Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = rotational magnetic field plane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3758 KiB  
Article
In-Plane Gradient Magnetic Field-Induced Topological Defects in Rotating Spin-1 Bose–Einstein Condensates with SU(3) Spin-Orbit Coupling
by Hui Yang, Peng-Yu Li and Bo Yu
Entropy 2025, 27(5), 508; https://doi.org/10.3390/e27050508 - 9 May 2025
Viewed by 456
Abstract
We study the topological defects and spin structures of rotating SU(3) spin–orbit-coupled spin F=1 Bose–Einstein condensates (BECs) in an in-plane quadrupole field with ferromagnetic spin interaction, and the BECs is confined by a harmonic trap. Without rotation, as the quadrupole field [...] Read more.
We study the topological defects and spin structures of rotating SU(3) spin–orbit-coupled spin F=1 Bose–Einstein condensates (BECs) in an in-plane quadrupole field with ferromagnetic spin interaction, and the BECs is confined by a harmonic trap. Without rotation, as the quadrupole field strength is increased, the spin F=1 BECs with SU(3) spin–orbit coupling (SOC) evolves from the initial Thomas–Fermi phase into the stripe phase; then, it enters a vortex–antivortex cluster state and eventually a polar-core vortex state. In the absence of rotation with the given quadrupole field, the enhancing SU(3) SOC strength can cause a phase transition from a central Mermin–Ho vortex to a vortex–antivortex cluster, subsequently converting to a bending vortex–antivortex chain. In addition, when considering rotation, it is found that this system generates the following five typical quantum phases: a three-vortex-chain cluster structure with mutual angles of approximately 2π3, a tree-fork-like vortex chain cluster, a rotationally symmetric vortex necklace, a diagonal vortex chain cluster, and a density hole vortex cluster. Particularly, the system exhibits unusual topological structures and spin textures, such as a bending half-skyrmion–half-antiskyrmion (meron–antimeron) chain, three half-skyrmion (meron) chains with mutual angles of an approximately 2π3, slightly curved diagonal half-skyrmion (meron) cluster lattice, a skyrmion–half-skyrmion (skyrmion-meron) necklace, and a tree-fork-like half-skyrmion (meron) chain cluster lattice. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

8 pages, 1936 KiB  
Article
Thermally Induced Ion Magnetic Moment in H4O Superionic State
by Xiao Liang, Junhao Peng, Fugen Wu, Renhai Wang, Yujue Yang, Xingyun Li and Huafeng Dong
Crystals 2025, 15(4), 304; https://doi.org/10.3390/cryst15040304 - 26 Mar 2025
Viewed by 374
Abstract
The hydrogen ions in superionic ice can move freely, playing the role of electrons in metals. Its electromagnetic behavior is the key to explaining the anomalous magnetic fields of Uranus and Neptune. Based on an ab initio evolutionary algorithm, we searched for the [...] Read more.
The hydrogen ions in superionic ice can move freely, playing the role of electrons in metals. Its electromagnetic behavior is the key to explaining the anomalous magnetic fields of Uranus and Neptune. Based on an ab initio evolutionary algorithm, we searched for the stable H4O crystal structure under pressures of 500–5000 GPa and discovered a new layered-chain Pmn21-H4O structure with H3 ion clusters. Interestingly, H3 ion clusters rotate above 900 K (with an instantaneous speed of 3000 m/s at 900 K), generating an instantaneous magnetic moment (~10−26 A·m2 ≈ 0.001 μB). Moreover, H ions diffuse in a direction perpendicular to the H-O atomic layer at 960–1000 K. This is because the hydrogen–oxygen covalent bonds within the hydrogen–oxygen plane hinder the diffusion behavior of H3 ion clusters within the plane, resulting in the diffusion of H3 ion clusters between the hydrogen–oxygen planes and the formation of a one-dimensional conductive superionic state. One-dimensional diffusion of ions may generate magnetic fields. We refer to these two types of magnetic moments as “thermally induced ion magnetic moments”. When the temperature exceeds 1000 K, H ions diffuse in three directions. When the temperature exceeds 6900 K, oxygen atoms diffuse and the system becomes fluid. These findings provide important references for people to re-recognize the physical and chemical properties of hydrogen and oxygen under high pressure, as well as the sources of abnormal magnetic fields in Uranus and Neptune. Full article
Show Figures

