reared them in recirculated aquaria. Samples of external mucous were collected along with coelomic liquids and cultured to isolate bacterial and fungal strains, further submitted to molecular identification through the amplification of prokaryotic 16S rDNA. In addition, pools of infected sea urchins were reared in recirculated tanks after short baths in a formulated therapeutic compound and their survival rates were compared to non-treated individuals for variable periods. Here, we aimed at a redescription of the etiopathogenetic nature of the parasites and tested the efficacy of a possible treatment, to be proposed for aquaculture purposes. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 2828 KiB  
Article
The Epibiotic Microbiota of Wild Caribbean Sea Urchin Spines Is Species Specific
by Ruber Rodríguez-Barreras, Anelisse Dominicci-Maura, Eduardo L. Tosado-Rodríguez and Filipa Godoy-Vitorino
Microorganisms 2023, 11(2), 391; https://doi.org/10.3390/microorganisms11020391 - 3 Feb 2023
Cited by 8 | Viewed by 3144
Abstract
Caribbean sea urchins are marine invertebrates that have experienced a decline over the years. Studies on sea urchins have focused primarily on the microbiome of the coelomic fluid or the gut microbiota. In this study, the epibiota community associated with four wild Caribbean [...] Read more.
Caribbean sea urchins are marine invertebrates that have experienced a decline over the years. Studies on sea urchins have focused primarily on the microbiome of the coelomic fluid or the gut microbiota. In this study, the epibiota community associated with four wild Caribbean sea urchin species, Lytechinus variegatus, Echinometra lucunter, Tripneustes ventricosus, and Diadema antillarum, was characterized for the first time. Using 57 sea urchin animal samples, we evaluated the influence of animal species, trophic niches, and geographical location on the composition of the epibiotic microbiota. We found significant differences in the bacterial biota among species and trophic niches, but not among geographical locations. L. variegatus exhibited the highest alpha diversity with high dominance of Fusobacteria, Planctomycetes, and Cyanobacteria, whereas T. ventricosus and D. antillarum were dominated by Firmicutes. T. ventricosus inhabiting the seagrass biotope dominated by Thalassia testudinum meadows had mostly Endozoicomonas. In contrast, samples located in the reef (dominated by corals and other reef builders) had a higher abundance of Kistimonas and Photobacterium. Our findings confirm that the epibiotic microbiota is species-specific, but also niche-dependent, revealing the trophic networks emerging from the organic matter being recycled in the seagrass and reef niches. As echinoids are important grazers of benthic communities, their microbiota will likely influence ecosystem processes. Full article
(This article belongs to the Special Issue Microbiomes of Aquatic Organisms)
Show Figures

Figure 1

26 pages, 29710 KiB  
Article
The Plant-Like Structure of Lance Sea Urchin Spines as Biomimetic Concept Generator for Freeze-Casted Structural Graded Ceramics
by Katharina Klang and Klaus G. Nickel
Biomimetics 2021, 6(2), 36; https://doi.org/10.3390/biomimetics6020036 - 31 May 2021
Cited by 7 | Viewed by 5598
Abstract
The spine of the lance sea urchin (Phyllacanthus imperialis) is an unusual plant-akin hierarchical lightweight construction with several gradation features: a basic core–shell structure is modified in terms of porosities, pore orientation and pore size, forming superstructures. Differing local strength and [...] Read more.
The spine of the lance sea urchin (Phyllacanthus imperialis) is an unusual plant-akin hierarchical lightweight construction with several gradation features: a basic core–shell structure is modified in terms of porosities, pore orientation and pore size, forming superstructures. Differing local strength and energy consumption features create a biomimetic potential for the construction of porous ceramics with predetermined breaking points and adaptable behavior in compression overload. We present a new detailed structural and failure analysis of those spines and demonstrate that it is possible to include at least a limited number of those features in an abstracted way in ceramics, manufactured by freeze-casting. This possibility is shown to come from a modified mold design and optimized suspensions. Full article
Show Figures

