Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = salt-fermented shrimp

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1381 KiB  
Article
Enhancing the Quality of Traditional Indonesian Shrimp Paste (Terasi) Through Tetragenococcus halophilus 54M106-3 Inoculation: Physicochemical, Sensory, and Bioactivity Insights
by Muhammad Alfid Kurnianto, Safrina Isnaini Adirama, Wenxi Xu, Sri Winarti and Dina Mustika Rini
Foods 2025, 14(14), 2419; https://doi.org/10.3390/foods14142419 - 9 Jul 2025
Viewed by 433
Abstract
Terasi is a traditional Indonesian fermented condiment made from rebon shrimp and salt. This study investigated the effects of Tetragenococcus halophilus inoculation and varying salt concentrations (6%, 12%, and 18%) on the physicochemical and sensory properties of terasi, compared to a non-inoculated [...] Read more.
Terasi is a traditional Indonesian fermented condiment made from rebon shrimp and salt. This study investigated the effects of Tetragenococcus halophilus inoculation and varying salt concentrations (6%, 12%, and 18%) on the physicochemical and sensory properties of terasi, compared to a non-inoculated control (25% salt), after 7, 14, and 21 days of fermentation. Inoculation decreased pH, soluble protein, and texture while increasing N-amino acid content, moisture, lactic acid bacteria (LAB), and color darkening. Higher salt levels raised pH, soluble protein, and texture but reduced N-amino acids, moisture, and LAB, resulting in a lighter color. LAB activity peaked on day 7, with moisture and texture increasing over time. Sensory analysis favored inoculated samples, and TOPSIS identified terasi with T. halophilus, 6% salt, and 7 days of fermentation as optimal in quality and preference. This formulation also demonstrated strong bioactivity, including antioxidant activity (3.90 mg AEAC/g sample by DPPH assay and 8.76 ± 0.22 mg AEAC/g sample by FRAP assay), antidiabetic potential via α-amylase and α-glucosidase inhibition (IC50 of 1.95 and 7.24 mg/mL), and antimicrobial effects against E. coli (32.78 mm) and S. aureus (30.85 mm). These results suggest that T. halophilus-inoculated terasi offers enhanced quality and functional properties, supporting its potential as a health-promoting fermented food product. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

13 pages, 2204 KiB  
Article
Purification, Characterization and Antifungal Activity of the Aspergillus niveus Chitinase Produced Using Shrimp Shells
by Pedro Henrique Ornela and Luis Henrique Souza Guimarães
Appl. Biosci. 2024, 3(2), 220-232; https://doi.org/10.3390/applbiosci3020015 - 11 May 2024
Viewed by 2386
Abstract
Chitinases are biotechnologically relevant enzymes that can be applied in such different sectors as pharmaceutical, food, environmental management, the biocontrol of pests and in the paper and cellulose industry. Microorganisms as filamentous fungi are the most important source of these biomolecules. The fungus [...] Read more.
Chitinases are biotechnologically relevant enzymes that can be applied in such different sectors as pharmaceutical, food, environmental management, the biocontrol of pests and in the paper and cellulose industry. Microorganisms as filamentous fungi are the most important source of these biomolecules. The fungus Aspergillus niveus produces extracellular chitinase when cultured under submerged fermentation using shrimp shells, a residue generated by the fish industry, as a carbon source, for 96 h at 30 °C and 100 rpm. The particle size and concentration of the shrimp shells affected enzyme production. The chitinase was purified until electrophoretic homogeneity through the use of a Sephadex G-100 chromatographic column. It is a monomeric glycoprotein with a molecular mass of 47 kDa estimated using SDS-PAGE and 49.3 kDa determined using gel filtration. The carbohydrate content was 22.8%. The best temperature and pH for enzyme activity were 65 °C and 6.0, respectively. Approximately 80% of the enzymatic activity was preserved at pH 4.0 and 5.0 for 48 h, and the half-life (t50) was maintained for 48 h at 40 °C. Salts, EDTA and β-mercaptoethanol did not affect chitinase activity significantly, but organic solvents reduced it. The kinetic parameters determined using p-NPGlycNac were Km of 2.67 mmol L−1, Vmax of 12.58 U mg of protein−1, Kcat of 2.47 s−1 and K cat/Km of 0.93 s−1 mmol L−1. The A. niveus chitinase inhibited the growth of all fungal strains used, especially Trichoderma harzianum (MIC = 22.4 μg mL−1) and Penicillium purpurogenum (MIC = 11.2 μg mL−1). The chitinase produced by A. niveus presented interesting characteristics that indicate its potential of application in different areas. Full article
Show Figures