Figure 1

17 pages, 854 KiB  
Article
Non-Stationary Flow of a Viscous Incompressible Electrically Conductive Liquid on a Rotating Plate in the Presence of Media Injection (Suction), Considering Induction and Diffusion Effects
by Anatoly A. Gurchenkov and Ivan A. Matveev
Physics 2025, 7(1), 1; https://doi.org/10.3390/physics7010001 - 10 Jan 2025
Viewed by 1262
Abstract
The branch of physics known as magnetohydrodynamics (MHD) emerged in the middle of the 20th century. MHD models, being substantially nonlinear, are quite challenging for theoretical study and allow nontrivial consideration only in particular limited cases. Thus, due to the exceptional growth of [...] Read more.
The branch of physics known as magnetohydrodynamics (MHD) emerged in the middle of the 20th century. MHD models, being substantially nonlinear, are quite challenging for theoretical study and allow nontrivial consideration only in particular limited cases. Thus, due to the exceptional growth of calculation power, research on MHD is now primarily concentrated on numerical modeling. The achievements are considerable; however, there is a possibility of overlooking some phenomena or missing an optimal approach to modeling and calculating that could be identified with theoretical guidance. The paper presents a theoretical study of a particular class of boundary and initial conditions. The flow of a viscous, electrically conductive fluid on a rotating plate in the presence of a magnetic field is considered. The fluid and the bounding plate rotate together with a constant angular velocity around an axis that is not perpendicular to the plane. The flow is induced by sudden longitudinal vibrations of the plate, injection (suction) of the medium through the plate, and an applied magnetic field directed normal to the plate. The full equation of magnetic induction is used, taking into account both the induction effect and energy dissipation due to the flow of electric currents. An analytical solution of three-dimensional magnetohydrodynamics equations in a half-space bounded by a plate is presented. The solution is given in the form of a superposition of plane waves propagating with certain wave numbers along the y-coordinate axis. For certain regions of system parameters, the vibration of the bounding plate does not cause waves in the media. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

23 pages, 7423 KiB  
Article
Crystal Plasticity Finite Element Study on Orientation Evolution and Deformation Inhomogeneity of Island Grain During the Ultra-Thin Strips Rolling of Grain Oriented Electrical Steel
by Huanzhu Wang, Ping Yang, Qingge Xie and Xinfu Gu
Materials 2024, 17(24), 6276; https://doi.org/10.3390/ma17246276 - 22 Dec 2024
Cited by 1 | Viewed by 915
Abstract
The presence of island grains in the initial finished sheets of grain-oriented electrical steel is inevitable in the preparation of ultra-thin strips. Owing to their distinctive shape and size effects, their deformation behavior during rolling differs from that of grain-oriented electrical steels of [...] Read more.
The presence of island grains in the initial finished sheets of grain-oriented electrical steel is inevitable in the preparation of ultra-thin strips. Owing to their distinctive shape and size effects, their deformation behavior during rolling differs from that of grain-oriented electrical steels of conventional thickness. This study focuses on the orientation evolution and deformation heterogeneity of island grains during rolling. Four types of island grains with orientations of {210}<001>, {110}<112>, {114}<481>, and {100}<021> were selected and modeled within the Goss-oriented matrix using full-field crystal plasticity finite element (CPFEM) simulation under plane strain compression. The results are then compared with corresponding experimental measurements. The results reveal that orientation rotation and grain fragmentation vary among the island grains of different orientations, with the first two orientations exhibiting more significant deformation heterogeneity compared to the latter two. Additionally, the orientations of the island grains significantly affect the distribution of residual Goss orientations within the surrounding matrix. Pancake-like island grains exhibit a higher degree of orientation scatter and greater deformation heterogeneity in the central layer compared to their spherical counterparts. The initial {210}<001> island grains can form a cube orientation, which can be optimized by subsequent process control to enhance magnetic properties. Full article
Show Figures

