Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,491)

Search Parameters:
Keywords = scattering mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 359 KB  
Article
Born Series for S-Wave Scattering Length and Some Exact Results
by Norbert Kaiser
Axioms 2026, 15(2), 85; https://doi.org/10.3390/axioms15020085 - 23 Jan 2026
Viewed by 68
Abstract
In this paper, the Born series for the s-wave scattering a0 is calculated for a class of central potentials V(r) up to sixth order in a dimensionless coupling strength g. Examples of exponentially decaying potentials as well [...] Read more.
In this paper, the Born series for the s-wave scattering a0 is calculated for a class of central potentials V(r) up to sixth order in a dimensionless coupling strength g. Examples of exponentially decaying potentials as well as truncated potentials involving a single length-scale a are considered. In certain favorable cases, the exact result for the g-dependent s-wave scattering length a0=A0(g)a can be given in terms of special functions. The poles of A0(g) at increasing positive values of g correspond to the thresholds, where s-wave bound-states occur successively. Further scattering problems, where A0(g) is solvable in terms of elementary functions, are also presented. Full article
(This article belongs to the Section Mathematical Physics)
16 pages, 2538 KB  
Article
Natural Oleosomes from Nuts and Seeds: Structural Function and Potential for Pharmaceutical Applications
by Marlon C. Mallillin, Maryam Salami, Omar A. Villalobos, Shengnan Zhao, Sara R. El-Mahrouk, Kirtypal Singh, Michael J. Serpe, Arno G. Siraki, Ayman O. S. El-Kadi, Nadia Bou-Chacra, Raimar Loebenberg and Neal M. Davies
Pharmaceutics 2026, 18(2), 144; https://doi.org/10.3390/pharmaceutics18020144 - 23 Jan 2026
Viewed by 130
Abstract
Background/Objectives: Oleosomes, plant-derived lipid nanostructures comprising a triacylglycerol core surrounded by a phospholipid monolayer and interfacial proteins, provide sustainable alternatives to synthetic lipid vesicles. This study compares solvent-free aqueous extractions of oleosomes from five nuts (almond, macadamia, walnut, hazelnut, pine) and five [...] Read more.
Background/Objectives: Oleosomes, plant-derived lipid nanostructures comprising a triacylglycerol core surrounded by a phospholipid monolayer and interfacial proteins, provide sustainable alternatives to synthetic lipid vesicles. This study compares solvent-free aqueous extractions of oleosomes from five nuts (almond, macadamia, walnut, hazelnut, pine) and five seeds (flaxseed, sunflower, hemp, sesame, canola/rapeseed) to understand how botanical origin influences composition and physicochemical behavior. Methods: Oleosomes were isolated using solvent-free aqueous extraction. Extraction yield, lipid content, protein content, particle size, polydispersity, and zeta potential were determined using standard analytical assays and dynamic light scattering techniques. SDS–PAGE was performed to evaluate interfacial protein profiles and oleosin abundance. Results: Extraction yields ranged from 8.4% (flaxseed) to 59.5% (walnut). Oleosome diameters spanned 424 nm to 3.9 µm, and all oleosome dispersions exhibited negative zeta potentials (–26 to –57 mV). SDS–PAGE revealed abundant 15–25 kDa oleosins in seed oleosomes but relatively sparse proteins in nut oleosomes. Seed oleosomes were smaller and exhibited stronger electrostatic stabilization, while nut oleosomes formed larger droplets stabilized primarily through steric interactions due to lower oleosin content. Conclusions: Variation in oleosin abundance and interfacial composition leads to distinct stabilization mechanisms in nut and seed oleosomes. These findings establish a predictive basis for tailoring oleosome size, stability, and functionality, and highlight their potential as natural nanocarriers for food, cosmetic, and pharmaceutical formulations. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

