Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = safety interlock control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3967 KiB  
Article
Upper Shallow Foundation Pit Engineering: Utilization and Evaluation of Portal Frame Anti-Heave Structures
by Jun He, Jinping Ou, Xiangsheng Chen, Shuya Liu, Kewen Huang and Xu Zhang
Buildings 2025, 15(11), 1943; https://doi.org/10.3390/buildings15111943 - 4 Jun 2025
Viewed by 364
Abstract
The excavation of upper shallow foundation pits may cause the uneven deformation of existing tunnels buried below a shallow depth. Improper control measures may lead to a series of diseases, such as local cracking or breakage of the tunnel lining, which threaten the [...] Read more.
The excavation of upper shallow foundation pits may cause the uneven deformation of existing tunnels buried below a shallow depth. Improper control measures may lead to a series of diseases, such as local cracking or breakage of the tunnel lining, which threaten the safety of tunnel operations. Regarding the safety of the existing tunnel affected by the construction of the foundation pit, cases of the application of portal frame anti-heave structures in upper foundation pit projects of existing tunnels in Shenzhen have been documented, and the main influencing factors have been analyzed and summarized. Taking the Qianhai Ring Water Corridor Project as an example, numerical orthogonal experiments were conducted to analyze the deformation response patterns in the depth of existing tunnels and the effectiveness of control measures in the upper shallow of foundation pit engineering. The roles of portal frame anti-heave structures are analyzed in detail using measured data. Studies indicate that the deformation of the existing tunnels mainly occurs during the top and immediately adjacent block excavation stages, and stabilizes after the uplift-resisting piles and anti-floating slabs form an effective frame structure. The portal frame anti-heave structures, combined with measures such as block excavation, jet grouting interlocking reinforcement, backfilling, and surcharge loading, have extremely strong deformation control capabilities. However, the construction costs are relatively high, leaving room for optimization. Full article
(This article belongs to the Special Issue Design, Construction and Maintenance of Underground Structures)
Show Figures

Figure 1

26 pages, 8954 KiB  
Article
A Two-Segment Continuum Robot with Piecewise Stiffness for Tracheal Intubation and Active Decoupling
by Jianhao Tang, Lingfeng Sang, Junjie Tian, Qiqi Pan, Yuan Han, Wenxian Li, Yu Tian and Hongbo Wang
Actuators 2025, 14(5), 228; https://doi.org/10.3390/act14050228 - 5 May 2025
Viewed by 569
Abstract
This study presents a two-segment continuum robot with piecewise stiffness, designed to enhance the precision, adaptability, and safety of tracheal intubation procedures. The robot employs a continuum manipulator (CM) as its end-effector, featuring a proximal segment (PS) with an aluminum alloy interlocking joint, [...] Read more.
This study presents a two-segment continuum robot with piecewise stiffness, designed to enhance the precision, adaptability, and safety of tracheal intubation procedures. The robot employs a continuum manipulator (CM) as its end-effector, featuring a proximal segment (PS) with an aluminum alloy interlocking joint, which provides high axial stiffness for stable insertion, and a distal segment (DS) with a micro-nano resin-based notched structure, offering increased flexibility and compliance to navigate complex anatomical structures such as the epiglottis and vocal cords, thereby reducing airway trauma. To describe the motion behavior of the robot, a piecewise variable curvature kinematic model is developed, capturing the deformation characteristics of each segment under actuation. Furthermore, a piecewise stiffness analysis is conducted to determine the axial and bending stiffness of each segment, ensuring an appropriate balance between stability and flexibility. To enhance control precision, an active tendon-driven decoupling control strategy is introduced, effectively minimizing the interaction forces between flexible segments and improving end-effector maneuverability. The results demonstrate that the proposed design significantly improves the adaptability of the tracheal intubation robot, ensuring controlled insertion while reducing the risk of excessive force on the airway walls. This study provides theoretical and technical insights into the mechanical design and control strategies of continuum robots, contributing to the safety and efficiency of tracheal intubation. Full article
Show Figures