Graphical abstract

11 pages, 1067 KiB  
Article
Changes in the Quality and Nontargeted Metabolites of Salt-Fermented Shrimp (Saeu-jeot) Based on Fermentation Time
by Sunhyun Park, Keono Kim, Mi Jang, Heeyoung Lee, Jeehye Sung and Jong-Chan Kim
Fermentation 2023, 9(10), 889; https://doi.org/10.3390/fermentation9100889 - 30 Sep 2023
Viewed by 1942
Abstract
Saeu-jeot is a widely consumed variety of jeotgal, a South Korean salt-fermented food. However, there is a lack of existing studies conducting nontargeted metabolomic analyses of saeu-jeot during fermentation. To evaluate the changes in saeu-jeot during fermentation, saeu-jeot samples were fermented for [...] Read more.
Saeu-jeot is a widely consumed variety of jeotgal, a South Korean salt-fermented food. However, there is a lack of existing studies conducting nontargeted metabolomic analyses of saeu-jeot during fermentation. To evaluate the changes in saeu-jeot during fermentation, saeu-jeot samples were fermented for 360 days under controlled conditions. Samples collected at different time points were subjected to physicochemical (including nontargeted metabolomic analysis) and microbial analyses. As fermentation progressed, the pH decreased and acidity increased, whereas total nitrogen, amino-nitrogen, and specific amino acid concentrations increased. Nontargeted metabolite analysis supports these results. Metabolite profiling classified changes in saeu-jeot during fermentation into those occurring in the early (15–45 days), middle (60–180 days), and late (270–360 days) stages. Pathogenic bacteria were not detected, and biogenic amine levels were not elevated, suggesting that saeu-jeot is safe to consume. Overall, pH, amino-nitrogen, and pathogenic bacteria, according to the fermentation stage of saeu-jeot, can be useful parameters for evaluating the quality of salted shrimp. Full article
(This article belongs to the Special Issue Safety, Quality and Nutritive Value of Traditional Fermented Food)
Show Figures

Figure 1

14 pages, 3794 KiB  
Article
Effects of a Novel Starter Culture on Quality Improvement and Putrescine, Cadaverine, and Histamine Inhibition of Fermented Shrimp Paste
by Xinyu Li, Yang Zhang, Xinxiu Ma, Gongliang Zhang and Hongman Hou
Foods 2023, 12(15), 2833; https://doi.org/10.3390/foods12152833 - 26 Jul 2023
Cited by 11 | Viewed by 2390
Abstract
Fermented shrimp paste is a popular food in Asian countries. However, biogenic amines (BAs) are a typically associated hazard commonly found during the fermentation of shrimp paste and pose a food-safety danger. In this work, an autochthonic salt-tolerant Tetragenococcus muriaticus TS (T. [...] Read more.
Fermented shrimp paste is a popular food in Asian countries. However, biogenic amines (BAs) are a typically associated hazard commonly found during the fermentation of shrimp paste and pose a food-safety danger. In this work, an autochthonic salt-tolerant Tetragenococcus muriaticus TS (T. muriaticus TS) strain was used as a starter culture for grasshopper sub shrimp paste fermentation. It was found that with the starter culture, putrescine, cadaverine, and histamine concentrations were significantly lower (p < 0.05) with a maximal reduction of 19.20%, 14.01%, and 28.62%, respectively. According to high-throughput sequencing data, T. muriaticus TS could change the interactions between species and reduce the abundance of bacterial genera positively associated with BAs, therefore inhibiting the BA accumulation during shrimp paste fermentation. Moreover, the volatile compounds during the fermentation process were also assessed by HS-SPME-GC-MS. With the starter added, the content of pyrazines increased, while the off-odor amines decreased. The odor of the shrimp paste was successfully improved. These results indicate that T. muriaticus TS can be used as an appropriate starter culture for improving the safety and quality of grasshopper sub shrimp paste. Full article
(This article belongs to the Special Issue Recent Advances in Aquatic Food Products Processing)
Show Figures