18 pages, 9224 KB  
Article
Coupled Effects of Mg/Si Ratio and Recrystallization on Strength and Electrical Conductivity in Al-xMg-0.5Si Alloys
by Shanquan Deng, Xingsen Zhang, Junwei Zhu, Meihua Bian and Heng Chen
Crystals 2026, 16(1), 78; https://doi.org/10.3390/cryst16010078 - 22 Jan 2026
Viewed by 32
Abstract
The strategic balance between strength and electrical conductivity in Al-Mg-Si alloys is a critical challenge that must be overcome to enable their widespread adoption as viable alternatives to copper conductors in power transmission systems. To address this, the present study comprehensively investigates model [...] Read more.
The strategic balance between strength and electrical conductivity in Al-Mg-Si alloys is a critical challenge that must be overcome to enable their widespread adoption as viable alternatives to copper conductors in power transmission systems. To address this, the present study comprehensively investigates model alloys with Mg/Si ratios ranging from 1.0 to 2.0. A multi-faceted experimental approach was employed, combining tailored thermo-mechanical treatments (solution treatment, cold drawing, and isothermal annealing) with comprehensive microstructural characterization techniques, including electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM). The results elucidate a fundamental competitive mechanism governing property optimization: excess Mg atoms concurrently contribute to solid-solution strengthening via the formation of Cottrell atmospheres around dislocations, while simultaneously enhancing electron scattering, which is detrimental to conductivity. A critical synergy was identified at the Mg/Si ratio of 1.75, which promotes the dense precipitation of fine β″ phase while facilitating extensive recovery of high dislocation density. Furthermore, EBSD analysis confirmed the development of a microstructure comprising 74.1% high-angle grain boundaries alongside a low dislocation density (KAM ≤ 2°). This specific microstructural configuration effectively minimizes electron scattering while providing moderate grain boundary strengthening, thereby synergistically achieving an optimal balance between strength and electrical conductivity. Consequently, this work elucidates the key quantitative relationships and competitive mechanisms among composition (Mg/Si ratio), processing parameters, microstructure evolution, and final properties within the studied Al-xMg-0.5Si alloy system. These findings establish a clear design guideline and provide a fundamental understanding for developing high-performance aluminum-based conductor alloys with tailored Mg/Si ratios. Full article
(This article belongs to the Special Issue Microstructure, Properties and Characterization of Aluminum Alloys)
Show Figures

Figure 1

20 pages, 4232 KB  
Article
Bandgap Properties of Periodically Supported Beam with Inertial Amplification Mechanism
by Qiang Yi, Pu Wang, Zelin Chen, Yuan Gao and Shuguo Wang
Buildings 2026, 16(2), 464; https://doi.org/10.3390/buildings16020464 - 22 Jan 2026
Viewed by 27
Abstract
Periodically supported beams are widely employed in engineering structures, where effective control of low-frequency vibration and noise is often required. To achieve broadband elastic wave manipulation, an inertial amplification (IA) mechanism was introduced to generate low-frequency and ultra-wide bandgaps. Based on the Timoshenko [...] Read more.
Periodically supported beams are widely employed in engineering structures, where effective control of low-frequency vibration and noise is often required. To achieve broadband elastic wave manipulation, an inertial amplification (IA) mechanism was introduced to generate low-frequency and ultra-wide bandgaps. Based on the Timoshenko beam theory, analytical models for flexural wave propagation in periodically supported beams with IA structures were established using the generalized state transfer matrix method and the Floquet transform method, respectively. The validity of the analytical models was verified by vibration transmission analysis using a finite element model. The results demonstrate that the Floquet transform method enables rapid and accurate solution of the wave model. The introduction of the IA mechanism can generate low-frequency bandgaps, which are most sensitive to the amplification angle and amplification mass. The bandgap formation mechanism arises from the modulation of Bragg scattering in the periodically supported beam by the IA structure. This modulation causes the standing wave mode frequencies to shift to lower frequencies, thereby widening the bandgaps. Furthermore, hybrid IA structure configuration can achieve broader bandgaps, facilitating elastic wave control in the ultra-wide low-frequency range. These findings provide valuable insights for low-frequency vibration and noise attenuation in engineering structures. Full article
Show Figures

