Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (345)

Search Parameters:
Keywords = sand dune

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 13177 KiB  
Article
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
by Mark R. Jury
Coasts 2025, 5(3), 25; https://doi.org/10.3390/coasts5030025 - 18 Jul 2025
Viewed by 285
Abstract
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport [...] Read more.
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport by near-shore wind-waves and currents. River-borne sediments, eroded coral substrates, and reworked beach sand are mobilized by frequent storms. Surf-zone currents ~0.4 m/s instill the northward transport of ~6 105 kg/yr/m. An analysis of the mean annual cycle over the period of 1997–2024 indicates a crest of rainfall over the Umfolozi catchment during summer (Oct–Mar), whereas coastal suspended sediment, based on satellite red-band reflectivity, rises in winter (Apr–Sep) due to a deeper mixed layer and larger northward wave heights. Sediment input to the beaches near Cape Vidal exhibit a 3–6-year cycle of southeasterly waves and rainy weather associated with cool La Nina tropical sea temperatures. Beachfront sand dunes are wind-swept and release sediment at ~103 m3/yr/m, which builds tall back-dunes and helps replenish the shoreline, especially during anticyclonic dry spells. A wind event in Nov 2018 is analyzed to quantify aeolian transport, and a flood in Jan–Feb 2025 is studied for river plumes that meet with stormy seas. Management efforts to limit development and recreational access have contributed to a sustainable coastal environment despite rising tides and inland temperatures. Full article
Show Figures

Figure 1

24 pages, 3783 KiB  
Article
Morphodynamic Interactions Between Sandbar, Beach Profile, and Dune Under Variable Hydrodynamic and Morphological Conditions
by Alirio Sequeira, Carlos Coelho and Márcia Lima
Water 2025, 17(14), 2112; https://doi.org/10.3390/w17142112 - 16 Jul 2025
Viewed by 242
Abstract
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial [...] Read more.
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial nourishment has proven to be an effective method for erosion control. However, its success depends on factors such as the placement location, sediment volume, and frequency of operations. To optimize these interventions, simulations were conducted using both a numerical model (CS-Model) and a physical flume model, based on the same cross-section beach/dune profile, to compare cross-shore nourishment performance across different scenarios. The numerical modeling approach is presented first, including a description of the reference prototype-scale scenario. This is followed by an overview of the physical modeling, detailing the experimental 2D cross-section flume setup and tested scenarios. These scenarios simulate nourishment interventions with variations in beach profile, aiming to assess the influence of water level, berm width, bar volume, and bar geometry. The results from both numerical and physical simulations are presented, focusing on the cross-shore morphological response of the beach profile under wave action, particularly the effects on profile shape, water level, bar volume, and the position and depth of the bar crest. The main conclusion highlights that a wider initial berm leads to greater wave energy dissipation, thereby contributing to the mitigation of dune erosion. Full article
Show Figures

Figure 1

27 pages, 2707 KiB  
Systematic Review
The Role of Trees in Sand Dune Rehabilitation: Insights from Global Experiences
by Lucian Dinca, Aurora Coca, Nicu Constantin Tudose, Mirabela Marin, Gabriel Murariu and Dan Munteanu
Appl. Sci. 2025, 15(13), 7358; https://doi.org/10.3390/app15137358 - 30 Jun 2025
Cited by 1 | Viewed by 404
Abstract
The present review summarizes the existing knowledge regarding the afforestation of sand dunes. Our main focus was on the role of trees in stabilizing and rehabilitating these complex ecosystems. We analyzed 937 publications through a systematic bibliometric review and then proceeded to select [...] Read more.
The present review summarizes the existing knowledge regarding the afforestation of sand dunes. Our main focus was on the role of trees in stabilizing and rehabilitating these complex ecosystems. We analyzed 937 publications through a systematic bibliometric review and then proceeded to select 422 articles that met our criteria. This methodological approach—combining a comprehensive bibliometric analysis with an in-depth traditional literature review—represents a novel contribution to the field and allows for both quantitative trends and qualitative insights to be captured. This was then complemented by an in-depth literature review. Our results sustain the global importance of this subject, as they include studies from more than 80 countries, with a focus on the USA, China, Australia, and Japan. We have also identified a series of main tree species that are usually used in the afforestation of sand dunes (Pinus, Acacia, Juniperus) and then proceeded to analyze their ecologic and socio-economic impact. As such, we have analyzed case studies from all continents, showcasing a variety of strategies that were successful and adapted to local conditions. This did not exclude challenges, mainly invasive species, low survival rates, and effects on biodiversity and stabilization. The main factors that impact the success of afforestation are represented by topography, soil structure, water dynamics, and climate. Unlike previous reviews, this study offers a global synthesis of both the scientific output and the applied outcomes of sand dune afforestation, bridging the gap between research and practice. As such, afforestation has a positive impact on soil fertility and carbon sequestration but can also present a major risk to native ecosystems. In this context, the present review highlights the need to adopt strategies that are unique for that site, and that must integrate all aspects (ecological, social, economic) to ensure good results. Our ISI-indexed literature review helped us to address the link between the current knowledge, research trends, and future topics that must be addressed. Full article
(This article belongs to the Special Issue Ecosystems and Landscape Ecology)
Show Figures