Figure 1

22 pages, 2140 KiB  
Article
Synthesis of Self-Checking Circuits for Train Route Traffic Control at Intermediate Stations with Control of Calculations Based on Weight-Based Sum Codes
by Dmitry V. Efanov, Artyom V. Pashukov, Evgenii M. Mikhailiuta, Valery V. Khóroshev, Ruslan B. Abdullaev, Dmitry G. Plotnikov, Aushra V. Banite, Alexander V. Leksashov, Dmitry N. Khomutov, Dilshod Kh. Baratov and Davron Kh. Ruziev
Computation 2024, 12(9), 171; https://doi.org/10.3390/computation12090171 - 26 Aug 2024
Viewed by 1161
Abstract
When synthesizing systems for railway interlocking, it is recommended to use automated models to implement the logic of railway automation and remote control units. Finite-state machines (FSMs) can be implemented on any hardware component. When using relay technology, the functional safety of electrical [...] Read more.
When synthesizing systems for railway interlocking, it is recommended to use automated models to implement the logic of railway automation and remote control units. Finite-state machines (FSMs) can be implemented on any hardware component. When using relay technology, the functional safety of electrical interlocking is achieved by using uncontrolled (safety) relays with a high coefficient of asymmetry of failures in types 1 → 0 and 0 → 1. When using programmable components, the use of backup and diverse protection methods is required. This paper presents a flexible approach to synthesizing FSMs for railway automation and remote control units that offer both individual and route-based control. Unlike existing solutions, this proposal considers the pre-failure states of railway automation and remote control units during the finite-state machine synthesis stage. This enables the implementation of self-checking and self-diagnostic modules to manage automation units. By increasing the number of states for individual devices and considering the states of interconnected objects, the transition graphs can be expanded. This expansion allows for the synthesis of the transition graph of the control subsystem and other systems. The authors used a field-programmable gate array (FPGA) to implement a finite-state machine. In this case, the proposal is to encode the states of a finite-state machine using weight-based sum codes in the residue class ring based on a given modulus. The best coverage of errors occurring at the outputs of the logic converter in the structure of the FSM can be ensured by selecting the weighting coefficients and the value of the module. This paper presents an example of synthesizing an FPGA-based FSM using state encoding through modular weight-based sum codes. The operation of the synthesized device was modeled. It was found to operate according to the same algorithm as the real devices. When synthesizing self-checking and self-controlled train control devices, it is recommended to consider the solutions proposed in this paper. Full article
Show Figures

Figure 1

17 pages, 1246 KiB  
Article
Centralized Finite State Machine Control to Increase the Production Rate in a Crusher Circuit
by Moisés T. da Silva, Santino M. Bitarães, Andre S. Yamashita, Marcos P. Torre, Vincius da S. Moreira and Thiago A. M. Euzébio
Energies 2024, 17(14), 3374; https://doi.org/10.3390/en17143374 - 9 Jul 2024
Viewed by 1499
Abstract
Crushing is a critical operation in mineral processing, and its efficient performance is vital for minimizing energy consumption, maximizing productivity, and maintaining product quality. However, due to variations in feed material characteristics and safety constraints, achieving the intended circuit performance can be challenging. [...] Read more.
Crushing is a critical operation in mineral processing, and its efficient performance is vital for minimizing energy consumption, maximizing productivity, and maintaining product quality. However, due to variations in feed material characteristics and safety constraints, achieving the intended circuit performance can be challenging. In this study, a centralized control strategy based on a finite state machine (FSM) is developed to improve the operations of an iron ore crushing circuit. The aim is to increase productivity by manipulating the closed-side-setting (CSS) of cone crushers and the speed of an apron feeder while considering intermediate storage silo levels and cone crusher power limits, as well as product quality. A dynamic simulation was conducted to compare the proposed control strategy with the usual practice of setting CSS to a constant value. Four scenarios were analyzed based on variations in bond work index (BWI) and particle size distribution. The simulation results demonstrate that the proposed control strategy increased average productivity by 6.88% and 48.77% when compared to the operation with a constant CSS of 38 mm and 41 mm, respectively. The proposed strategy resulted in smoother oscillation without interlocking, and it maintained constant flow rates. This ultimately improved circuit reliability and predictability, leading to reduced maintenance costs. Full article
(This article belongs to the Topic Industrial Control Systems)
Show Figures