Figure 1

22 pages, 8086 KiB  
Article
Research on Structural Optimization and Excitation Control Method Using a Two-Dimensional OWPT System for Capsule Robots Based on Non-Equivalent Coils
by Wenwei Li, Pingping Jiang, Zhiwu Wang and Guozheng Yan
Micromachines 2024, 15(12), 1510; https://doi.org/10.3390/mi15121510 - 19 Dec 2024
Viewed by 837
Abstract
The rapid development of wireless power transfer (WPT) technology has provided new avenues for supplying continuous and stable power to capsule robots. In this article, we propose a two-dimensional omnidirectional wireless power transfer (OWPT) system, which enables power to be transmitted effectively in [...] Read more.
The rapid development of wireless power transfer (WPT) technology has provided new avenues for supplying continuous and stable power to capsule robots. In this article, we propose a two-dimensional omnidirectional wireless power transfer (OWPT) system, which enables power to be transmitted effectively in multiple spatial directions. This system features a three-dimensional transmitting structure with a Helmholtz coil and saddle coil pairs, combined with a one-dimensional receiving structure. This design provides sufficient internal space, accommodating patients of various body types. Based on the magnetic field calculation and finite element analysis, the saddle coil structure is optimized to enhance magnetic field uniformity; to achieve a two-dimensional rotating magnetic field, a phase difference control method for the excitation signal is developed through the analysis of circuit topology and quantitative synthesis of non-equivalent magnetic field vectors. Finally, an experimental prototype is built, and the experimental results show that the one-dimensional transmitting coil achieves a minimum received voltage stability of 94.5% across different positions. When the three-dimensional transmitting coils operate together, a two-dimensional rotating magnetic field in the plane is achieved at the origin, providing a minimum received power of 550 mW with a voltage fluctuation rate of 7.68%. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

22 pages, 6102 KiB  
Article
Thin Films of BaM Hexaferrite with an Inclined Orientation of the Easy Magnetization Axis: Crystal Structure and Magnetic Properties
by Boris Krichevtsov, Alexander Korovin, Vladimir Fedorov, Sergey Suturin, Aleksandr A. Levin, Andrey Telegin, Elena Balashova and Nikolai Sokolov
Nanomaterials 2024, 14(23), 1883; https://doi.org/10.3390/nano14231883 - 23 Nov 2024
Viewed by 1138
Abstract
Thin (~50 nm thick) BaM hexaferrite (BaFe12O19) films were grown on (1–102) and (0001) cut α-Al2O3 (sapphire) substrates via laser molecular beam epitaxy using a one- or two-stage growth protocol. The advantages of a two-stage protocol [...] Read more.
Thin (~50 nm thick) BaM hexaferrite (BaFe12O19) films were grown on (1–102) and (0001) cut α-Al2O3 (sapphire) substrates via laser molecular beam epitaxy using a one- or two-stage growth protocol. The advantages of a two-stage protocol are shown. The surface morphology, structural and magnetic properties of films were studied using atomic force microscopy, reflected high-energy electron diffraction, three-dimensional X-ray diffraction reciprocal space mapping, powder X-ray diffraction, magneto-optical, and magnetometric methods. Annealed BaFe12O19/Al2O3 (1–102) structures consist of close-packed islands epitaxially bonded to the substrate. The hexagonal crystallographic axis and the easy axis (EA) of the magnetization of the films are deflected from the normal to the film by an angle of φ~60°. The films exhibit magnetic hysteresis loops for both in-plane Hin-plane and out-of-plane Hout-of-plane magnetic fields. The shape of Mout-of-plane(Hin-plane) and Min-plane(Hin-plane) hysteresis loops strongly depends on the azimuth θ of the Hin plane, confirming the tilted orientation of the EA. The Mout-of-plane(Hout-of-plane) magnetization curves are caused by the reversible rotation of magnetization and irreversible magnetization jumps associated with the appearance and motion of domain walls. In the absence of a magnetic field, the magnetization is oriented at an angle close to φ. Full article
(This article belongs to the Special Issue Magnetization and Magnetic Disorder at the Nanoscale)
Show Figures