Figure 1

15 pages, 4428 KiB  
Article
Evaluation of the Influence of Wind-Induced Dune Movement on Transmission Tower Lines
by Shijun Wang, Wenyuan Bai, Yunfei Tian, Hailong Zhang and Hongchao Dun
Atmosphere 2025, 16(7), 779; https://doi.org/10.3390/atmos16070779 - 25 Jun 2025
Viewed by 324
Abstract
Thorough investigation into dune morphology is pivotal for grasping the intricacies of constructing and operating power transmission lines in desert terrains. However, there remains a notable gap in the quantitative analysis and assessment of how dune dynamics evolve under the influence of transmission [...] Read more.
Thorough investigation into dune morphology is pivotal for grasping the intricacies of constructing and operating power transmission lines in desert terrains. However, there remains a notable gap in the quantitative analysis and assessment of how dune dynamics evolve under the influence of transmission infrastructure. In this study, the Real-Space Cellular Automaton Laboratory is deployed to explore how transverse dunes evolve around transmission towers under diverse wind velocities and varying dune dimensions. The results reveal that, beyond the immediate vicinity of the transmission tower, the height of the transverse dune remains largely stable across broad spatial scales, unaffected by the transmission line. As wind velocities wane, the structural integrity of the transverse dunes is compromised, leading to an expansion in the size of the trail structures. Initially, the height of the dune surges, only to decline progressively over time, with the maximum fluctuation reaching nearly 1m. The height of larger dunes escalates gradually at first, peaks, and then subsides, with the pinnacle height nearing 6.5m. As a critical metric for safety evaluation, the height of the transmission line above ground initially plummets, then gradually rebounds, and shifts backward over time after hitting its nadir. Full article
Show Figures

Figure 1

14 pages, 1267 KiB  
Article
Workability and Mechanical Properties of PVA Fiber-Reinforced Concrete with Hybrid Dune Sand and Steel Slag Aggregates
by Yanhua Liu, Xirui Wang, Senyan Jiang, Qingxin Ren and Tong Li
Materials 2025, 18(13), 2956; https://doi.org/10.3390/ma18132956 - 22 Jun 2025
Cited by 1 | Viewed by 311
Abstract
To mitigate ecological damage from excessive natural aggregate extraction, this study developed an eco-friendly concrete using dune sand and steel slag as natural aggregates, enhanced with polyvinyl alcohol (PVA) fibers. Through orthogonal testing, the effects of the dune sand replacement ratio, steel slag [...] Read more.
To mitigate ecological damage from excessive natural aggregate extraction, this study developed an eco-friendly concrete using dune sand and steel slag as natural aggregates, enhanced with polyvinyl alcohol (PVA) fibers. Through orthogonal testing, the effects of the dune sand replacement ratio, steel slag replacement ratio, PVA fiber length, and PVA fiber content on concrete workability and mechanical properties were analyzed. The results show that slump exceeded 120 mm (meeting engineering requirements) in mixes except that with 40% dune sand, 60% steel slag, 18 mm PVA fiber length, and 0.4% PVA fiber content; 50% steel slag replacement significantly improved mechanical properties, yielding a 21.2% increase in 28 d compressive strength when replacement increased from 30% to 50%; 20% dune sand replacement for river sand is optimal; and while increased PVA content enhanced splitting tensile and flexural strengths, both its length and content should not exceed 9 mm and 0.3%, respectively. The concrete delivers acceptable performance while providing dual environmental benefits: reduced aggregate consumption pressure and achieved high-value-added dune sand–steel slag utilization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