Figure 1

37 pages, 5714 KiB  
Review
Virtual Coupling in Railways: A Comprehensive Review
by Jesus Felez and Miguel Angel Vaquero-Serrano
Machines 2023, 11(5), 521; https://doi.org/10.3390/machines11050521 - 1 May 2023
Cited by 42 | Viewed by 8769
Abstract
The current mobility situation is constantly changing as people are increasingly moving to urban areas. Therefore, a flexible mode of transport with high-capacity passenger trains and a high degree of modularity in the trains’ composition is necessary. Virtual coupling (VC) is a promising [...] Read more.
The current mobility situation is constantly changing as people are increasingly moving to urban areas. Therefore, a flexible mode of transport with high-capacity passenger trains and a high degree of modularity in the trains’ composition is necessary. Virtual coupling (VC) is a promising solution to this problem because it significantly increases the capacity of a line and provides a more flexible mode of operation than conventional signaling systems. This novel review, in which approximately 200 papers were analyzed, identifies the main topics of current railway-related VC research, and represents the first step toward the implementation of VC in future railways. It was found that industry research has mainly focused on the feasibility of VC implementation and operation, whereas in academia, which is coordinated with industry, research has focused on control and communication systems. From a technological perspective, the main challenges for VC were identified with regard to aspects such as safety, control technology, interlocking, vehicle-to-vehicle communication, cooperative train protection and control, and integrated traffic management. The important directions for future research that have been identified for future development include complete dynamic models, real-time controllers, reliable and secure communication, different communication topologies, cybersecurity, intelligent control, reinforcement learning, and Big Data analytics. Full article
(This article belongs to the Topic Vehicle Dynamics and Control)
Show Figures

Figure 1

12 pages, 4559 KiB  
Communication
Research on Safety Interlock System Design and Control Experiment of Combined Support and Anchor Equipment
by Pengyu Wang, Guoyong Su, Wenlong Yang and Peng Jing
Sensors 2022, 22(16), 6058; https://doi.org/10.3390/s22166058 - 13 Aug 2022
Cited by 1 | Viewed by 3367
Abstract
In view of the risk of collision with humans or equipment arising from a lack of protection in the operation process of combined support and anchor equipment on the heading face, this paper designs a safety interlock system for combined support and anchor [...] Read more.
In view of the risk of collision with humans or equipment arising from a lack of protection in the operation process of combined support and anchor equipment on the heading face, this paper designs a safety interlock system for combined support and anchor equipment. Firstly, a mathematical model of hydraulic power system control and a valve control system based on feedforward–feedback optimization were established according to the power demand of the combined support and anchor equipment. Secondly, according to the reliability indexes of the safety interlock system, corresponding sensor, logic control and execution modules were designed. Ultrasonic sensor groups were arranged at the key positions of the combined support and anchor equipment to capture the position information in real time when the equipment was moving. Thus, the pump-valve hydraulic system was controlled through closed-loop feedback. The experimental results show that the safety interlock system of the combined support and anchor equipment can adjust the revolving speed of the permanent magnet synchronous motor (PMSM) in real time according to the distance from the obstacle, so as to control the pump outlet flow, and then perform interlocking safety control of the hydraulic cylinder’s movement speed. The system can effectively prevent damage to the surrounding equipment or personnel arising from equipment malfunction. Full article
(This article belongs to the Special Issue Proximity Detection through Sensing Technology)
Show Figures

Figure 1

23 pages, 6255 KiB  
Article
RegioRail—GNSS Train-Positioning System for Automatic Indications of Crisis Traffic Situations on Regional Rail Lines
by Jan Fikejz and Antonín Kavička
Appl. Sci. 2022, 12(12), 5797; https://doi.org/10.3390/app12125797 - 7 Jun 2022
Cited by 3 | Viewed by 2408
Abstract
The identification of the position of rail vehicles plays a crucial role in the control of rail traffic. Available, up-to-date information on the position of vehicles allows us to efficiently deal with selected traffic situations where the position of vehicles is very important. [...] Read more.
The identification of the position of rail vehicles plays a crucial role in the control of rail traffic. Available, up-to-date information on the position of vehicles allows us to efficiently deal with selected traffic situations where the position of vehicles is very important. The main objective of this article is to introduce (i) a concept of a solution for identification of the current position of rail vehicles based on the worldwide-recognized system of the GNSS with the use of an original railway network data model, and (ii) the use of this concept as supplementary support for the dispatcher control of rail traffic on regional lines. The solution was based on an original, multilayer rail network data model supporting (i) the identification of rail vehicle position and (ii) novel algorithms evaluating the mutual positions of several trains while detecting the selected crisis situation. In addition, original algorithms that enable automatic network model-building (on the database server level) directly from the official railway infrastructure database were developed. The verification of the proposed solutions (using rail traffic simulations) was focused on the evaluation of (i) the changing mutual positions (distances) of trains on the railway network, (ii) the detection of nonstandard or crisis traffic situations, and (iii) the results of the calculations of necessary braking distances of trains for stopping and collision avoidance. The above verification demonstrated the good applicability of the proposed solutions for the potential deployment within supplementary software support for real traffic control. The described concept of the supplementary support determined for railway traffic control (using the localization of trains by means of the GNSS) is intended mainly for regional, single-rail lines. This type of line is very often not sufficiently equipped with standard signaling and interlocking equipment to ensure the necessary traffic safety. Therefore, when deploying this support, the new algorithms for the automatic detection of critical traffic situations represent a significant potential contribution to increasing operational safety. Full article
(This article belongs to the Special Issue Transport Geography, GIS and GPS)
Show Figures

