Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (155)

Search Parameters:
Keywords = rotor/stator interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10446 KiB  
Article
Transient Vortex Dynamics in Tip Clearance Flow of a Novel Dishwasher Pump
by Chao Ning, Yalin Li, Haichao Sun, Yue Wang and Fan Meng
Machines 2025, 13(8), 681; https://doi.org/10.3390/machines13080681 (registering DOI) - 2 Aug 2025
Abstract
Blade tip leakage vortex (TLV) is a critical phenomenon in hydraulic machinery, which can significantly affect the internal flow characteristics and deteriorate the hydraulic performance. In this paper, the blade tip leakage flow and TLV characteristics in a novel dishwasher pump were investigated. [...] Read more.
Blade tip leakage vortex (TLV) is a critical phenomenon in hydraulic machinery, which can significantly affect the internal flow characteristics and deteriorate the hydraulic performance. In this paper, the blade tip leakage flow and TLV characteristics in a novel dishwasher pump were investigated. The correlation between the vorticity distribution in various directions and the leakage vortices was established within a rotating coordinate system. The results show that the TLV in a composite impeller can be categorized into initial and secondary leakage vortices. The initial leakage vortex originates from the evolution of two corner vortices that initially form at different locations within the blade tip clearance. This vortex induces pressure fluctuations at the impeller inlet; its shedding is identified as the primary contributor to localized energy loss within the flow passage. These findings provide insights into TLVs in complex pump geometries and provide solutions for future pump optimization strategies. Full article
Show Figures

Figure 1

20 pages, 18025 KiB  
Article
Numerical Research on Pressure Fluctuation Characteristics of Small-Scale and High-Speed Automotive Pump
by Lulu Zheng, Xiaoping Chen, Jinglei Qu and Xiaojie Ma
Machines 2025, 13(7), 584; https://doi.org/10.3390/machines13070584 - 5 Jul 2025
Viewed by 238
Abstract
Rotor–stator interaction and the coupling between the clearance flow and main flow amplify the flow complexity in small-scale, high-speed automotive pumps. This degrades the pressure fluctuations, compromising the operational stability of these pumps. To better understand the pressure fluctuation distribution characteristics within such [...] Read more.
Rotor–stator interaction and the coupling between the clearance flow and main flow amplify the flow complexity in small-scale, high-speed automotive pumps. This degrades the pressure fluctuations, compromising the operational stability of these pumps. To better understand the pressure fluctuation distribution characteristics within such a pump, the Reynolds-averaged Navier–Stokes equations and the shear stress transport k-ω turbulence model were applied to numerically compute the pump. The simulation results were compared with experimental data, and good agreement was achieved. The results show that pressure fluctuations in the main flow region are mainly dominated by the blade passing frequency, and the intensity of pressure fluctuations in the near-field area of the tongue reaches its peak value, showing significant fluctuation characteristics. Significant peak signals are captured in the low-frequency band of pressure fluctuations in the clearance region. The pressure fluctuation characteristics are also affected by the rotor–stator interaction between the impeller front shroud and the volute casing, while the dominant frequency is still the blade passing frequency. In addition, the dominant frequencies of pressure fluctuations in the main and clearance flows show a similar distribution to the flow rate, but the minimum amplitude corresponds to different flow rates. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