42 pages, 6908 KiB  
Article
Vegetation Analysis of Wetland Ecosystems in Southern Turkey Using the Fuzzy Means Method
by Deniz Boz
Biology 2025, 14(6), 710; https://doi.org/10.3390/biology14060710 - 17 Jun 2025
Viewed by 440
Abstract
In this study, the vegetation of the natural area of the Göksu Delta Special Environmental Protection Agency (SEPA), one of Turkey’s most important wetlands, is researched. The importance of this study in terms of contributing to environmental protection and land use planning studies [...] Read more.
In this study, the vegetation of the natural area of the Göksu Delta Special Environmental Protection Agency (SEPA), one of Turkey’s most important wetlands, is researched. The importance of this study in terms of contributing to environmental protection and land use planning studies reveals that this natural area, where rare ecosystems are found, has started to degrade and disappear under human influence. This study was conducted because the area is not only a designated RAMSAR wetland (a wetland site designated of international importance especially for the Waterfowl Habitat under the Ramsar Convention) but also includes nearby residential developments. With this study, the vegetation of the area was studied to determine the syntaxonomic units across different habitats. The natural area of Göksu Delta is divided into three main habitat groups: aquatic, sand dune, and halophytic. In the research, the Braun-Blanquet method was used. During the research in the Göksu Delta, 279 sample areas were surveyed. The data were analysed according to the fuzzy means cluster method. During the investigation, 29 associations were identified, and 16 of them are considered a new finding for science. These 29 associations can be classified as follows: aquatic vegetation is represented with four associations (three of them belong to Phragmito-Magnocaricetea and one of them belongs to Potametea classes), sand dune vegetation is represented with 12 associations (belonging to Ammophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk, & Passchier 1946 class), and halophytic vegetation is represented with 13 associations (six of them belong to Salicornietea fruticosae Br.-Bl. & Tüxen ex A. & O. Bolòs 1950, six of them belong to Juncetea maritimi Br.-Bl. in Br.-Bl., Roussine & Nègre 1952, and one of them belong to Molinio-Juncetea Br.-Bl. (1931) 1947 classes). Three (Onopordum boissieri, Ambrosia maritima, and Chlamydophora tridentata) of the endemics and rare plants that were explored during the study were recorded as new alliance characteristics. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

15 pages, 3877 KiB  
Article
Erosive Wind Characteristics and Aeolian Sediment Transport and Dune Formation in Makran Region of Baluchistan, Iran
by Hamidreza Abbasi, Azadeh Gohardoust, Fazeh Mohammadpour, Mohammad Khosroshahi, Michael Groll and Christian Opp
Atmosphere 2025, 16(6), 650; https://doi.org/10.3390/atmos16060650 - 27 May 2025
Viewed by 456
Abstract
Understanding aeolian sediment transport and wind erosion enhances our knowledge of desert dune formation and sand migration. The Makran region of southern Sistan and Baluchistan is prone to wind-driven erosion alongside frequent sand and dust storms (SDSs). Hourly wind data from two meteorological [...] Read more.
Understanding aeolian sediment transport and wind erosion enhances our knowledge of desert dune formation and sand migration. The Makran region of southern Sistan and Baluchistan is prone to wind-driven erosion alongside frequent sand and dust storms (SDSs). Hourly wind data from two meteorological stations spanning 1994–2020 were analyzed to study erosive winds and sand transport. Wind energy analysis using drift potential (DP) indicated low energy (DP < 200 in vector unit) and minimal spatial variation across the Makran dune fields. The effective winds transporting sand particles were towards the east from November to May, and in the northwestern direction from June to October. The DP showed a gradual decline in the study area from 1990 to 2022, with no significant temporal trends. The sand dune morphology analysis indicates that bimodal wind regimes primarily form linear dunes and sand sheets, while crescentic, transverse, and topographic dunes are also present. Full article
Show Figures