Figure 1

24 pages, 35586 KiB  
Article
Periodic Solutions and Stability Analysis for Two-Coupled-Oscillator Structure in Optics of Chiral Molecules
by Jing Li, Yuying Chen and Shaotao Zhu
Mathematics 2022, 10(11), 1908; https://doi.org/10.3390/math10111908 - 2 Jun 2022
Cited by 1 | Viewed by 2036
Abstract
Chirality is an indispensable geometric property in the world that has become invariably interlocked with life. The main goal of this paper is to study the nonlinear dynamic behavior and periodic vibration characteristic of a two-coupled-oscillator model in the optics of chiral molecules. [...] Read more.
Chirality is an indispensable geometric property in the world that has become invariably interlocked with life. The main goal of this paper is to study the nonlinear dynamic behavior and periodic vibration characteristic of a two-coupled-oscillator model in the optics of chiral molecules. We systematically discuss the stability and local dynamic behavior of the system with two pairs of identical conjugate complex eigenvalues. In particular, the existence and number of periodic solutions are investigated by establishing the curvilinear coordinate and constructing a Poincaré map to improve the Melnikov function. Then, we verify the accuracy of the theoretical analysis by numerical simulations, and take a comprehensive look at the nonlinear response of multiple periodic motion under certain conditions. The results might be of important significance for the vibration control, safety stability and design optimization for chiral molecules. Full article
(This article belongs to the Special Issue Differential Geometry and Related Integrable Systems)
Show Figures

Figure 1

17 pages, 6245 KiB  
Article
Traffic Capacity Assessment of the Selected Track Section on the Slovak Railways Network after the Implementation of ETCS L3 Based on Signaling Principle
by Milan Dedík, Vladimíra Štefancová, Jozef Gašparík, Vladimír Ľupták and Martin Vojtek
Appl. Sci. 2022, 12(11), 5597; https://doi.org/10.3390/app12115597 - 31 May 2022
Cited by 4 | Viewed by 2409
Abstract
In the field of railway operation, it is essential to establish uniform conditions for interconnectivity requirements and compatibility of equipment in the Pan-European railway area to ensure effective interoperability. It also includes, for example, the introduction of a control system with modern and [...] Read more.
In the field of railway operation, it is essential to establish uniform conditions for interconnectivity requirements and compatibility of equipment in the Pan-European railway area to ensure effective interoperability. It also includes, for example, the introduction of a control system with modern and advanced interlocking systems (safety devices). The European Train Control System (ETCS) is a single European train protection system that will increase safety in rail transport. Nevertheless, this system may have an impact on the throughput on those railway lines where it is applied. The main research objective is to determine the impacts and effects of the configuration of track signaling equipment on the operational management of traffic and especially on the creation of a traffic plan. The optimization of transport processes on the railway infrastructure means creating the conditions for achieving higher throughput performance, especially including a higher number of train paths into the train traffic diagram. This paper examines and compares the impacts of ETCS and its levels (in particular ETCS L3) on the practical throughput of the selected national infrastructure manager. A heuristic procedure is used with the application of the analytical methodology of the Railways of the Slovak Republic (ŽSR), which uses the principles of mathematical statistics and probability. Significant comparative indicators are occupancy times and the degree of utilization of practical throughput. These are used in investment decisions in the modernization of line sections to achieve interoperability of the railway system. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