21 pages, 12846 KiB  
Article
Analysis of the Energy Loss Mechanism in Hydraulic Turbines with Different Guide-Vane Numbers Based on Entropy Generation Theory
by Fengxia Shi, Denghui Zhang, Pengcheng Wang, Xiaohui Wang and Chong Feng
Processes 2025, 13(6), 1899; https://doi.org/10.3390/pr13061899 - 16 Jun 2025
Viewed by 426
Abstract
To explore the influence of guide vanes on the energy loss of hydraulic turbines, a pump characterized by a simple structure and convenient operation was selected as the research subject. Entropy generation theory was utilized to analyze entropy generation losses at different flow [...] Read more.
To explore the influence of guide vanes on the energy loss of hydraulic turbines, a pump characterized by a simple structure and convenient operation was selected as the research subject. Entropy generation theory was utilized to analyze entropy generation losses at different flow rates, with a particular emphasis on the mechanisms in the impeller and draft tube. The findings indicate that turbulent entropy production dominates energy dissipation. Under the best efficiency point (BEP), the total entropy generation loss of Z0 = 11 turbine was 7.18% and 5.76% lower than that of Z0 = 7 and Z0 = 9, respectively. The proportion of entropy generation loss in the impeller was highest under low-flow and optimal operating conditions, while the proportion of entropy generation loss in the draft tube was highest under high-flow conditions. In guide-vane-free turbines, the impeller’s high turbulent entropy generation rate was attributed to vortices and backflow caused by significant velocity gradients. For guide-vane-equipped turbines, high turbulent entropy generation rates arose from rotor–stator interactions and flow separation at blade inlets. Under high-flow-rate conditions, the entropy generation loss in the draft tube was significantly larger than that in other flow components, primarily due to vortices generated by excessive velocity circulation at the impeller outlet near the upstream draft tube flow passages, leading to high turbulent entropy generation rates. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 12973 KiB  
Article
Study of Inlet Vortex Behavior in Dual-Pump Systems and Its Influence on Pump Operational Instability
by Wei Song, Jilong Lin, Yonggang Lu, Yun Zhao and Zhengwei Wang
Water 2025, 17(12), 1784; https://doi.org/10.3390/w17121784 - 14 Jun 2025
Viewed by 472
Abstract
This study addresses inlet flow distribution and pressure pulsation-induced vibration in LNG dual-pump parallel systems. We investigate an LNG dual-submerged pump tower system. Our approach combines computational fluid dynamics with vortex dynamics theory. We examine inlet flow characteristics under different flow conditions. Pressure [...] Read more.
This study addresses inlet flow distribution and pressure pulsation-induced vibration in LNG dual-pump parallel systems. We investigate an LNG dual-submerged pump tower system. Our approach combines computational fluid dynamics with vortex dynamics theory. We examine inlet flow characteristics under different flow conditions. Pressure pulsation propagation patterns are analyzed. System stability mechanisms are investigated. A 3D model incorporates inducers, impellers, guide vanes, outlet sections, and base structures. The SST k-ω turbulence model and Q-criterion vortex identification reveal key features. Results show minimal head differences during parallel operation. The inlet flow field remains uniform without significant vortices. However, local low-velocity zones beneath the base may cause flow separation at low flows. Pressure pulsations are governed by guide vane rotor–stator interactions. These disturbances propagate backward to impellers and inducers. Outlet sections show asymmetric pressure fluctuations. This asymmetry results from spatial positioning differences. Complex base geometries generate low-intensity vortices. Vortex intensity stabilizes at higher flows. These findings provide theoretical foundations for vibration suppression. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

16 pages, 5128 KiB  
Article
Enhanced Speed Characteristics of High-Torque-Density BLDC Motor for Robot Applications Using Parallel Open-End Winding Configuration
by Junghwan Park, Handdeut Chang and Chaeeun Hong
Actuators 2025, 14(5), 220; https://doi.org/10.3390/act14050220 - 29 Apr 2025
Viewed by 804
Abstract
High-torque-density motors are essential in humanoid, wearable, and rehabilitation robots due to their ability to minimize gear ratios, improve back-drivability, and support compact joint design. However, their inherently high back-EMF limits speed performance, and safety regulations often constrain supply voltages to below 50 [...] Read more.
High-torque-density motors are essential in humanoid, wearable, and rehabilitation robots due to their ability to minimize gear ratios, improve back-drivability, and support compact joint design. However, their inherently high back-EMF limits speed performance, and safety regulations often constrain supply voltages to below 50 V in human-interactive environments. To overcome these limitations, this study introduces a novel winding strategy called parallel open-end winding (POEW), which combines the benefits of two individual approaches: Parallel Connected Winding (PCW) and Open-End Winding (OEW). PCW reduces phase resistance and inductance, thereby mitigating voltage drop and back-EMF, while OEW eliminates the neutral point, allowing full-phase voltage utilization. Experimental results show that the POEW configuration achieves a 3.5-fold increase in maximum speed compared to the conventional Series-Connected Winding (SCW), without altering the rotor or stator structure. Torque constant measurements confirm that all proposed configurations maintain torque output with minimal variation. Although the motor constant slightly decreases due to the higher current in parallel paths, the significant speed enhancement under low-voltage conditions demonstrates the practicality and effectiveness of POEW for advanced robotic applications requiring both high torque and speed. Full article
(This article belongs to the Special Issue Actuation and Sensing of Intelligent Soft Robots)
Show Figures