Figure 1

10 pages, 4742 KiB  
Article
Tellurium Photonic Crystal-Based Terahertz Polarization Splitter Using a Diamond-Shaped Ferrite Pillar Array
by Haiping Zhang, Zhifeng Zeng and Yong Wang
Crystals 2024, 14(12), 1015; https://doi.org/10.3390/cryst14121015 - 23 Nov 2024
Cited by 1 | Viewed by 1015
Abstract
A T-shaped photonic crystal waveguide was designed with square lattice tellurium photonic crystals. A diamond-shaped ferrite pillar array was inserted in the junction of the waveguide to make a novel terahertz polarization splitter. Both transverse electric and transverse magnetic modes were numerically investigated [...] Read more.
A T-shaped photonic crystal waveguide was designed with square lattice tellurium photonic crystals. A diamond-shaped ferrite pillar array was inserted in the junction of the waveguide to make a novel terahertz polarization splitter. Both transverse electric and transverse magnetic modes were numerically investigated by the plane wave expansion method, which used complete photonic band gaps covering from 0.138 THz to 0.144 THz. In this frequency domain of the fully polarized band gaps, the transmission efficiency of the photonic crystal waveguide was up to −0.21 dB and −1.67 dB for the transverse electric and transverse magnetic modes, respectively. Under the action of a DC magnetic field, the THz waves were rotated 90 degrees by the diamond-shaped ferrite pillar array. Transverse electric waves or transverse magnetic waves can be separated by a polarization isolator (six smaller tellurium rods) from the fixed waves. The characteristics of the designed polarization splitter were analyzed by the finite element method, and its transmission efficiency was optimized to 95 percent by fine-tuning the radii of the thirteen ferrite pillars. A future integrated communication network of sky–earth–space will require fully polarized devices in the millimeter and terahertz wavebands. The envisaged polarization splitter has a unique function and provides a promising method for the realization of fully polarized 6G devices. Full article
(This article belongs to the Special Issue Metamaterials and Their Devices)
Show Figures

Figure 1

18 pages, 4020 KiB  
Article
A Conjugate Linearly Polarized Light Wave Along an Optical Fiber with the Berry Phase Model and Its Magnetic Trajectories According to the Conjugate Frame
by Muhammed Talat Sariaydin
Symmetry 2024, 16(11), 1518; https://doi.org/10.3390/sym16111518 - 13 Nov 2024
Cited by 1 | Viewed by 1081
Abstract
In this article, we study how a linear polarized wave that is going along an optical fiber works, which is known not only as a curve on a Lie group but also as a rotation of the polarization plane. What we are trying [...] Read more.
In this article, we study how a linear polarized wave that is going along an optical fiber works, which is known not only as a curve on a Lie group but also as a rotation of the polarization plane. What we are trying to show in this article is that linear polarized light waves (PLWs) are related to the Berry phase. Moreover, we give magnetic curves created by N traveling in the electromagnetic trajectories and the optical fiber generated by the electric field N of the PLW moving through the optical fiber. With this described method, we present a mathematical model to conveniently generate the relationships between an optical fiber and the optical angular momentum in a three-dimensional Lie group. The conjugate frame we used in this article removes unnecessary bending around the tangent and enables a more dynamic characterization, which can still be applied even when the second derivative of the curve is zero. Full article
Show Figures