Figure 1

19 pages, 1884 KiB  
Article
Effects of Bothriochloa ischaemum on the Diversity of Pannonian Sandy Grasslands
by Szilárd Szentes, Károly Penksza, Eszter Saláta-Falusi, László Sipos, Veronika Kozma-Bognár, Richárd Hoffmann and Zsombor Wagenhoffer
Land 2025, 14(5), 1107; https://doi.org/10.3390/land14051107 - 20 May 2025
Viewed by 478
Abstract
Changes in land use and agricultural practices have altered the resilience of plant communities and can lead to the emergence of invasive species. One of these is the perennial grass species Bothriochloa ischaemum (L.) Kleng., whose diversity-reducing effects are known from several studies. [...] Read more.
Changes in land use and agricultural practices have altered the resilience of plant communities and can lead to the emergence of invasive species. One of these is the perennial grass species Bothriochloa ischaemum (L.) Kleng., whose diversity-reducing effects are known from several studies. Our exploratory questions were as follows: How does the presence of B. ischaemum affect the diversity and ratio of the species of sandy grasslands? To what extent does this diversity change depend on site characteristics? The supporting studies were carried out in five low-lying sand dune slacks and six relatively higher areas in the upper-intermediate part of the dunes and on an abandoned old field located in the Hungarian Great Plain in the Carpathian Basin. The cover of vascular plant species was recorded in all sampling sites in twelve 2 by 2 m plots, and the dataset was analysed using agglomerative cluster analyses and a non-parametric Kruskal–Wallis test. Five significantly different groups were identified, separating the vegetation types of the sides of the sand dunes, the vegetation types of the dune slack and the old field, and a Stipa borysthenica Kolkov ex Prokudin-dominated vegetation type. Our results suggest that B. ischaemum is only present as small tussocks on the drier, more exposed sides of dunes, with 3.9–24.2% average coverage; is less able to outcompete Festuca vaginata Waldst. et Kit. ex Willd. and S. borysthenica; and is only able to form large tussocks mainly in the lower dune slacks, with 45.6–79.5% average coverage. Here, in the wetter areas, it achieves high cover with a considerable accumulation of litter, and it becomes a dominant species in this association. The diversity-reducing effect of B. ischaemum on old-field grasslands depends on the age of the site and on the stability of the vegetation. Full article
Show Figures

Figure 1

35 pages, 20819 KiB  
Article
Exploring the Gobi Wall: Archaeology of a Large-Scale Medieval Frontier System in the Mongolian Desert
by Dan Golan, Gideon Shelach-Lavi, Chunag Amartuvshin, Zhidong Zhang, Ido Wachtel, Jingchao Chen, Gantumur Angaragdulguun, Itay Lubel, Dor Heimberg, Mark Cavanagh, Micka Ullman and William Honeychurch
Land 2025, 14(5), 1087; https://doi.org/10.3390/land14051087 - 16 May 2025
Viewed by 4018
Abstract
The Gobi Wall is a 321 km-long structure made of earth, stone, and wood, located in the Gobi highland desert of Mongolia. It is the least understood section of the medieval wall system that extends from China into Mongolia. This study aims to [...] Read more.
The Gobi Wall is a 321 km-long structure made of earth, stone, and wood, located in the Gobi highland desert of Mongolia. It is the least understood section of the medieval wall system that extends from China into Mongolia. This study aims to determine its builders, purpose, and chronology. Additionally, we seek to better understand the ecological implications of constructing such an extensive system of walls, trenches, garrisons, and fortresses in the remote and harsh environment of the Gobi Desert. Our field expedition combined remote sensing, pedestrian surveys, and targeted excavations at key sites. The results indicate that the garrison walls and main long wall were primarily constructed using rammed earth, with wood and stone reinforcements. Excavations of garrisons uncovered evidence of long-term occupation, including artifacts spanning from 2nd c. BCE to 19th c. CE. According to our findings, the main construction and usage phase of the wall and its associated structures occurred throughout the Xi Xia dynasty (1038–1227 CE), a period characterized by advanced frontier defense systems and significant geopolitical shifts. This study challenges the perception of such structures as being purely defensive, revealing the Gobi Wall’s multifunctional role as an imperial tool for demarcating boundaries, managing populations and resources, and consolidating territorial control. Furthermore, our spatial and ecological analysis demonstrates that the distribution of local resources, such as water and wood, was critical in determining the route of the wall and the placement of associated garrisons and forts. Other geographic factors, including the location of mountain passes and the spread of sand dunes, were strategically utilized to enhance the effectiveness of the wall system. The results of this study reshape our understanding of medieval Inner Asian imperial infrastructure and its lasting impact on geopolitical landscapes. By integrating historical and archeological evidence with geographical analysis of the locations of garrisons and fortifications, we underscore the Xi Xia kingdom’s strategic emphasis on regulating trade, securing transportation routes, and monitoring frontier movement. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