Figure 1

33 pages, 66394 KiB  
Article
Application of Proper Orthogonal Decomposition in Spatiotemporal Characterization and Reduced-Order Modeling of Rotor–Stator Interaction Flow Field
by Yongkang Lin, Weijian Yang, Hu Wang, Fazhong Wang, Jie Hu and Jianyao Yao
Aerospace 2025, 12(5), 365; https://doi.org/10.3390/aerospace12050365 - 23 Apr 2025
Viewed by 506
Abstract
The periodic unsteady flow induced by rotor–stator interaction (RSI) is the primary cause of blade forced vibration and fatigue failure. Therefore, analyzing the excitation characteristics of RSI flow fields under multi-parameter conditions is essential for vibration analysis and optimization in fluid–structure interaction. This [...] Read more.
The periodic unsteady flow induced by rotor–stator interaction (RSI) is the primary cause of blade forced vibration and fatigue failure. Therefore, analyzing the excitation characteristics of RSI flow fields under multi-parameter conditions is essential for vibration analysis and optimization in fluid–structure interaction. This study derives the Toeplitz structure of the correlation matrix in proper orthogonal decomposition (POD) for strictly periodic flow fields and reveals that the POD spatial modes appear in pairs with a 90° spatial phase difference, which originates from the cosine and sine form of the eigenvectors of the Toeplitz matrix. Taking a 1.5-stage compressor cascade as an example, the POD method is employed to effectively extract the main spatiotemporal characteristics of the RSI flow field, and the spatial symmetry and phase difference of the POD modes are further interpreted from a physical perspective. To address the high computational cost and resource demands arising from large-scale similar cases in multi-parameter excitation optimization and analysis, a reduced-order modeling (ROM) method based on time–space and parameter decoupling is proposed using multi-parameter POD. Spatial bases are extracted through the first-level POD, and a second-level POD is applied to the first-level coefficients to obtain temporal bases and coefficients that are solely parameter-dependent. A radial basis function (RBF) interpolation is used to establish the mapping between parameters and the second-level coefficients, enabling efficient multi-parameter ROM construction. The resulting ROM achieves a relative prediction error of less than 1.4% under typical operating conditions and less than 2.9% near the choke boundary, improving computational efficiency by four orders of magnitude while maintaining accuracy, thereby providing an effective approach for aerodynamic excitation acquisition. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 16839 KiB  
Article
Study on the Unsteady Pressure Fluctuations and Radial Forces in a Vaned-Diffuser Heavy-Liquid-Metal Centrifugal Pump
by Xudan Ma, Hui Sheng, Chenyang Wang, Yao Lu and Kefeng Lyu
Energies 2025, 18(7), 1698; https://doi.org/10.3390/en18071698 - 28 Mar 2025
Viewed by 365
Abstract
Lead–Bismuth Eutectic (LBE) is a very dense medium whose specific gravity is more than 10 times that of water. The unsteady hydraulic exciting force generated by the rotor–stator interaction (RSI) is significantly increased in the LBE pump, which has an important influence on [...] Read more.
Lead–Bismuth Eutectic (LBE) is a very dense medium whose specific gravity is more than 10 times that of water. The unsteady hydraulic exciting force generated by the rotor–stator interaction (RSI) is significantly increased in the LBE pump, which has an important influence on the stable operation of the pump. The clearance between the vaned diffuser inlet and the impeller outlet has great influence on the rotor–stator interaction. This paper studies the unsteady flow characteristics in pumps with different rotor–stator clearance in different flow rates and transported mediums. The results show that at the design point, the head and efficiency of the pump when transporting LBE are 3.52% and 8.05% higher than those when transporting water. The pressure fluctuation distribution is similar at different positions inside the pump when transporting LBE and water, but the dimensionless pressure fluctuation coefficient is slightly larger when transporting water. The radial force in the pump shows a larger amplitude of 6BPF frequency with small clearance ratios, and the frequency is related to the guide vane number. When the clearance ratio increases from 1.03 to 1.13, the amplitude of 6BPF keeps decreasing. The amplitude at a clearance ratio of 1.13 decreased to 4.7% of that at 1.03. The research presented in this paper could provide some references for the design of the clearance between the rotor–stator parts in the LBE pump. Full article
Show Figures