Graphical abstract

11 pages, 3148 KiB  
Article
Antibacterial Activity and Mechanism of Peptide PV-Q5 against Vibrio parahaemolyticus and Escherichia coli, Derived from Salt-Fermented Penaeus vannamei
by Jingyi Dai, Ritian Jin, Jialong Gao, Jude Juventus Aweya, Rong Lin, Guiling Li and Shen Yang
Foods 2023, 12(9), 1804; https://doi.org/10.3390/foods12091804 - 26 Apr 2023
Cited by 4 | Viewed by 2532
Abstract
The increasing threat posed by antibiotic-resistant pathogens has prompted a shift to the use of naturally-derived antimicrobial peptides (AMPs) in place of chemical preservatives in controlling foodborne pathogens. In this study, ten peptides were identified from salt-fermented shrimps (Penaeus vannamei) using [...] Read more.
The increasing threat posed by antibiotic-resistant pathogens has prompted a shift to the use of naturally-derived antimicrobial peptides (AMPs) in place of chemical preservatives in controlling foodborne pathogens. In this study, ten peptides were identified from salt-fermented shrimps (Penaeus vannamei) using ultra-performance liquid chromatography-mass spectrometry. One of the peptides, designated PV-Q5 (QVRNFPRGSAASPSALASPR), with most features of an AMP, was further explored and found to possess strong antibacterial activity against Vibrio parahaemolyticus and Escherichia coli, with a minimum inhibitory concentration of 31.25 μg/mL. Moreover, PV-Q5 increased bacterial cell membrane permeability and ruptured bacteria cell membranes, as revealed by transmission electron microscopy. Circular dichroism analysis showed that the conformation of PV-Q5 was a random coil in phosphate-buffered saline and α-helical in sodium dodecyl sulfate, which is conducive for interaction with bacteria cell membranes. These findings indicated that PV-Q5 could find potential use in food preservation to control foodborne pathogenic bacteria. Full article
Show Figures

Figure 1

11 pages, 659 KiB  
Article
Effect of Fermentation Duration on the Quality Changes of Godulbaegi Kimchi
by Jung-Min Park, Bo-Zheng Zhang and Jin-Man Kim
Foods 2022, 11(7), 1020; https://doi.org/10.3390/foods11071020 - 31 Mar 2022
Cited by 4 | Viewed by 3470
Abstract
Fermentative and antioxidative characteristics of Godulbaegi kimchi (LGK), a traditional, fermented Korean food, were conducted. For the study, LGK kimchi was made of Godulbaegi kimchi with pepper powder, salted shrimp, refined salt, green onions, and so on, and fermented at 5C for 6 [...] Read more.
Fermentative and antioxidative characteristics of Godulbaegi kimchi (LGK), a traditional, fermented Korean food, were conducted. For the study, LGK kimchi was made of Godulbaegi kimchi with pepper powder, salted shrimp, refined salt, green onions, and so on, and fermented at 5C for 6 months. The pH was decreased, and total acidity was increased during fermentation. Furthermore, lactic acid bacteria and yeast were increased, while the total viable count was decreased. The LGK showed the highest DPPH-scavenging activity, phenol content, and nitrite-scavenging activity with methanol extract among methanol, ethanol, and water. In addition, we screened strains among LGK kimchi with high antimicrobial activity and isolated them. We tested antimicrobial activity for 20 lactic acid bacteria, and we separated and identified nine strains of lactic acid bacteria with high antimicrobial activity. Given these results, LGK is expected to be an effective food in considerable antioxidative activity with an antimicrobial effect. These results are expected to serve as basic data for the study of Godulbaegi kimchi. Full article
(This article belongs to the Special Issue Recent Advances and Future Trends in Fermented and Functional Foods)
Show Figures

