Open AccessArticle
Wind and Snow Protection Design and Optimization for Tunnel Portals in Central Asian Alpine Mountains
by
Bin Zhi, Changwei Li, Xiaojing Xu, Zhanping Song and Ang Jiao
Buildings 2026, 16(2), 454; https://doi.org/10.3390/buildings16020454 (registering DOI) - 21 Jan 2026
Abstract
Aiming at the wind-blown snow disasters plaguing tunnel portals along the China-Tajikistan Highway Phase II Project, this study optimizes the protective parameters of wind deflectors through numerical simulation to improve the disaster prevention efficiency of tunnel portals in alpine mountainous areas. Three core
[...] Read more.
Aiming at the wind-blown snow disasters plaguing tunnel portals along the China-Tajikistan Highway Phase II Project, this study optimizes the protective parameters of wind deflectors through numerical simulation to improve the disaster prevention efficiency of tunnel portals in alpine mountainous areas. Three core control parameters of wind deflectors, namely horizontal distance from the tunnel portal (L), plate inclination angle (β), and top installation height (h), were selected as the research objects. Single-factor numerical simulation scenarios were designed for each parameter, and an L9(3
3) orthogonal test was further adopted to formulate 9 groups of multi-parameter combination scenarios, with the snow phase volume fraction at 35 m on the leeward side of the tunnel portal set as the core evaluation index. A computational fluid dynamics (CFD) model was established to systematically investigate the influence laws of each parameter on the wind field structure and snow drift deposition characteristics at tunnel portals and clarify the flow field response rules under different parameter configurations. Single-factor simulation results show that the wind deflector exerts distinct regulatory effects on the wind-snow flow field with different parameter settings: when L = 6 m, the disturbance zone of the wind deflector precisely covers the main wind flow development area in front of the tunnel portal, which effectively lifts the main incoming flow path, compresses the recirculation zone (length reduced from 45.8 m to 22.3 m), and reduces the settlement of snow particles, achieving the optimal comprehensive prevention effect; when β = 60°, the leeward wind speed at the tunnel portal is significantly increased to 10–12 m/s (from below 10 m/s), which effectively promotes the transport of snow particles and mitigates the accumulation risk, being the optimal inclination angle; when h = 2 m, the wind speed on both the windward and leeward sides of the tunnel portal is significantly improved, and the snow accumulation risk at the portal reaches the minimum. Orthogonal test results further quantify the influence degree of each parameter on the snow prevention effect, revealing that the horizontal distance from the tunnel portal is the most significant influencing factor. The optimal parameter combination of the wind deflector is determined as L = 6 m, β = 60°, and h = 2 m. Under this optimal combination, the snow phase volume fraction at 35 m on the leeward side of the tunnel portal is 0.0505, a 12.3% reduction compared with the non-deflector condition; the high-concentration snow accumulation zone is shifted 25 m leeward, and the high-value snow phase volume fraction area (>0.06) disappears completely, which can effectively alleviate the adverse impact of wind-blown snow disasters on the normal operation of tunnel portals. The research results reveal the regulation mechanism of wind deflector parameters on the wind-snow flow field at alpine tunnel portals and determine the optimal protective parameter combination, which can provide important theoretical reference and technical support for the prevention and control of wind-blown snow disasters at tunnel portals in similar alpine mountainous areas.
Full article