Figure 1

13 pages, 21084 KiB  
Article
Meron-Mediated Phase Transitions in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy: Successive Transformation of the Hexagonal Skyrmion Lattice into the Square Lattice and into the Tilted FM State
by Andrey O. Leonov
Nanomaterials 2024, 14(18), 1524; https://doi.org/10.3390/nano14181524 - 20 Sep 2024
Cited by 2 | Viewed by 1258
Abstract
I revisit the well-known structural transition between hexagonal and square skyrmion lattices and subsequent first-order phase transition into the tilted ferromagnetic state as induced by the increasing easy-plane anisotropy in quasi-two-dimensional chiral magnets. I show that the hexagonal skyrmion order first transforms into [...] Read more.
I revisit the well-known structural transition between hexagonal and square skyrmion lattices and subsequent first-order phase transition into the tilted ferromagnetic state as induced by the increasing easy-plane anisotropy in quasi-two-dimensional chiral magnets. I show that the hexagonal skyrmion order first transforms into a rhombic skyrmion lattice, which, adjusts into a perfect square arrangement of skyrmions (“a square meron-antimeron crystal”) within a narrow range of anisotropy values. These transitions are mediated by merons and anti-merons emerging in the boundaries between skyrmion cells; energetically unfavorable anti-merons annihilate, whereas pairs of neighboring merons merge. The tilted ferromagnetic state sets in via mutual annihilation of oppositely charged merons; as an outcome, it contains bimeron clusters (chains) with the attracting inter-soliton potential. Additionally, I demonstrate that domain-wall merons are actively involved in the dynamic response of the square skyrmion lattices. As an example, I theoretically study spin–wave modes and their excitations by AC magnetic fields. Two found resonance peaks are the result of the complex dynamics of the domain-wall merons; whereas in the high-frequency mode the merons rotate counterclockwise, as one might expect, in the low-frequency mode merons are instead created and annihilated consistently with the rotational motion of the domain boundaries. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

11 pages, 2723 KiB  
Article
Validity of Valor Inertial Measurement Unit for Upper and Lower Extremity Joint Angles
by Jacob Smith, Dhyey Parikh, Vincent Tate, Safeer Farrukh Siddicky and Hao-Yuan Hsiao
Sensors 2024, 24(17), 5833; https://doi.org/10.3390/s24175833 - 8 Sep 2024
Cited by 2 | Viewed by 2144
Abstract
Inertial measurement units (IMU) are increasingly utilized to capture biomechanical measures such as joint kinematics outside traditional biomechanics laboratories. These wearable sensors have been proven to help clinicians and engineers monitor rehabilitation progress, improve prosthesis development, and record human performance in a variety [...] Read more.
Inertial measurement units (IMU) are increasingly utilized to capture biomechanical measures such as joint kinematics outside traditional biomechanics laboratories. These wearable sensors have been proven to help clinicians and engineers monitor rehabilitation progress, improve prosthesis development, and record human performance in a variety of settings. The Valor IMU aims to offer a portable motion capture alternative to provide reliable and accurate joint kinematics when compared to industry gold standard optical motion capture cameras. However, IMUs can have disturbances in their measurements caused by magnetic fields, drift, and inappropriate calibration routines. Therefore, the purpose of this investigation is to validate the joint angles captured by the Valor IMU in comparison to an optical motion capture system across a variety of movements. Our findings showed mean absolute differences between Valor IMU and Vicon motion capture across all subjects’ joint angles. The tasks ranged from 1.81 degrees to 17.46 degrees, the root mean squared errors ranged from 1.89 degrees to 16.62 degrees, and interclass correlation coefficient agreements ranged from 0.57 to 0.99. The results in the current paper further promote the usage of the IMU system outside traditional biomechanical laboratories. Future examinations of this IMU should include smaller, modular IMUs with non-slip Velcro bands and further validation regarding transverse plane joint kinematics such as joint internal/external rotations. Full article
(This article belongs to the Special Issue Advanced Wearable Sensor for Human Movement Monitoring)
Show Figures