Figure 1

39 pages, 489 KB  
Review
A Decade-Old Atlas of TMEM (Transmembrane) Protein Family in Lung Cancer: Lessons Learnt and Future Directions
by Siwei Zhang, Guojie Cao, Xuelin Hu, Chen Chen and Peng Chen
Int. J. Mol. Sci. 2026, 27(2), 1120; https://doi.org/10.3390/ijms27021120 - 22 Jan 2026
Viewed by 48
Abstract
A growing body of work has linked the dysregulation of transmembrane (TMEM) proteins to the proliferation, metastasis, drug resistance, and tumor microenvironment remodeling of lung cancer, the leading global cause of cancer mortality. Renamed members such as STING1 (stimulator of interferon response cGAMP [...] Read more.
A growing body of work has linked the dysregulation of transmembrane (TMEM) proteins to the proliferation, metastasis, drug resistance, and tumor microenvironment remodeling of lung cancer, the leading global cause of cancer mortality. Renamed members such as STING1 (stimulator of interferon response cGAMP interactor 1, TMEM173), ANO1 (anoctamin-1, TMEM16A), ORAI1 (ORAI calcium release-activated calcium modulator 1, TMEM142A), ORAI3 (TMEM142C), and NDC1 (NDC1 transmembrane nucleoporin, TMEM48) are among the most extensively studied ones. Mechanisms of TMEM dysregulation in lung cancer span the modulation of Ca2+ influx, lysosomal exocytosis, ferroptosis, Wnt and β-catenin signaling, and immune cell infiltration and immune checkpoint rewiring, among others. Epigenetic silencing and targetable fusions (i.e., TMEM106B-ROS1 and TMEM87A-RASGRF1) create DNA-level vulnerabilities, while miRNA sponges offer RNA-level druggability. A subset of studies revealed context-specific expression (endothelial, B cell, and hypoxic EV) that can be exploited to remodel the tumor microenvironment. One study specifically focused on how isoform-specific expression and localization of TMEM88 determine its functional impact on tumor progression. Yet for most TMEMs, only pre-clinical or early-phase data exist, with many supported by a single study lacking independent validation. This review brings together scattered evidence on TMEM proteins in lung cancer, with the aim of guiding future work on their possible use as biomarkers or therapeutic targets. Full article
(This article belongs to the Section Molecular Oncology)
15 pages, 4990 KB  
Article
Multiscale Structural Modulation and Synergistic Enhancement of Transparency and Relaxor Behavior in La3+-Doped KNN Lead-Free Ceramics
by Xu Yang, Lingzhi Wang, Li Luo, Wenjuan Wu, Bo Wu, Junjie Li, Jie Li, Tixian Zeng and Gengpei Xia
Nanomaterials 2026, 16(2), 149; https://doi.org/10.3390/nano16020149 - 22 Jan 2026
Viewed by 92
Abstract
Lead-free transparent ferroelectric ceramics with integrated opto-electro-mechanical functionalities are pivotal for next-generation multifunctional devices. In this study, K0.48Na0.52NbO3-xLa2O3 (KNN-xLa, x = 0.005 − 0.04) ceramics were fabricated via a conventional [...] Read more.
Lead-free transparent ferroelectric ceramics with integrated opto-electro-mechanical functionalities are pivotal for next-generation multifunctional devices. In this study, K0.48Na0.52NbO3-xLa2O3 (KNN-xLa, x = 0.005 − 0.04) ceramics were fabricated via a conventional solid-state route to investigate the La3+-induced multiscale structural evolution and its modulation of optical and electrical properties. La3+ substitution drives a critical structural transition from an anisotropic orthorhombic phase (Amm2) to a high-symmetry pseudocubic-like tetragonal phase (P4mm) for x ≥ 0.025, characterized by minimal lattice distortion (c/a = 1.0052). This enhanced structural isotropy, coupled with submicron grain refinement (<1 μm) driven by VA-mediated solute drag, effectively suppresses light scattering. Consequently, a high-transparency plateau (T780 ≈ 53–58%, T1700 ≈ 70–72%) is achieved for 0.025 ≤ x ≤ 0.035. Simultaneously, the system undergoes a crossover from normal ferroelectric (FE) to relaxor (RF) state, governed by an FE–RF boundary at x = 0.015. While x = 0.005 exhibits robust piezoelectricity (d33 ≈ 92 pC/N), the x = 0.015 composition facilitates a transitional polar state with large strain (0.179%) and high polarization (Pm ≈ 33.3 μC/cm2, Pr ≈ 15.8 μC/cm2). Piezoresponse force microscopy (PFM) confirms the domain evolution from lamellar macro-domains to speckle-like polar nanoregions (PNRs), elucidating the intrinsic trade-off between optical transparency and piezoelectricity. This work underscores La3+ as a potent structural modifier for tailoring phase boundaries and defect chemistry, providing a cost-effective framework for developing high-performance transparent electromechanical materials. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electric Applications)
Show Figures