Graphical abstract

19 pages, 1322 KiB  
Article
Changes in Volatile Compounds and Quality Characteristics of Salted Shrimp Paste Stored in Different Packaging Containers
by Jaksuma Pongsetkul, Soottawat Benjakul and Pakpoom Boonchuen
Fermentation 2022, 8(2), 69; https://doi.org/10.3390/fermentation8020069 - 7 Feb 2022
Cited by 17 | Viewed by 4451
Abstract
Quality changes of salted shrimp paste, one of the most popular traditional Thai fermented food ingredients, stored in different packaging containers including polypropylene containers (PP), polyethylene terephthalate containers (PET), glass jar containers (GJ) as well as LLDPE/Nylon vacuum bags (VB) at room temperature [...] Read more.
Quality changes of salted shrimp paste, one of the most popular traditional Thai fermented food ingredients, stored in different packaging containers including polypropylene containers (PP), polyethylene terephthalate containers (PET), glass jar containers (GJ) as well as LLDPE/Nylon vacuum bags (VB) at room temperature (28 ± 1 °C) for 15 months were studied. The relationship between quality attributes (i.e., volatiles, browning index (A420), biogenic amines, TBARS) and consumer acceptability as indicated by sensory scores were also investigated using principal component analysis (PCA). During storage, some desirable quality characteristics of shrimp paste were improved as indicated by the higher sensory scores of all samples when stored for 6 months, compared with the sample at day 0 (p ≤ 0.05). However, further changes in all compositions when extended storage time can conversely diminish those desirable characteristics and led to lowering consumers’ acceptability. In this study, GJ seem to be the most potential packaging for preserving original products’ quality during storage for this product since it exhibited the lower rate of quality changing than others throughout the storage. Conversely, VB exhibited unique volatiles and microbial profiles, compared with others, which led to the lowest sensory scores at all period test (p ≤ 0.05), implying that vacuum conditions may not be suitable for the storage of this product. Moreover, based on PCA results, the intensity of nitrogen-containing compounds correlated well with sensory acceptability, particularly flavor-likeness. Our study provides useful knowledge for understanding the different quality characteristics, particularly flavors, associated with different packaging containers during prolonged storage of salted shrimp paste. Full article
(This article belongs to the Special Issue Machine Learning in Fermented Food and Beverages)
Show Figures

Figure 1

18 pages, 2197 KiB  
Article
Dynamic Changes in the Bacterial Community and Metabolic Profile during Fermentation of Low-Salt Shrimp Paste (Terasi)
by Henny Helmi, Dea Indriani Astuti, Sastia Prama Putri, Arisa Sato, Walter A. Laviña, Eiichiro Fukusaki and Pingkan Aditiawati
Metabolites 2022, 12(2), 118; https://doi.org/10.3390/metabo12020118 - 26 Jan 2022
Cited by 26 | Viewed by 5599
Abstract
Low-salt shrimp paste, or terasi, is an Indonesian fermented food made from planktonic shrimp mixed with a low concentration of salt. Since high daily intake of sodium is deemed unhealthy, reduction of salt content in shrimp paste production is desired. Until now, there [...] Read more.
Low-salt shrimp paste, or terasi, is an Indonesian fermented food made from planktonic shrimp mixed with a low concentration of salt. Since high daily intake of sodium is deemed unhealthy, reduction of salt content in shrimp paste production is desired. Until now, there is no reported investigation on the bacterial population and metabolite composition of terasi during fermentation. In this study, the bacterial community of terasi was assessed using high-throughput sequencing of the 16S rRNA V3–V4 region. From this analysis, Tetragenococcus, Aloicoccus, Alkalibacillus, Atopostipes, and Alkalibacterium were found to be the dominant bacterial genus in low-salt shrimp paste. GC/MS-based metabolite profiling was also conducted to monitor the metabolite changes during shrimp paste fermentation. Results showed that acetylated amino acids increased, while glutamine levels decreased, during the fermentation of low-salt shrimp paste. At the start of shrimp paste fermentation, Tetragenococcus predominated with histamine and cadaverine accumulation. At the end of fermentation, there was an increase in 4-hydroxyphenyl acetic acid and indole-3-acetic acid levels, as well as the predominance of Atopostipes. Moreover, we found that aspartic acid increased during fermentation. Based on our findings, we recommend that fermentation of low-salt shrimp paste be done for 7 to 21 days, in order to produce shrimp paste that has high nutritional content and reduced health risk. Full article
(This article belongs to the Special Issue Advance in Metabolomics Application for Food Fermentation)
Show Figures