Figure 1

16 pages, 2163 KiB  
Article
Chemical Composition and Microstructural Morphology of Spines and Tests of Three Common Sea Urchins Species of the Sublittoral Zone of the Mediterranean Sea
by Anastasios Varkoulis, Konstantinos Voulgaris, Stefanos Zaoutsos, Antonios Stratakis and Dimitrios Vafidis
Animals 2020, 10(8), 1351; https://doi.org/10.3390/ani10081351 - 4 Aug 2020
Cited by 9 | Viewed by 4691
Abstract
In the Mediterranean Sea, the species Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis often coexist, occupying different subareas of the same habitat. The mechanical and chemical properties of their calcitic skeletons are affected both by their microstructural morphology and chemical composition. The [...] Read more.
In the Mediterranean Sea, the species Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis often coexist, occupying different subareas of the same habitat. The mechanical and chemical properties of their calcitic skeletons are affected both by their microstructural morphology and chemical composition. The present study describes the main morphologic features and the possible temporal differences in elemental composition of the test and spines of the three species, while also determining the molar ratio of each element of their crystalline phase. Scanning electron microscopy showed major differences in the ultrastructure of the spines, while minor differences in the test were also noticed. More specifically, the spines of all three sea urchins possess wedges, however A. lixula exhibits bridges connecting each wedge, while barbs are observed in the wedges of S. granularis. The spines of P. lividus are devoid of both microstructures. Secondary tubercles are absent in the test of A. lixula, while the tests and spines of all three species are characterized by different superficial stereom. Energy dispersive x-ray spectroscopy detected that Ca, Mg, S, Na and Cl were present in all specimen. Mg and Mg/Ca showed significant differences between species both in test and spines with S. granularis having the highest concentration. The spines of P. lividus exhibited lowest values between all species. Differences between spines and test were observed in all elements for P. lividus except S. A. lixula exhibited different concentrations between test and spines for Ca, Mg and Mg/Ca, whereas S. granularis for Mg, Cl and Mg/Ca. Finally, temporal differences for Ca were observed in the test of P. lividus and the spines of S. granularis, for Mg in test of S. granularis, for S in the spines of A. lixula and the test and spine of S. granularis, for Na in the test of P. lividus and A. lixula and for Cl and Mg/Ca in the test P. lividus. Powder X-ray diffractometry determined that, out of all three species, the spines of P. lividus contained the least Mg, while the test of the same species exhibited higher Mg concentration compared to A. lixula and S. granularis. The current study, although not labeling the specimens attempts to estimate potential time-related elemental differences among other results. These may occur due to changes in abiotic factors, probably water temperature, salinity and/or pH. Divergence in food preference and food availability may also play a key role in possible temporal differences the skeletons of these species Full article
(This article belongs to the Special Issue Marine Animal Population Genetics and Conservation)
Show Figures

Figure 1

10 pages, 2555 KiB  
Article
Hydroxyapatite Biosynthesis Obtained from Sea Urchin Spines (Strongylocentrotus purpuratus): Effect of Synthesis Temperature
by Nayeli Sarahi Gómez Vázquez, Priscy Alfredo Luque Morales, Claudia Mariana Gomez Gutierrez, Osvaldo de Jesus Nava Olivas, Ruben Cesar Villarreal Sánchez, Alfredo Rafael Vilchis Nestor and Manuel de Jesús Chinchillas Chinchillas
Processes 2020, 8(4), 486; https://doi.org/10.3390/pr8040486 - 22 Apr 2020
Cited by 9 | Viewed by 4456
Abstract
In this investigation, hydroxyapatite (HA) was synthesized using sea urchin spines (Strongylocentrotus purpuratus) via a precipitation and heat treatment method at three different temperatures (500, 600 and 700 °C). Biosynthesized HA was characterized to determine the vibration of functional groups, morphology, [...] Read more.
In this investigation, hydroxyapatite (HA) was synthesized using sea urchin spines (Strongylocentrotus purpuratus) via a precipitation and heat treatment method at three different temperatures (500, 600 and 700 °C). Biosynthesized HA was characterized to determine the vibration of functional groups, morphology, particle size, crystalline structure and chemical composition. For this, Fourier-Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were used, respectively. The FTIR-ATR results reveal that the most defined characteristic HA bonds (O-H, P-O and C-O bonds) were better defined at higher synthesis temperatures. SEM also presented evidence that temperature has a significant effect on morphology. EDS results showed that the Ca/P ratio increased in the samples at higher temperatures. XRD analysis presented the characteristic peaks of HA, showing a lower crystallinity when the synthesis temperature increased. Finally, the XPS confirmed that the material resulting from biosynthesis was HA. Hence, according to these results, the synthesis temperature of HA has a significant effect on the characteristics of the resulting material. Full article
(This article belongs to the Special Issue Screening of Bioactive Compounds from Food Processing Waste)
Show Figures