12 pages, 4494 KiB  
Article
Visualization of Coastal Carbonate Lithosomes: Color-Intensity Patterns and Georadar Imaging of a Semi-Lithified Strandplain, Eleuthera Island, The Bahamas
by Ilya V. Buynevich, Michael Savarese and H. Allen Curran
J. Mar. Sci. Eng. 2025, 13(5), 950; https://doi.org/10.3390/jmse13050950 - 14 May 2025
Viewed by 556
Abstract
Quaternary carbonate strandplains serve as archives of land–sea interaction, including the impacts of storms and tsunamis. Incipient lithification, especially of compound beach/dune ridges within the action zone of salt spray, presents challenges to geological research, which is often limited to exposures. This study [...] Read more.
Quaternary carbonate strandplains serve as archives of land–sea interaction, including the impacts of storms and tsunamis. Incipient lithification, especially of compound beach/dune ridges within the action zone of salt spray, presents challenges to geological research, which is often limited to exposures. This study combines aerial image analysis with geophysical datasets to assess the morphostratigraphy and internal structure of the Freedom Beach Strandplain along southern Eleuthera Island, The Bahamas. Color-intensity analysis of field photographs and satellite images revealed general patterns that can be used to distinguish between areas with different grayscale parameters (sand-covered surfaces, lithified ridges, vegetation, etc.). Cross-shore (dip-section) high-resolution (800 MHz) georadar images across ten ridges (A-J) documented the internal architecture of swash-aligned ridge–swale sets. Signatures attributed to storms include truncations in shore-normal radargrams, scour features in alongshore (strike-section) images, and an extensive accumulation of large mollusk shells along one of the oldest ridges (ridge J). Preliminary radiocarbon dating yielded ages of up to 600 years, suggesting intense storms with 50–60-year periodicity as a possible mechanism for ridge formation. Full article
Show Figures

Figure 1

15 pages, 5615 KiB  
Article
Mitigation Measures for Wind Erosion and Sand Deposition in Desert Railways: A Geospatial Analysis of Sand Accumulation Risk
by Mahamat Nour Issa Abdallah, Tan Qulin, Mohamed Ramadan and Providence Habumuremyi
Sustainability 2025, 17(9), 4016; https://doi.org/10.3390/su17094016 - 29 Apr 2025
Viewed by 951
Abstract
Railway transportation is a critical component of global infrastructure which plays a significant role in ensuring the safe movement of goods and people. In desert environments, the effectiveness of railway transportation heavily relies on addressing key challenges such as shifting sand, migrating dunes, [...] Read more.
Railway transportation is a critical component of global infrastructure which plays a significant role in ensuring the safe movement of goods and people. In desert environments, the effectiveness of railway transportation heavily relies on addressing key challenges such as shifting sand, migrating dunes, wind erosion, and sand deposition, which can disrupt operations and increase maintenance costs. To mitigate the significant threats posed by windblown sand to railway safety along the Lanzhou-Xinjiang High-Speed Railway, the technique of double rows of sand fences constructed from concrete columns and plates has been applied to the windward side of the railway. These structures are designed to reduce wind speed and capture moving sand, protecting the rail infrastructure. These fences reduce wind velocity on their leeward sides by 78% and 87% for the first and second rows, respectively. Additionally, due to the large openings in the fences, the sand-trapping efficiencies are 72% for the first row and 63% for the second. The effective shelter distance of the fence is ten times its height. However, advanced technologies like geographic information systems (GIS), geothermal energy solutions, and sustainable infrastructure practices are increasingly integrated into railway transportation to mitigate these risks and enhance safety and reliability. For the Etihad Railway, GIS techniques were utilized to identify areas vulnerable to sand accumulation and validate the substantial benefits of sand fences. Notably, a 40% reduction in wind speed and a significant 74% decrease in sand flux were observed post-installation, underscoring the effectiveness of these structures in disrupting sand mobility. Specifically, wind speed after fence installation was reduced by 40%. The threshold velocity for sand transport was approximately 0.206 m/s. The sand flux before fence installation was 19.95 kg/m2/s, reduced to 5.175 kg/m2/s after fence installation, marking a 74% reduction. The sand deposition behind the sand fence over a 500 m section was around 7387.5 kg/s. This demonstrates the significant role that sand fences play in reducing wind-driven sand transport, thus protecting the Etihad Railway from sand accumulation, and maintaining operational safety. Full article
Show Figures