Figure 1

17 pages, 1878 KiB  
Article
Bioproduction of Prodigiosin from Fishery Processing Waste Shrimp Heads and Evaluation of Its Potential Bioactivities
by Van Bon Nguyen, San-Lang Wang, Anh Dzung Nguyen, Tu Quy Phan, Kuaanan Techato and Siriporn Pradit
Fishes 2021, 6(3), 30; https://doi.org/10.3390/fishes6030030 - 11 Aug 2021
Cited by 20 | Viewed by 5020
Abstract
The aim of this work was to reuse a fish processing waste, shrimp head powder (SHP), for the production of prodigiosin (PG) via microbial technology and to assess its potential bioactivities. PG was produced in a 12 L-bioreactor system, and the highest PG [...] Read more.
The aim of this work was to reuse a fish processing waste, shrimp head powder (SHP), for the production of prodigiosin (PG) via microbial technology and to assess its potential bioactivities. PG was produced in a 12 L-bioreactor system, and the highest PG productivity of 6310 mg L−1 was achieved when Serratia marcescens CC17 was used for fermentation in a novel designed medium (6.75 L) containing 1.5% C/N source (SHP/casein = 9/1), 0.02% K2SO4, ans 0.025% Ca3(PO4)2, with initial pH 7.0, and fermentation was performed at 28 °C for 8 h. The purified PG showed moderate antioxidants, efficient anti-NO (anti-nitric oxide), and acetylcholinesterase (AChE) inhibitory activities. In a docking study, PG showed better binding energy scores (−12.3 kcal/mol) and more interactions (6 linkages) with several prominent amino acids in the biding sites on AChE that were superior to those of Berberine chloride (−10.8 kcal/mol and one linkage). Notably, this is the first investigation using shrimp heads for the mass bioproduction of PG with high productivity, and Ca3(PO4)2 salt was also newly found to significantly enhance PG production by S. marcescens. This study also provided available data on the anti-NO and anti-AChE effects of PG, especially from the docking simulation PG towards AChE that was described for the first time in this study. The above results suggest that SHP is a good material for the cost-effective bioproduction of PG, which is a potential candidate for anti-NO and anti-Alzheimer drugs. Full article
Show Figures

Graphical abstract

14 pages, 2348 KiB  
Article
Bioprocessing of Marine Chitinous Wastes for the Production of Bioactive Prodigiosin
by Thi-Hanh Nguyen, San-Lang Wang, Dai-Nam Nguyen, Anh-Dzung Nguyen, Thi-Huyen Nguyen, Manh-Dung Doan, Van-Anh Ngo, Chien-Thang Doan, Yao-Haur Kuo and Van-Bon Nguyen
Molecules 2021, 26(11), 3138; https://doi.org/10.3390/molecules26113138 - 24 May 2021
Cited by 34 | Viewed by 4190
Abstract
Recently, microbial prodigiosin (PG) has received much attention due to its numerous beneficial applications. The aim of this study was to establish the bioprocessing of marine chitinous wastes (MCWs) for the cost-effective preparation of PG. Of the MCWs, demineralized shrimp shell powders (de-SSP) [...] Read more.
Recently, microbial prodigiosin (PG) has received much attention due to its numerous beneficial applications. The aim of this study was to establish the bioprocessing of marine chitinous wastes (MCWs) for the cost-effective preparation of PG. Of the MCWs, demineralized shrimp shell powders (de-SSP) were found to be a potential source of carbon/nitrogen (C/N) for PG production by bacterial fermentation using Serratia marcescens strains. Further, PG scale-up production was investigated in a 15 L bioreactor system, and the highest yield (6200 mg/L) was achieved during fermentation using 5 L of a novel-designed culture broth that included 1.60% C/N sources (a de-SSP/casein ratio of 7/3), 0.02% K2SO4, and 0.05% K2HPO4, with an initial pH of 6–7. Fermentation was conducted in the dark at 27.5 °C for 8.0 h. This study was the first to report on the utilization of shrimp wastes for cost-effective, large-scale (5 L/pilot) PG production with high productivity (6200 mg/L) in a short cultivation time. The combination of 0.02% K2SO4 and 0.05% K2HPO4 was also found to be a novel salt composition that significantly enhanced PG yield. The red compound was purified and confirmed as PG after analyzing its HPLC profile, mass, and UV/vis spectra. The purified PG was then tested for its bioactivities and showed effective anticancer activities, moderated antioxidant activities, and novel anti-NO effects. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds: Applications in Food Science)
Show Figures

Figure 1

Back to TopTop