Figure 1

23 pages, 12732 KiB  
Article
Design of a Simplified Experimental Test Case to Study Rotor–Stator Interactions in Hydraulic Machinery
by Benoit Dussault, Yves St-Amant and Sébastien Houde
Energies 2025, 18(5), 1295; https://doi.org/10.3390/en18051295 - 6 Mar 2025
Viewed by 813
Abstract
Because of the introduction of significant amounts of electricity from intermittent energy, such as solar and wind, on power grids, hydraulic turbines undergo more transient operation with varying rotation speeds. Start and stop sequences are known to induce significant mechanical stress in the [...] Read more.
Because of the introduction of significant amounts of electricity from intermittent energy, such as solar and wind, on power grids, hydraulic turbines undergo more transient operation with varying rotation speeds. Start and stop sequences are known to induce significant mechanical stress in the runner, decreasing its lifespan. Complex fluid–structure interactions are responsible for those high-stress levels, but the precise mechanisms are still elusive, even if many experimental and numerical studies were devoted to the subject. One possible mechanism identified through limited measurements on large turbines operating in powerhouses is rotor–stator interactions. It is already known that rotor–stator interaction (RSI) in constant-speed operating conditions can lead to runner failure when the RSI frequency is close to the natural frequencies of specific structural modes. Start and stop sequence investigations show that RSI can induce a transient resonance while the runner is accelerating/decelerating, which generates a frequency sweep that excites the structure. Studying transient RSI-induced resonance of structural modes associated with hydraulic turbine runners is complex because of the geometry and the potential impacts from other flow-induced excitations. This paper presents the development and validation of an experimental setup specifically designed to reproduce RSI-induced resonances in a rotating circular structure with cyclic periodicity mimicking the structural behavior of a Francis runner. Such a setup does not exist in the literature and will be beneficial for studying RSI during speed variations, with the potential to provide valuable insights into the dynamic behavior of turbines during transient conditions. The paper outlines the different design steps and the construction and validation of the experiment and its simplified runner. It presents important results from preliminary analyses that outline the approach’s success in investigating transient RSI in hydraulic turbines. Full article
(This article belongs to the Special Issue Energy Conversion and Management: Hydraulic Machinery and Systems)
Show Figures

Figure 1

18 pages, 8631 KiB  
Article
Flow Characteristics and Pressure Pulsation Analysis of Cavitation Induced in a Double-Volute Centrifugal Pump
by Yongsha Tu, Xueying Zhao, Lifeng Lu, Wenjie Zhou, Siwei Li, Jin Dai, Zhongzan Wang, Yuan Zheng and Chunxia Yang
Water 2025, 17(3), 445; https://doi.org/10.3390/w17030445 - 5 Feb 2025
Cited by 2 | Viewed by 1051
Abstract
Cavitation is a complex multiphase flow phenomenon, and the generation of transient phase transitions between liquid and vapor during cavitation development leads to multi-scale vortex motion. The transient cavitation dynamics and centrifugal pump’s rotor–stator interaction will induce pressure fluctuations in the impeller and [...] Read more.
Cavitation is a complex multiphase flow phenomenon, and the generation of transient phase transitions between liquid and vapor during cavitation development leads to multi-scale vortex motion. The transient cavitation dynamics and centrifugal pump’s rotor–stator interaction will induce pressure fluctuations in the impeller and the volute fluid of the centrifugal pump, resulting in a complex flow field structure. Based on the Schnerr–Sauer cavitation model and SST k-ω turbulence model, this paper studies the transient characteristics of the cavitation-induced unsteady flow in the centrifugal pump and the excitation response to the pressure pulsation in the volute under different flow conditions, taking the large vertical double-volute centrifugal pump as the research object. The results indicate the following: As the impeller rotates, in the external excitation response, the jet-wake flow structure at the centrifugal pump blade outlet shows an increase in the blade frequency signal. This is evident near the measurement points of the volute tongue and separator. When severe cavitation occurs, the maximum amplitude at the blade frequency in the volute shifts from the pump tongue (30°) to the downstream of the tongue (45°). The value of fpmax is 3.1 times that when NPSHa = 8.88 m. By applying the Omega vortex identification method, it can be seen that the interaction between the vortices at the blade trailing edge and the stable vortex in the volute tongue undergoes a process of elongation, fusion, separation, and recovery. This represents the downstream influence of the impeller on the volute. When Q = 0.9Qd, the process of the blade passage vortex tail detaching and dissipating in the impeller flow path can be observed, demonstrating the upstream influence of the volute on the impeller. Full article
(This article belongs to the Special Issue Advanced Numerical Approaches for Multiphase and Cavitating Flows)
Show Figures