Figure 1

16 pages, 12503 KiB  
Article
An Aurignacian Assemblage from the Island of Lemnos (Greece): Some Aspects of the Beginning of the Upper Paleolithic in the Northeast Aegean
by Paolo Biagi, Elisabetta Starnini, Yulia Agafonova, Nikos Efstratiou, Nicola Campomenosi and Roberto Cabella
Heritage 2025, 8(4), 141; https://doi.org/10.3390/heritage8040141 - 15 Apr 2025
Viewed by 929
Abstract
The discovery of an Aurignacian lithic assemblage along the northern coast of the Island of Lemnos in the northeastern Aegean Sea has opened new perspectives on the study of the beginning of the Upper Paleolithic in this region. The site is located some [...] Read more.
The discovery of an Aurignacian lithic assemblage along the northern coast of the Island of Lemnos in the northeastern Aegean Sea has opened new perspectives on the study of the beginning of the Upper Paleolithic in this region. The site is located some 93 m from the present seashore. It was discovered in the summer of 2020, ca. 2 km west of the Pournias Bay. The lithics were exposed in a well-defined oval concentration, ca. 25 × 10 m wide, buried by a Holocene sand dune. They were uncovered following sand removal by a bulldozer for the construction of a parking lot. The knapped stones are made almost exclusively from hydrothermal siliceous rocks, a raw material available on the island. Raman spectroscopy and optical observations confirmed that this raw material is chalcedony. The surfaces of most artefacts are weathered due to deposition in an environment rich in marine salt, which does not preserve any organic material suitable for radiocarbon dating. The knapped stone assemblage consists of diagnostic artefacts, among which are different types of carinated end scrapers, cores, and a few bladelets. The discovery of an Aurignacian site plays an important role in the study of the Paleolithic peopling of Lemnos and the Northeast Aegean in general, a period that was previously known only through Epipaleolithic sites discovered and excavated mainly along the eastern coast of the island. Full article
(This article belongs to the Special Issue Advances in Archaeology and Anthropology of the Ancient World)
Show Figures

Figure 1

18 pages, 3237 KiB  
Article
Metabolic Niches and Plasticity of Sand-Dune Plant Communities Along a Trans-European Gradient
by Matthew P. Davey, Rachel M. George, Mark K. J. Ooi, Mike M. Burrell and Robert P. Freckleton
Metabolites 2025, 15(4), 217; https://doi.org/10.3390/metabo15040217 - 24 Mar 2025
Viewed by 532
Abstract
Background: One of the greatest challenges to biologists is to understand the adaptive mechanisms of how plants will respond to climate at all levels from individual physiology to whole populations. For example, variation (plasticity) in the composition and concentration of metabolites will determine [...] Read more.
Background: One of the greatest challenges to biologists is to understand the adaptive mechanisms of how plants will respond to climate at all levels from individual physiology to whole populations. For example, variation (plasticity) in the composition and concentration of metabolites will determine productivity, reproduction, and ultimately survival and distribution of plants, especially those subjected to rapid climate change. Objectives: Our aim was to study how interspecific and intraspecific metabolic variation in plant species within a single community can be elucidated. Methods: We used a metabolomics approach to study metabolic acclimation (by measuring the metabolome between plants under “common garden” controlled environment conditions) and metabolic plasticity (using field based reciprocal transplant studies) in a set of Atlantic sand dune annual communities along a latitudinal gradient from Portugal to England. Results: In the common garden study, metabolically phenotyping (using a fingerprinting direct injection mass spectrometry approach) five species of annual plants showed that species living together in a community have distinct metabolic phenotypes (high inter-specific metabolic variation). There was low intra-specific metabolic variation between populations growing under standard environmental conditions. The metabolic variation in one species Veronica arvensis was measured in the reciprocal transplant study. Metabolic phenotypes obtained from all samples were similar across all sites regardless of where the plants originated from. Conclusions: This implies that the metabolome is highly plastic and the measurable metabolome in this study was influenced more by local environmental factors than inherent genetic factors. This work highlights that species are fulfilling different niches within this community. Furthermore, the measurable metabolome was highly plastic to environmental variation. Full article
Show Figures