Figure 1

24 pages, 5216 KB  
Article
Characterizing L-Band Backscatter in Inundated and Non-Inundated Rice Paddies for Water Management Monitoring
by Go Segami, Kei Oyoshi, Shinichi Sobue and Wataru Takeuchi
Remote Sens. 2026, 18(2), 370; https://doi.org/10.3390/rs18020370 - 22 Jan 2026
Viewed by 60
Abstract
Methane emissions from rice paddies account for over 11% of global atmospheric CH4, making water management practices such as Alternate Wetting and Drying (AWD) critical for climate change mitigation. Remote sensing offers an objective approach to monitoring AWD implementation and improving [...] Read more.
Methane emissions from rice paddies account for over 11% of global atmospheric CH4, making water management practices such as Alternate Wetting and Drying (AWD) critical for climate change mitigation. Remote sensing offers an objective approach to monitoring AWD implementation and improving greenhouse gas estimation accuracy. This study investigates the backscattering mechanisms of L-band SAR for inundation/non-inundation classification in paddy fields using full-polarimetric ALOS-2 PALSAR-2 data. Field surveys and satellite observations were conducted in Ryugasaki (Ibaraki) and Sekikawa (Niigata), Japan, collecting 1360 ground samples during the 2024 growing season. Freeman–Durden decomposition was applied, and relationships with plant height and water level were analyzed. The results indicate that plant height strongly influences backscatter, with backscattering contributions from the surface decreasing beyond 70 cm, reducing classification accuracy. Random forest models can classify inundated and non-inundated fields with up to 88% accuracy when plant height is below 70 cm. However, when using this method, it is necessary to know the plant height. Volume scattering proved robust to incidence angle and observation direction, suggesting its potential for phenological monitoring. These findings highlight the effectiveness of L-band SAR for water management monitoring and the need for integrating crop height estimation and regional adaptation to enhance classification performance. Full article
Show Figures

Figure 1

12 pages, 3014 KB  
Article
The Application of High-Performance Silver Nanowire and Metal Oxide Composite Electrodes as Window Electrodes in Electroluminescent Devices
by Xingzhen Yan, Ziyao Niu, Mengying Lyu, Yanjie Wang, Fan Yang, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2026, 17(1), 141; https://doi.org/10.3390/mi17010141 - 22 Jan 2026
Viewed by 41
Abstract
In this paper, composite structures were fabricated by incorporating silver nanowires (AgNWs) with various metal oxides via the sol–gel method. This approach enhanced the electrical performance of AgNW-based transparent electrodes while simultaneously improving their stability under damp heat conditions and modifying the local [...] Read more.
In this paper, composite structures were fabricated by incorporating silver nanowires (AgNWs) with various metal oxides via the sol–gel method. This approach enhanced the electrical performance of AgNW-based transparent electrodes while simultaneously improving their stability under damp heat conditions and modifying the local medium environment surrounding the AgNW meshes. The randomly distributed AgNW meshes fabricated via drop-coating were treated with plasma to remove surface organic residues and reduce the inter-nanowire contact resistance. Subsequently, a zinc oxide (ZnO) coating was applied to further decrease the sheet resistance (Rsheet) value. The pristine AgNW mesh exhibits an Rsheet of 17.4 ohm/sq and an optical transmittance of 93.06% at a wavelength of 550 nm. After treatment, the composite structure achieves a reduced Rsheet of 8.7 ohm/sq while maintaining a high optical transmittance of 92.20%. The use of AgNW meshes as window electrodes enhances electron injection efficiency and facilitates the coupling mechanism between localized surface plasmon resonances and excitons. Compared with conventional ITO transparent electrodes, the incorporation of the AgNW mesh leads to a 17-fold enhancement in ZnO emission intensity under identical injection current conditions. Moreover, the unique scattering characteristics of the AgNW and metal oxide composite structure effectively reduce photon reflection at the device interface, thereby broadening the angular distribution of emitted light in electroluminescent devices. Full article
Show Figures