Figure 1

15 pages, 5468 KiB  
Article
Regulatory Role of a Hydrophobic Core in the FliG C-Terminal Domain in the Rotary Direction of a Flagellar Motor
by Tatsuro Nishikino, Akihiro Hatano, Seiji Kojima and Michio Homma
Biomolecules 2025, 15(2), 212; https://doi.org/10.3390/biom15020212 - 1 Feb 2025
Viewed by 765
Abstract
A flagellar motor can rotate either counterclockwise (CCW) or clockwise (CW), and rotational switching is triggered by conformational changes in FliG, although the molecular mechanism is still unknown. Here, we found that cheY deletion, which locks motor rotation in the CCW direction, restored [...] Read more.
A flagellar motor can rotate either counterclockwise (CCW) or clockwise (CW), and rotational switching is triggered by conformational changes in FliG, although the molecular mechanism is still unknown. Here, we found that cheY deletion, which locks motor rotation in the CCW direction, restored the motility abolished by the fliG L259Q mutation. We found that the CCW-biased fliG G214S mutation also restored the swimming of the L259Q mutant, but the CW-biased fliG G215A mutation did not. Since the L259 residue participates in forming the FliG hydrophobic core at its C-terminal domain, mutations were introduced into residues structurally closer to L259, and their motility was examined. Two mutants, D251R and L329Q, exhibited CW-biased rotation. Our results suggest that mutations in the hydrophobic core of FliGC collapse its conformational switching and/or stator interaction; however, the CCW state of the rotor enables rotation even with this disruption. Full article
Show Figures

Figure 1

17 pages, 16125 KiB  
Article
Effect of Purge on Secondary Flows in Turbine Due to Interaction Between Cavity Flow and Main Channel
by Daniele Biassoni, Dario Barsi and Davide Lengani
Machines 2025, 13(2), 77; https://doi.org/10.3390/machines13020077 - 22 Jan 2025
Cited by 2 | Viewed by 779
Abstract
Nowadays, a lot of efforts are being made to increase turbine inlet temperatures (TIT), with the aim of increasing efficiency in aircraft and power generation turbines. Due to the higher temperature level, advanced cooling solutions to preserve material durability are necessary. It is [...] Read more.
Nowadays, a lot of efforts are being made to increase turbine inlet temperatures (TIT), with the aim of increasing efficiency in aircraft and power generation turbines. Due to the higher temperature level, advanced cooling solutions to preserve material durability are necessary. It is essential to avoid contact between hot gases and the temperature-sensitive components, such as the stator and rotor cavity disks. Modern gas turbine performance optimization centers on reducing leakage and refining sealing systems. The interaction between the main flow and cavity flow in stator/rotor systems has a significant role in loss generation. This study employs Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations to investigate the unsteady interactions within the stator/rotor cavity of a low-pressure turbine. Numerical results are compared and validated against experimental data obtained in the cavity rig of the University of Genova. The research focuses on the effects of stator/rotor interactions, including wake ingestion from upstream rotor bars and the blocking influence of downstream potential effects on cavity sealing effectiveness. In this paper, a comparison between the zero cooling air flow rate and cavity sealing condition is shown. Special attention is given to unsteady loss mechanisms occurring downstream of the vane row and in areas where the cavity flow re-enters the main channel, showing how cooling flow rates affect these losses. From this study, it can be seen that by increasing the cooling flow rate injected into the cavity, there is an increase in the hub’s passage vortex effect and there is a more intense interaction between the main flow and the cavity flow. These results offer valuable insights into the mechanisms of interaction between the main flow and cavity flow. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