Figure 1

31 pages, 16655 KiB  
Article
An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment
by Clara Armaroli, Riccardo Brunetta and Paolo Ciavola
Remote Sens. 2025, 17(6), 1072; https://doi.org/10.3390/rs17061072 - 18 Mar 2025
Viewed by 636
Abstract
This paper examines the long-term morphological evolution of the Bevano River sand spit (Ravenna, Italy) after an artificial intervention carried out in 2006 that artificially relocated the river mouth to improve the hydraulic efficiency, preventing flooding and reconstructing a local dune system. Using [...] Read more.
This paper examines the long-term morphological evolution of the Bevano River sand spit (Ravenna, Italy) after an artificial intervention carried out in 2006 that artificially relocated the river mouth to improve the hydraulic efficiency, preventing flooding and reconstructing a local dune system. Using multitemporal Lidar data (2004–2019), combined with orthophotos and a storm dataset, this study analysed shoreline changes and morphological variations, highlighting the role of overwash processes in sediment transfer from the dunes to back-barrier areas. Based on the analysis, a set of washover fans was identified that began to form after a storm event in 2008 and accreted until 2015. These fans, which later coalesced into terraces and were colonised by vegetation, became stable after 2015. Despite an initial low resilience, due to insufficient nourishment and slow vegetation development, the barrier system eventually stabilised, with dunes growing higher and forming a continuous dune crest. The study illustrates the role of surge levels, waves, and low initial elevation in triggering and shaping overwash processes. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

20 pages, 6267 KiB  
Review
What’s Wrong with Gazanias? A Review of the Biology and Management of Weedy Gazania Species
by Babar Shahzad, Muhammad Adnan and Ali Ahsan Bajwa
Plants 2025, 14(6), 915; https://doi.org/10.3390/plants14060915 - 14 Mar 2025
Cited by 2 | Viewed by 1696
Abstract
Gazania is a genus of herbaceous plants from the Asteraceae (daisy) family. Native to southern Africa, several species of this genus have been introduced to different countries as ornamental garden plants due to their beautiful flowers. In the wild, Gazania species have been [...] Read more.
Gazania is a genus of herbaceous plants from the Asteraceae (daisy) family. Native to southern Africa, several species of this genus have been introduced to different countries as ornamental garden plants due to their beautiful flowers. In the wild, Gazania species have been observed with flowers of different shades of pink, red, yellow, orange and combination of these colours. Some species of Gazania have escaped the gardens and become highly invasive weeds in their introduced range. Invasive, drought-tolerant and prolific seed-producing Gazania plants are found in Australia, New Zealand, Algeria, Egypt, Europe and California. In particular, two perennial species, Gazania linearis and Gazania rigens, commonly known as gazania, have become a major problem in Australia. They have naturalized and are widespread in a range of environments, such as roadsides, pasture/grassland systems, coastal sand dunes, and natural and managed ecosystems. Their seeds and underground reproductive structures are carried along roadsides by slashers, machinery, wind and water, and spread into native vegetation, pastures, horticultural crops and broadacre agronomic crop production systems. Gazania causes significant environmental, production and economic losses in the infested ecosystems. While limited research has been conducted on their biology and invasion ecology, anecdotal evidence suggests that the ability of gazania plants to produce a large number of seeds form thick, dense populations, and tolerate harsh environments, including drought, heat and sub-optimal soil pH, making them persistent, problematic weed species. In addition, perennial growth habit, high genetic diversity and allelopathic potential have also been suggested to facilitate their invasion success, but no research has been conducted on these aspects. Gazania is very difficult to manage, and currently, there are no effective control options available, including chemical herbicides. The lack of knowledge on their biology, invasion pathways and management is hindering the effective management of gazanias. This review compiles and synthesizes currently available information on the distribution, biology, ecology and management of weedy gazania species, with a particular focus on Australia. We also highlight the key knowledge gaps for future research. We believe this information provides researchers and practitioners with an up-to-date account on the weedy aspects of these popular ornamental plants and will help improve management efforts. Full article
(This article belongs to the Special Issue Interactions within Invasive Ecosystems)
Show Figures

Figure 1

Back to TopTop