Figure 1

41 pages, 7193 KB  
Article
Nonlinear Optical Properties of Fe(II) and Ru(II) Alkynyl-Functionalized 1,3,5-Triphenyl-1,3,5-triazine-2,4,6-triones and 1,3,5-Triphenylbenzenes: Syntheses, Second-Harmonic Generation and Two-Photon Absorption
by Alexander Trujillo, Romain Veillard, Amédée Triadon, Guillaume Grelaud, Gilles Argouarch, Thierry Roisnel, Anu Singh, Isabelle Ledoux, Anissa Amar, Abdou Boucekkine, Marek Samoc, Katarzyna Matczyszyn, Xinwei Yang, Adam Barlow, Marie P. Cifuentes, Mahbod Morshedi, Mark G. Humphrey and Frédéric Paul
Photochem 2026, 6(1), 6; https://doi.org/10.3390/photochem6010006 - 21 Jan 2026
Viewed by 101
Abstract
We report the use of σ-alkynyl d6 electron-rich transition metal complexes as electron-releasing end-groups in octupolar molecules designed for nonlinear optical (NLO) applications, specifically, N,N′,N″-triarylisocyanurates (5,7,8,10,12) [...] Read more.
We report the use of σ-alkynyl d6 electron-rich transition metal complexes as electron-releasing end-groups in octupolar molecules designed for nonlinear optical (NLO) applications, specifically, N,N′,N″-triarylisocyanurates (5,7,8,10,12) and 1,3,5-triarylbenzenes (6,9,11) functionalized by Fe(II) and Ru(II) organometallic moieties, and their NLO properties, as assessed by hyper-Rayleigh scattering (HRS) and Z-scan. The redox properties are briefly investigated through isolation of the corresponding Fe(III) trications 5[PF6]3 and 6[PF6]3. The second-harmonic generation (SHG) or two-photon absorption (2PA) performance of the Fe(II) and Ru(II) parents is compared with the help of TD-DFT calculations performed on models. Comparison with tris-ferrocenyl isocyanurate 4 reveals that the σ-connection of the metallic centers to the π-manifold is superior to the η5-connection for enhancing NLO properties. The positive effect of organometallic end-groups on NLO properties relative to purely organic electron-releasing substituents is established. The mechanism by which NLO enhancement occurs is complex and possibly connected to the polarizable π-electrons in the ligands surrounding the metal alkynyl units, but in most cases, the observed NLO enhancement must arise from the transition metal centers interacting with the central π-manifold. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 1868 KB  
Review
Stray Light Analysis and Mitigation Perspectives for Next Generation Gravitational-Wave Detectors
by Eleonora Polini and Antonino Chiummo
Galaxies 2026, 14(1), 5; https://doi.org/10.3390/galaxies14010005 - 21 Jan 2026
Viewed by 65
Abstract
The low-frequency sensitivity of gravitational-wave detectors can be degraded by noise arising from the re-coupling of stray light with the main interferometer beam. This review describes the re-coupling mechanism and shows how the experience gained with current detectors can be used to anticipate [...] Read more.
The low-frequency sensitivity of gravitational-wave detectors can be degraded by noise arising from the re-coupling of stray light with the main interferometer beam. This review describes the re-coupling mechanism and shows how the experience gained with current detectors can be used to anticipate and mitigate stray-light issues in third-generation instruments. We summarize the work carried out on numerical simulations and on the extensive characterization of stray light originating from both core and auxiliary optics. We also discuss possible improvements to the interferometric readout system aimed at reducing stray-light-induced noise, as well as diagnostic approaches for identifying potentially harmful scattering elements. Overall, this review summarizes best practices for the effective control of stray light in future gravitational-wave detectors, supporting design approaches aimed at preventing unforeseen noise issues. Full article
Show Figures