17 pages, 4621 KiB  
Article
An Analysis of the Effect of Cavitation on Rotor–Stator Interaction in a Bidirectional Bulb Tubular Pump
by Yucheng Zhou, Wenyong Duan, Haiyu Liu, Xiaodong Yang, Jing Hu, Dawang Sun and Shikai Yan
J. Mar. Sci. Eng. 2025, 13(1), 138; https://doi.org/10.3390/jmse13010138 - 14 Jan 2025
Viewed by 665
Abstract
This study delves into rotor–stator interaction within a bidirectional bulb tubular pump under cavitation conditions. Using pressure pulsation tests on a model pump and numerical simulations performed with ANSYS CFX software, we analyzed pressure pulsation and flow field data across three distinct flow [...] Read more.
This study delves into rotor–stator interaction within a bidirectional bulb tubular pump under cavitation conditions. Using pressure pulsation tests on a model pump and numerical simulations performed with ANSYS CFX software, we analyzed pressure pulsation and flow field data across three distinct flow rates and multiple cavitation numbers. Both time-domain and frequency-domain analyses were conducted to examine the patterns of pressure pulsation influenced by flow rates and cavitation numbers at various monitoring locations. A numerical flow field analysis further validated the findings. The results reveal that rotor–stator interaction manifests in the vaneless spaces of the pump during cavitation. The onset of cavitation alters the amplitudes of dominant frequencies at different flow rates. Near the guide vane and impeller, the dominant frequencies shift toward the impeller frequency and guide vane frequency, respectively. Under low-flow conditions, the rotor–stator interaction effect is more conspicuous due to the deteriorated flow pattern. Pressure pulsations are more strongly influenced in the front vaneless space (FVP) than in the rear vaneless space (RVP). This difference arises because the front guide vane destabilizes rather than stabilizes the flow pattern, worsening the rotor–stator interaction. Additionally, the FVP is less affected by the impeller than the RVP, further amplifying the influence of rotor–stator interaction on pressure pulsation. These findings provide a theoretical foundation for mitigating the effects of rotor–stator interaction on the operational stability and efficiency of bidirectional bulb tubular pumps. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

33 pages, 22828 KiB  
Article
Comparison of Two Fourier-Based Methods for Simulating Inlet Distortion Unsteady Flows in Transonic Compressors
by Lei Wu, Pengcheng Du and Fangfei Ning
Aerospace 2024, 11(12), 1050; https://doi.org/10.3390/aerospace11121050 - 22 Dec 2024
Cited by 1 | Viewed by 911
Abstract
The aerodynamic performance of transonic compressors, particularly the stall margin, is significantly influenced by inlet distortion. While time-marching methods accurately simulate such unsteady flows, they can be time-consuming. To enhance the computational efficiency, two Fourier-based methods are proposed in this paper: the time-accurate [...] Read more.
The aerodynamic performance of transonic compressors, particularly the stall margin, is significantly influenced by inlet distortion. While time-marching methods accurately simulate such unsteady flows, they can be time-consuming. To enhance the computational efficiency, two Fourier-based methods are proposed in this paper: the time-accurate method with interface filtering and the time–space collocation (TSC) method. The time-accurate method with interface filtering ignores the rotor–stator interaction effects, enabling a larger time step and faster convergence. In contrast, the TSC method accounts for harmonics of conservative variables and transforms the unsteady simulation into multiple steady-state calculations, thereby reducing computational costs. The two Fourier-based methods are validated using NASA Stage 67 and a two-stage transonic fan. Near the peak efficiency point, the results from both methods closely match that of URANS simulation and experimental data. The time-accurate method with interface filtering demonstrates a speed enhancement of 4 to 5 times as a result of a reduction in the iteration steps. In contrast, the TSC method exhibits a speed improvement of at least 20 times in two specific cases, attributable to the significantly smaller mesh size and iteration steps employed in the TSC method compared to the URANS method. Near the stall point, more harmonics for inlet distortion are necessary in TSC simulation to accurately capture flow separation. In the two-stage transonic fan simulations, the strong rotor–stator interaction effects lead to deviations from the URANS simulation; nevertheless, the Fourier-based simulations accurately reflect the trend of the stall margin under total pressure distortion. Overall, the Fourier-based methods show promising potential for engineering applications in estimating the performance degradation of compressors subjected to inlet distortion. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