Figure 1

30 pages, 701 KiB  
Review
Dynamics of Fluids in the Cavity of a Rotating Body: A Review of Analytical Solutions
by Anatoly A. Gurchenkov and Ivan A. Matveev
Physics 2024, 6(1), 426-455; https://doi.org/10.3390/physics6010029 - 19 Mar 2024
Viewed by 3008
Abstract
Since the middle of the 20th century, an understanding of the diversity of the natural magnetohydrodynamic phenomena surrounding us has begun to emerge. Magnetohydrodynamic nature manifests itself in such seemingly heterogeneous processes as the flow of water in the world’s oceans, the movements [...] Read more.
Since the middle of the 20th century, an understanding of the diversity of the natural magnetohydrodynamic phenomena surrounding us has begun to emerge. Magnetohydrodynamic nature manifests itself in such seemingly heterogeneous processes as the flow of water in the world’s oceans, the movements of Earth’s liquid core, the dynamics of the solar magnetosphere and galactic electromagnetic fields. Their close relationship and multifaceted influence on human life are becoming more and more clearly revealed. The study of these phenomena requires the development of theory both fundamental and analytical, unifying a wide range of phenomena, and specialized areas that describe specific processes. The theory of translational fluid motion is well developed, but for most natural phenomena, this condition leads to a rather limited model. The fluid motion in the cavity of a rotating body such that the Coriolis forces are significant has been studied much less. A distinctive feature of the problems under consideration is their significant nonlinearity, (i.e., the absence of a linear approximation that allows one to obtain nontrivial useful results). From this point of view, the studies presented here were selected. This review presents studies on the movements of ideal and viscous fluids without taking into account electromagnetic phenomena (non-conducting, non-magnetic fluid) and while taking them into account (conducting fluid). Much attention is payed to the macroscopic movements of sea water (conducting liquid) located in Earth’s magnetic field, which spawns electric currents and, as a result, an induced magnetic field. Exploring the processes of generating magnetic fields in the moving turbulent flows of conducting fluid in the frame of dynamic systems with distributed parameters allows better understanding of the origin of cosmic magnetic fields (those of planets, stars, and galaxies). Various approaches are presented for rotational and librational movements. In particular, an analytical solution of three-dimensional unsteady magnetohydrodynamic equations for problems in a plane-parallel configuration is presented. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

12 pages, 280 KiB  
Article
The Quantum Hall Effect under the Influence of Gravity and Inertia: A Unified Approach
by Alexandre Landry, Fayçal Hammad and Reza Saadati
Universe 2024, 10(3), 136; https://doi.org/10.3390/universe10030136 - 13 Mar 2024
Cited by 1 | Viewed by 1766
Abstract
The quantum Hall effect under the influence of gravity and inertia is studied in a unified way. We make use of an algebraic approach, as opposed to an analytic approach. We examine how both the integer and the fractional quantum Hall effects behave [...] Read more.
The quantum Hall effect under the influence of gravity and inertia is studied in a unified way. We make use of an algebraic approach, as opposed to an analytic approach. We examine how both the integer and the fractional quantum Hall effects behave under a combined influence of gravity and inertia using a unified Hamiltonian. For that purpose, we first re-derive, using the purely algebraic method, the energy spectrum of charged particles moving in a plane perpendicular to a constant and uniform magnetic field either (i) under the influence of a nonlinear gravitational potential or (ii) under the influence of a constant rotation. The general Hamiltonian for describing the combined effect of gravity, rotation and inertia on the electrons of a Hall sample is then built and the eigenstates are obtained. The electrons mutual Coulomb interaction that gives rise to the familiar fractional quantum Hall effect is also discussed within such a combination. Full article
(This article belongs to the Section Gravitation)
14 pages, 2696 KiB  
Article
Analysis of Characteristics of the Electric Field Induced by an Angularly Rotating and Oscillating Magnetic Object
by Jiawei Zhang, Dawei Xiao, Taotao Xie and Qing Ji
Appl. Sci. 2024, 14(3), 1321; https://doi.org/10.3390/app14031321 - 5 Feb 2024
Viewed by 1456
Abstract
A mathematical model for an electric field induced by an angularly oscillating magnetic dipole was proposed with magnetic vector potential to analyze the characteristics of the electric field induced by a rotating and angularly oscillating magnetic object. This mathematical model was constructed for [...] Read more.
A mathematical model for an electric field induced by an angularly oscillating magnetic dipole was proposed with magnetic vector potential to analyze the characteristics of the electric field induced by a rotating and angularly oscillating magnetic object. This mathematical model was constructed for the electric field induced by a magnetic object oscillating at a certain angle. On this basis, the phase relationship among the three components of the induced electric field was analyzed (defining the right-hand Cartesian coordinate system). Evidently, a phase difference of π/2 always existed between the horizontal components of the electric field induced by a magnetic dipole rotating around the z-axis. The phase difference between the vertical and transverse components in the xz plane was also π/2. A phase difference of π was observed in the y–z plane. The above theoretical analysis was verified through simulation and experiment. The results showed that the frequency of the induced electric field was related to the angular velocity and angle of rotation. The amplitude was associated with the magnetic moment and the angular velocity and angle of oscillation. The maximum amplitude did not exceed the amplitude of the electric field induced by a magnetic object angularly oscillating at the same velocity. With regard to the amplitude and phase relationship, the three components of the induced electric field measured in the experiment were consistent with the results of the theoretical analysis. Full article
(This article belongs to the Special Issue Electromagnetic Detection Instruments and Signal Processing)
Show Figures