Figure 1

17 pages, 2514 KB  
Article
Parsing the Relative Contributions of Leaf and Canopy Traits in Airborne Spectrometer Measurements
by Franklin B. Sullivan, Jack H. Hastings, Scott V. Ollinger, Andrew Ouimette, Andrew D. Richardson and Michael Palace
Remote Sens. 2026, 18(2), 355; https://doi.org/10.3390/rs18020355 - 21 Jan 2026
Viewed by 108
Abstract
Forest canopy near-infrared reflectance and mass-based canopy nitrogen concentration (canopy %N) have been shown to be positively correlated. While the mechanisms underpinning this relationship remain unresolved, the broad range of wavelengths involved points to structural properties that influence scattering and covary with %N. [...] Read more.
Forest canopy near-infrared reflectance and mass-based canopy nitrogen concentration (canopy %N) have been shown to be positively correlated. While the mechanisms underpinning this relationship remain unresolved, the broad range of wavelengths involved points to structural properties that influence scattering and covary with %N. Despite this, efforts that have focused on commonly measured structural properties such as leaf area index (LAI) have failed to identify a causal mechanism. Here, we sought to understand how lidar-derived canopy traits related to additional properties of foliar arrangement and structural complexity modulate the effects of leaf spectra and leaf area index (LAI) on canopy reflectance. We developed a leaf layer spectra model to explore how canopy reflectance would change if complex foliage arrangements were removed, compressing the canopy into optically dense, uniform stacked layers while maintaining the same leaf area index. Model results showed that LAI-weighted leaf reflectance saturates at a leaf area index of approximately two for needleleaf species and four for broadleaf species. When upscaled to estimate plot-level canopy reflectance in the absence of structural complexity (NIRrLAI), results showed a strong positive relationship with canopy %N (r2 = 0.86), despite a negative relationship for individual leaves or “big-leaf” canopies with an LAI of one (NIRrL, r2 = 0.78). This result implies that the relationship between canopy near-infrared reflectance and canopy %N results from the integrated effects of canopy complexity acting on differences in leaf-level optical properties. We introduced an index of relative reflectance (IRr) that shows that the relative contribution of structural complexity to canopy near-infrared reflectance (NIRrC) is related to canopy %N (r2 = 0.55), with a three-fold reduction from potential canopy near-infrared reflectance observed in stands with low %N compared to a two-fold reduction in stands with high %N. These findings support the hypothesis that the correlation between canopy %N and canopy reflectance is the result of interactions between leaf traits and canopy structural complexity. Full article
Show Figures

Figure 1

23 pages, 5986 KB  
Article
Modulation and Perturbation in Frequency Domain for SAR Ship Detection
by Mengqin Fu, Wencong Zhang, Xiaochen Quan, Dahu Shi, Luowei Tan, Jia Zhang, Yinghui Xing and Shizhou Zhang
Remote Sens. 2026, 18(2), 338; https://doi.org/10.3390/rs18020338 - 20 Jan 2026
Viewed by 104
Abstract
Synthetic Aperture Radar (SAR) has unique advantages in ship monitoring at sea due to its all-weather imaging capability. However, its unique imaging mechanism presents two major challenges. First, speckle noise in the frequency domain reduces the contrast between the target and the background. [...] Read more.
Synthetic Aperture Radar (SAR) has unique advantages in ship monitoring at sea due to its all-weather imaging capability. However, its unique imaging mechanism presents two major challenges. First, speckle noise in the frequency domain reduces the contrast between the target and the background. Second, side-lobe scattering blurs the ship outline, especially in nearshore complex scenes, and strong scattering characteristics make it difficult to separate the target from the background. The above two challenges significantly limit the performance of tailored CNN-based detection models in optical images when applied directly to SAR images. To address these challenges, this paper proposes a modulation and perturbation mechanism in the frequency domain based on a lightweight CNN detector. Specifically, the wavelet transform is firstly used to extract high-frequency features in different directions, and feature expression is dynamically adjusted according to the global statistical information to realize the selective enhancement of the ship edge and detail information. In terms of frequency-domain perturbation, a perturbation mechanism guided by frequency-domain weight is introduced to effectively suppress background interference while maintaining key target characteristics, which improves the robustness of the model in complex scenes. Extensive experiments on four widely adopted benchmark datasets, namely LS-SSDD-v1.0, SSDD, SAR-Ship-Dataset, and AIR-SARShip-2.0, demonstrate that our FMP-Net significantly outperforms 18 existing state-of-the-art methods, especially in complex nearshore scenes and sea surface interference scenes. Full article
Show Figures