18 pages, 5248 KiB  
Article
Evaluation of the Structural Performance of a Novel Methodology for Connecting Modular Units Using Straight and Cross-Shaped Connector Plates in Modular Buildings
by Sang-Sup Lee, Keum-Sung Park, Ju-Seong Jung and Kang-Seok Lee
Appl. Sci. 2020, 10(22), 8186; https://doi.org/10.3390/app10228186 - 19 Nov 2020
Cited by 12 | Viewed by 3855
Abstract
The strength capacity of modular buildings is determined by the weakest part, and connections between modular units are often weaker than the modular units themselves. Thus, to verify the safety of modular structures, the structural performance of connections between modular units should be [...] Read more.
The strength capacity of modular buildings is determined by the weakest part, and connections between modular units are often weaker than the modular units themselves. Thus, to verify the safety of modular structures, the structural performance of connections between modular units should be evaluated; the practical suitability of connection methods under a range of construction conditions should also be determined. In conventional modular building structures, modular units are generally connected using bolts between connector plates, interlocking devices, or steel plate welding. However, current methods are not technically or practically suitable for all types of modular buildings, such as high-rise modular buildings. Here, we describe a novel technology for connecting modular units to ensure the safety of modular structures. In this study, straight and cross-shaped metal connectors that use rectangular tubular columns and channel beams were proposed for connecting modules. Their structural performance was evaluated through cyclic loading tests by controlling the story drift angle in the width and longitudinal directions. The experimental results demonstrated that all specimens exhibited relatively stable behavior up to a drift angle of 0.04 rad, and there was a superior response in terms of energy absorption capability in the longitudinal direction results compared to the width direction. However, in comparison to the cross-shaped connector plate, the stiffness of the straight connector plate decreased as the drift angle of the column increased. Full article
Show Figures

Figure 1

19 pages, 98081 KiB  
Article
Experimental Evaluation of SAFEPOWER Architecture for Safe and Power-Efficient Mixed-Criticality Systems
by Maher Fakih, Kim Grüttner, Sören Schreiner, Razi Seyyedi, Mikel Azkarate-Askasua, Peio Onaindia, Tomaso Poggi, Nera González Romero, Elena Quesada Gonzalez, Timmy Sundström, Salvador Peiró Frasquet, Patricia Balbastre, Tage Mohammadat, Johnny Öberg, Yosab Bebawy, Roman Obermaisser, Adele Maleki, Alina Lenz and Duncan Graham
J. Low Power Electron. Appl. 2019, 9(1), 12; https://doi.org/10.3390/jlpea9010012 - 11 Mar 2019
Cited by 2 | Viewed by 7967
Abstract
With the ever-increasing industrial demand for bigger, faster and more efficient systems, a growing number of cores is integrated on a single chip. Additionally, their performance is further maximized by simultaneously executing as many processes as possible. Even in safety-critical domains like railway [...] Read more.
With the ever-increasing industrial demand for bigger, faster and more efficient systems, a growing number of cores is integrated on a single chip. Additionally, their performance is further maximized by simultaneously executing as many processes as possible. Even in safety-critical domains like railway and avionics, multicore processors are introduced, but under strict certification regulations. As the number of cores is continuously expanding, the importance of cost-effectiveness grows. One way to increase the cost-efficiency of such a System on Chip (SoC) is to enhance the way the SoC handles its power consumption. By increasing the power efficiency, the reliability of the SoC is raised because the lifetime of the battery lengthens. Secondly, by having less energy consumed, the emitted heat is reduced in the SoC, which translates into fewer cooling devices. Though energy efficiency has been thoroughly researched, there is no application of those power-saving methods in safety-critical domains yet. The EU project SAFEPOWER (Safe and secure mixed-criticality systems with low power requirements) targets this research gap and aims to introduce certifiable methods to improve the power efficiency of mixed-criticality systems. This article provides an overview of the SAFEPOWER reference architecture for low-power mixed-criticality systems, which is the most important outcome of the project. Furthermore, the application of this reference architecture in novel railway interlocking and flight controller avionic systems was demonstrated, showing the capability to achieve power savings up to 37%, while still guaranteeing time-triggered task execution and time-triggered NoC-based communication. Full article
(This article belongs to the Special Issue Ultra-low Power Embedded Systems)
Show Figures

Figure 1

Back to TopTop