14 pages, 3330 KiB  
Article
Fluid Interaction Analysis for Rotor-Stator Contact in Response to Fluid Motion and Viscosity Effect
by Desejo Filipeson Sozinando, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Appl. Mech. 2024, 5(4), 964-977; https://doi.org/10.3390/applmech5040053 - 8 Dec 2024
Viewed by 1197
Abstract
Fluid–structure interaction introduces critical failure modes due to varying stiffness and changing contact states in rotor-stator systems. This is further aggravated by stress fluctuations due to shaft impact with a fixed stator when the shaft rotates. In this paper, the investigation of imbalance [...] Read more.
Fluid–structure interaction introduces critical failure modes due to varying stiffness and changing contact states in rotor-stator systems. This is further aggravated by stress fluctuations due to shaft impact with a fixed stator when the shaft rotates. In this paper, the investigation of imbalance and rotor-stator contact on a rotating shaft was carried out in viscous fluid. The shaft was modelled as a vertical elastic rotor system based on a vertically oriented elastic rotor operating in an incompressible medium. Implicit representation of the rotating system including the rotor-stator contact and the hydrodynamic resistance was formulated for the coupled system using the energy principle and the Navier–Stokes equations. Additionally, the monolithic approach included an implicit strategy of the rotor-stator fluid interaction interface conditions in the solution methodology. Advanced time-frequency methods, such as Hilbert transform, continuous wavelet transform, and estimated instantaneous frequency maps, were applied to extract the vibration features of the dynamic response of the faulted rotor. Time-varying stiffness due to friction is thought to be the main reason for the frequency fluctuation, as indicated by historical records of the vibration displacement, whirling orbit patterns of the centre shaft, and the amplitude–frequency curve. It has also been demonstrated that the augmented mass associated with the rotor and stator decreases the natural frequencies, while the amplitude signal remains relatively constant. This behaviour indicates a quasi-steady-state oscillatory condition, which minimises the energy fluctuations caused by viscous effects. Full article
Show Figures

Figure 1

18 pages, 7285 KiB  
Article
Nonlinear Dynamics of Whirling Rotor with Asymmetrically Supported Snubber Ring
by Heba Hamed El-Mongy, Tamer Ahmed El-Sayed, Vahid Vaziri and Marian Wiercigroch
Machines 2024, 12(12), 897; https://doi.org/10.3390/machines12120897 - 6 Dec 2024
Cited by 2 | Viewed by 957
Abstract
Rotor–stator whirling is a critical malfunction frequently encountered in rotating machinery, often resulting in severe damages. This study investigates the nonlinear dynamics of a whirling rotor interacting with a snubber ring through numerical simulations that account for the stiffness asymmetries of the snubber [...] Read more.
Rotor–stator whirling is a critical malfunction frequently encountered in rotating machinery, often resulting in severe damages. This study investigates the nonlinear dynamics of a whirling rotor interacting with a snubber ring through numerical simulations that account for the stiffness asymmetries of the snubber ring. A two-degrees-of-freedom (DOF) model is employed to analyse the contact interactions that occurred between the rotor and the snubber ring, assuming a linear elastic contact model. The analysis also incorporates the static offset between the centers of the rotor and the snubber ring. The dynamic behaviour of the whirling system is characterised by pronounced nonlinearity due to transitions between contact and non-contact states. The model is first validated against our prior theoretical and experimental studies. The nonlinear responses of the rotor are analysed to evaluate the effects of stator asymmetry through various techniques, including time-domain waveforms, frequency spectra, rotor orbits, and bifurcation diagrams. Furthermore, the influence of varying system parameters, such as rotational speed and the damping ratio, both with and without stator asymmetry, are systematically analysed. The results demonstrate that the rubbing response is highly sensitive to small variations in system parameters, with stator asymmetry significantly affecting system behaviour, even at low asymmetry levels. Direct stiffness asymmetry is shown to have a more pronounced effect than cross-coupling stiffness. The system exhibits a range of dynamics, including periodic, quasi-periodic, and chaotic responses, with regions of periodic orbits coexisting with chaotic ones. Complex phenomena such as period doubling, period halving, and jump bifurcations are identified, alongside quasi-periodic and period doubling routes to chaos. These findings contribute to a deeper understanding of the nonlinear phenomena associated with rotor–stator whirling and provide valuable insights into the unique characteristics of rubbing faults, which could facilitate fault diagnosis. Full article
(This article belongs to the Special Issue Nonlinear Dynamics of Mechanical Systems and Machines)
Show Figures

Figure 1

Back to TopTop