Figure 1

15 pages, 3475 KB  
Article
Geometry-Dependent Photonic Nanojet Formation and Arrays Coupling
by Zehua Sun, Shaobo Ge, Lujun Shen, Junyan Li, Shibo Xu, Jin Zhang, Yingxue Xi and Weiguo Liu
Nanomaterials 2026, 16(2), 136; https://doi.org/10.3390/nano16020136 - 20 Jan 2026
Viewed by 235
Abstract
This work systematically investigates photonic nanojet (PNJ) planar arrays formed by periodic arrangements of dielectric microstructures with four geometric configurations: cylinders, cones, truncated pyramids, and pyramids, focusing on the effects of geometry, array arrangement, and array sparsity on PNJ formation and coupling behavior. [...] Read more.
This work systematically investigates photonic nanojet (PNJ) planar arrays formed by periodic arrangements of dielectric microstructures with four geometric configurations: cylinders, cones, truncated pyramids, and pyramids, focusing on the effects of geometry, array arrangement, and array sparsity on PNJ formation and coupling behavior. Full-wave finite-difference time-domain simulations were performed to analyze optical field distributions under different array conditions. The results indicate that under approximately infinite array conditions, different geometries exhibit markedly different coupling responses. Cylindrical and truncated pyramid structures are more susceptible to inter-element scattering, leading to pronounced multistage focusing, whereas pyramid and cone structures maintain higher spatial stability due to dominant localized tip-focusing mechanisms. For the central elements, the maximum PNJ intensity is about 16.4 a.u. for cylindrical structures and 33.5 a.u. for truncated pyramid structures, while significantly higher intensities of approximately 47.5 a.u. and 93 a.u. are achieved for pyramid and cone structures, respectively. In contrast, the FWHM remains nearly constant for all geometries under different array conditions, indicating that lateral focusing is primarily governed by geometry rather than array arrangement. By tuning the array spacing, the inter-element coupling strength can be continuously weakened, and different geometries require distinct sparsity levels to reach the weak-coupling limit. These results establish the dominant role of geometric configuration in PNJ planar arrays and provide guidance for their predictable design. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