Figure 1

11 pages, 905 KiB  
Article
Fatty Acids from Paracentrotus lividus Sea Urchin Shells Obtained via Rapid Solid Liquid Dynamic Extraction (RSLDE)
by Maria Michela Salvatore, Martina Ciaravolo, Paola Cirino, Alfonso Toscano, Francesco Salvatore, Monica Gallo, Daniele Naviglio and Anna Andolfi
Separations 2019, 6(4), 50; https://doi.org/10.3390/separations6040050 - 22 Oct 2019
Cited by 11 | Viewed by 5193
Abstract
Sea urchins (Echinodermata, Echinoidea) are good a source of bioactive compounds belonging to different classes of natural substances. The edible Mediterranean sea urchin Paracentrotus lividus is a renowned animal model for study in different fields of biology, but it is intensively harvested for [...] Read more.
Sea urchins (Echinodermata, Echinoidea) are good a source of bioactive compounds belonging to different classes of natural substances. The edible Mediterranean sea urchin Paracentrotus lividus is a renowned animal model for study in different fields of biology, but it is intensively harvested for high commercial value due to the delicacy of its gonads. Most studies have focused on the composition and the nutritional value of P. lividus gonads (the edible part), but little interest has been taken in the other body parts, such as the shells and spines, which are generally considered waste material. The purpose of this study was to obtain an extract from sea urchin shells, with a green methodology of extraction, and to characterize the lipophilic components for potential applications. The shells of P. lividus were extracted via a very well performing technology based on rapid solid liquid dynamic extraction (RSLDE) implemented via an automated device (Naviglio Extractor®). The obtained extract shows the presence of fatty acids and their esters (methyl, ethyl and 1-glycerol esters). Gas chromatography-mass spectrometry (GC-MS) measurements were used to determine fatty acid abundance in the chromatographic fractions of the extract. Arachidonic acid (ARA), 5,8,11,14,17-eicosapentanoic acid (EPA), and 11-eicosenoic acids and their esters are the most abundant components. The presence of many polyunsaturated fatty acids (PUFA) in the extract, even in low percentages allows a future application in nutrition or medical use. Full article
(This article belongs to the Special Issue Extraction and Isolation of Natural Products)
Show Figures

Graphical abstract

12 pages, 3852 KiB  
Article
Tool Use by Four Species of Indo-Pacific Sea Urchins
by Glyn A. Barrett, Dominic Revell, Lucy Harding, Ian Mills, Axelle Jorcin and Klaus M. Stiefel
J. Mar. Sci. Eng. 2019, 7(3), 69; https://doi.org/10.3390/jmse7030069 - 18 Mar 2019
Cited by 7 | Viewed by 5594
Abstract
We compared the covering behavior of four sea urchin species, Tripneustes gratilla, Pseudoboletia maculata, Toxopneustes pileolus, and Salmacis sphaeroides found in the waters of Malapascua Island, Cebu Province and Bolinao, Panagsinan Province, Philippines. Specifically, we measured the amount and type [...] Read more.
We compared the covering behavior of four sea urchin species, Tripneustes gratilla, Pseudoboletia maculata, Toxopneustes pileolus, and Salmacis sphaeroides found in the waters of Malapascua Island, Cebu Province and Bolinao, Panagsinan Province, Philippines. Specifically, we measured the amount and type of covering material on each sea urchin, and in several cases, the recovery of debris material after stripping the animal of its cover. We found that Tripneustes gratilla and Salmacis sphaeroides have a higher affinity for plant material, especially seagrass, compared to Pseudoboletia maculata and Toxopneustes pileolus, which prefer to cover themselves with coral rubble and other calcified material. Only in Toxopneustes pileolus did we find a significant corresponding depth-dependent decrease in total cover area, confirming previous work that covering behavior serves as a protection mechanism against UV radiation. We found no dependence of particle size on either species or size of sea urchin, but we observed that larger sea urchins generally carried more and heavier debris. We observed a transport mechanism of debris onto the echinoid body surface utilizing a combination of tube feet and spines. We compare our results to previous studies, comment on the phylogeny of sea urchin covering behavior, and discuss the interpretation of this behavior as animal tool use. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