27 pages, 16684 KB  
Article
pH-Sensitive Dextrin-Based Nanosponges Crosslinked with Pyromellitic Dianhydride and Citric Acid: Swelling, Rheological Behavior, Mucoadhesion, and In Vitro Drug Release
by Gjylije Hoti, Sara Er-Rahmani, Alessia Gatti, Ibrahim Hussein, Monica Argenziano, Roberta Cavalli, Anastasia Anceschi, Adrián Matencio, Francesco Trotta and Fabrizio Caldera
Gels 2026, 12(1), 90; https://doi.org/10.3390/gels12010090 - 19 Jan 2026
Viewed by 163
Abstract
Dextrin-based nanosponges (D-NS) are promising candidates for oral drug delivery due to their biocompatibility, mucoadhesive properties, and tunable swelling behavior. In this study, pH-sensitive nanosponges were synthesized using β-cyclodextrin (β-CD), GluciDex®2 (GLU2), and KLEPTOSE® Linecaps (LC) as building blocks, crosslinked [...] Read more.
Dextrin-based nanosponges (D-NS) are promising candidates for oral drug delivery due to their biocompatibility, mucoadhesive properties, and tunable swelling behavior. In this study, pH-sensitive nanosponges were synthesized using β-cyclodextrin (β-CD), GluciDex®2 (GLU2), and KLEPTOSE® Linecaps (LC) as building blocks, crosslinked with pyromellitic dianhydride (PMDA) and citric acid (CA). The nanosponges were mechanically size-reduced via homogenization and ball milling, and characterized by FTIR, TGA, dynamic light scattering (DLS), and zeta potential measurements. Swelling kinetics, cross-linking density (determined using Flory–Rehner theory), rheological behavior, and mucoadhesion were evaluated under simulated gastric and intestinal conditions. The β-CD:PMDA 1:4 NS was selected for drug studies due to its optimal balance of structural stability, swelling capacity (~863% at pH 6.8), and highest apomorphine (APO) loading (8.23%) with 90.58% encapsulation efficiency. All nanosuspensions showed favorable polydispersity index values (0.11–0.30), homogeneous size distribution, and stable zeta potentials, confirming suspension stability. Storage at 4 °C for six months revealed no changes in physicochemical properties or apomorphine (APO) degradation, indicating protection by the nanosponge matrix. D-NS exhibited tunable swelling, pH-responsive behavior, and mucoadhesive properties, with nanoparticle–mucin interactions quantified by the rheological synergism parameter (∆G′ = 53.45, ∆G″ = −36.26 at pH 6.8). In vitro release studies demonstrated slow, sustained release of APO from D-NS in simulated intestinal fluid compared to free drug diffusion, highlighting the potential of D-NS as pH-responsive, mucoadhesive carriers with controlled drug release and defined nanoparticle–mucin interactions. Full article
Show Figures

Graphical abstract

22 pages, 3772 KB  
Article
A Degradation-Aware Dual-Path Network with Spatially Adaptive Attention for Underwater Image Enhancement
by Shasha Tian, Adisorn Sirikham, Jessada Konpang and Chuyang Wang
Electronics 2026, 15(2), 435; https://doi.org/10.3390/electronics15020435 - 19 Jan 2026
Viewed by 96
Abstract
Underwater image enhancement remains challenging due to wavelength-dependent absorption, spatially varying scattering, and non-uniform illumination, which jointly cause severe color distortion, contrast degradation, and structural information loss. To address these issues, we propose UCS-Net, a degradation-aware dual-path framework that exploits the complementarity between [...] Read more.
Underwater image enhancement remains challenging due to wavelength-dependent absorption, spatially varying scattering, and non-uniform illumination, which jointly cause severe color distortion, contrast degradation, and structural information loss. To address these issues, we propose UCS-Net, a degradation-aware dual-path framework that exploits the complementarity between global and local representations. A spatial color balance module first stabilizes the chromatic distribution of degraded inputs through a learnable gray-world-guided normalization, mitigating wavelength-induced color bias prior to feature extraction. The network then adopts a dual-branch architecture, where a hierarchical Swin Transformer branch models long-range contextual dependencies and global color relationships, while a multi-scale residual convolutional branch focuses on recovering local textures and structural details suppressed by scattering. Furthermore, a multi-scale attention fusion mechanism adaptively integrates features from both branches in a degradation-aware manner, enabling dynamic emphasis on global or local cues according to regional attenuation severity. A hue-preserving reconstruction module is finally employed to suppress color artifacts and ensure faithful color rendition. Extensive experiments on UIEB, EUVP, and UFO benchmarks demonstrate that UCS-Net consistently outperforms state-of-the-art methods in both full-reference and non-reference evaluations. Qualitative results further confirm its effectiveness in restoring fine structural details while maintaining globally consistent and visually realistic colors across diverse underwater scenes. Full article
(This article belongs to the Special Issue Image Processing and Analysis)
Show Figures

Figure 1

Back to TopTop