18 pages, 5892 KiB  
Article
Development of Phosphatized Calcium Carbonate Biominerals as Bioactive Bone Graft Substitute Materials, Part I: Incorporation of Magnesium and Strontium Ions
by Ingo Sethmann, Cornelia Luft and Hans-Joachim Kleebe
J. Funct. Biomater. 2018, 9(4), 69; https://doi.org/10.3390/jfb9040069 - 2 Dec 2018
Cited by 17 | Viewed by 7919
Abstract
Synthetic materials based on calcium phosphate (CaP) are frequently used as bone graft substitutes when natural bone grafts are not available or not suitable. Chemical similarity to bone guarantees the biocompatibility of synthetic CaP materials, whereas macroporosity enables their integration into the natural [...] Read more.
Synthetic materials based on calcium phosphate (CaP) are frequently used as bone graft substitutes when natural bone grafts are not available or not suitable. Chemical similarity to bone guarantees the biocompatibility of synthetic CaP materials, whereas macroporosity enables their integration into the natural bone tissue. To restore optimum mechanical performance after the grafting procedure, gradual resorption of CaP implants and simultaneous replacement by natural bone is desirable. Mg and Sr ions released from implants support osteointegration by stimulating bone formation. Furthermore, Sr ions counteract osteoporotic bone loss and reduce the probability of related fractures. The present study aimed at developing porous Ca carbonate biominerals into novel CaP-based, bioactive bone implant materials. Macroporous Ca carbonate biominerals, specifically skeletons of corals (aragonite) and sea urchins (Mg-substituted calcite), were hydrothermally converted into pseudomorphic CaP materials with their natural porosity preserved. Sr ions were introduced to the mineral replacement reactions by temporarily stabilizing them in the hydrothermal phosphate solutions as Sr-EDTA complexes. In this reaction system, Na, Mg, and Sr ions favored the formation of correspondingly substituted β-tricalcium phosphate over hydroxyapatite. Upon dissolution, the incorporated functional ions became released, endowing these CaP materials with bioactive and potentially osteoporotic properties. Full article
Show Figures

Graphical abstract

14 pages, 3874 KiB  
Article
Development of Phosphatized Calcium Carbonate Biominerals as Bioactive Bone Graft Substitute Materials, Part II: Functionalization with Antibacterial Silver Ions
by Ingo Sethmann, Sabrina Völkel, Felicitas Pfeifer and Hans-Joachim Kleebe
J. Funct. Biomater. 2018, 9(4), 67; https://doi.org/10.3390/jfb9040067 - 23 Nov 2018
Cited by 6 | Viewed by 6468
Abstract
Porous calcium phosphate (CaP) materials as bone graft substitutes can be prepared from Ca carbonate biomineral structures by hydrothermal conversion into pseudomorphic CaP scaffolds. The present study aims at furnishing such phosphatized Ca carbonate biomineral (PCCB) materials with antibacterial Ag ions in order [...] Read more.
Porous calcium phosphate (CaP) materials as bone graft substitutes can be prepared from Ca carbonate biomineral structures by hydrothermal conversion into pseudomorphic CaP scaffolds. The present study aims at furnishing such phosphatized Ca carbonate biomineral (PCCB) materials with antibacterial Ag ions in order to avoid perisurgical wound infections. Prior to this study, PCCB materials with Mg and/or Sr ions incorporated for stimulating bone formation were prepared from coral skeletons and sea urchin spines as starting materials. The porous PCCB materials were treated with aqueous solutions of Ag nitrate with concentrations of 10 or 100 mmol/L, resulting in the formation of Ag phosphate nanoparticles on the sample surfaces through a replacement reaction. The materials were characterized using scanning electron microscopy (SEM) energy-dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). In contact with Ringer`s solution, the Ag phosphate nanoparticles dissolved and released Ag ions with concentrations up to 0.51 mg/L, as shown by atomic absorption spectroscopy (AAS) analyses. In tests against Pseudomonas aeruginosa and Staphylococcus aureus on agar plates, antibacterial properties were similar for both types of Ag-modified PCCB materials. Concerning the antibacterial performance, the treatment with AgNO3 solutions with 10 mmol/L was almost as effective as with 100 mmol/L. Full article
Show Figures

Graphical abstract

13 pages, 703 KiB  
Review
Sea Urchins as an Inspiration for Robotic Designs
by Klaus M. Stiefel and Glyn A. Barrett
J. Mar. Sci. Eng. 2018, 6(4), 112; https://doi.org/10.3390/jmse6040112 - 10 Oct 2018
Cited by 11 | Viewed by 8288
Abstract
Neuromorphic engineering is the approach to intelligent machine design inspired by nature. Here, we outline possible robotic design principles derived from the neural and motor systems of sea urchins (Echinoida). Firstly, we review the neurobiology and locomotor systems of sea urchins, with a [...] Read more.
Neuromorphic engineering is the approach to intelligent machine design inspired by nature. Here, we outline possible robotic design principles derived from the neural and motor systems of sea urchins (Echinoida). Firstly, we review the neurobiology and locomotor systems of sea urchins, with a comparative emphasis on differences to animals with a more centralized nervous system. We discuss the functioning and enervation of the tube feet, pedicellariae, and spines, including the limited autonomy of these structures. We outline the design principles behind the sea urchin nervous system. We discuss the current approaches of adapting these principles to robotics, such as sucker-like structures inspired by tube feet and a robotic adaptation of the sea urchin jaw, as well as future directions and possible limitations to using these principles in robots. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Graphical abstract

Back to TopTop