Figure 1

16 pages, 6143 KiB  
Article
Magnetostatic Simulation and Design of Novel Radiofrequency Coils Based on Transverse Field Current Elements for Magnetic Resonance Applications
by Giulio Giovannetti, Marcello Alecci and Angelo Galante
Sensors 2024, 24(1), 237; https://doi.org/10.3390/s24010237 - 31 Dec 2023
Cited by 2 | Viewed by 1589
Abstract
Radiofrequency (RF) coils are key components in Magnetic Resonance (MR) systems and can be categorized into volume and surface coils according to their shapes. Volume RF coils can generate a uniform field in a large central sample’s region, while surface RF coils, usually [...] Read more.
Radiofrequency (RF) coils are key components in Magnetic Resonance (MR) systems and can be categorized into volume and surface coils according to their shapes. Volume RF coils can generate a uniform field in a large central sample’s region, while surface RF coils, usually smaller than volume coils, typically have a higher Signal-to-Noise Ratio (SNR) in a reduced Region Of Interest (ROI) close to the coil plane but a relatively poorer field homogeneity. Circular and square loops are the simplest and most used design for developing axial field surface RF coils. However, for specific MR applications, the use of dedicated transverse field RF coils can be necessary or advantageous. Building on a previously developed and validated RF coil simulator, based on the magnetostatic approach, here we explore the potential applications of novel multiple axial field and transverse field surface RF coils in non-standard configurations. We demonstrate via numerical simulations that simple volume RF coils, matching a Helmholtz-like design, can be built with two identical transverse field RF coils separated by a given distance. Following well-known principles, the SNR of such novel configurations can be improved by a factor of up to √2 by combining two 90° rotated coils, producing, inside a central ROI, a circularly polarized B1 field. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

13 pages, 7155 KiB  
Article
Magnetic Anisotropy of FeNi Multilayer Films with Different Orientations of the Magnetic Anisotropy Axes in Adjacent Layers
by Andrey V. Svalov, Vladimir N. Lepalovskij, Anastasia S. Rusalina, Egor V. Kudyukov, Anastasia A. Feshchenko, Anna A. Pasynkova, Anton A. Yushkov and Galina V. Kurlyandskaya
Processes 2024, 12(1), 81; https://doi.org/10.3390/pr12010081 - 28 Dec 2023
Cited by 1 | Viewed by 2262
Abstract
FeNi films were prepared using the DC magnetron sputtering technique with an oblique deposition arrangement. Multilayers with different orientations of the magnetic anisotropy axes were obtained thanks to a rotary sample holder inside the vacuum chamber. Magnetic properties were studied using magneto–optical Kerr [...] Read more.
FeNi films were prepared using the DC magnetron sputtering technique with an oblique deposition arrangement. Multilayers with different orientations of the magnetic anisotropy axes were obtained thanks to a rotary sample holder inside the vacuum chamber. Magnetic properties were studied using magneto–optical Kerr microscopy and a vibrating sample magnetometer. Single-layered FeNi films having thicknesses as high as 10 nm and 40 nm show in-plane uniaxial easy magnetization axes produced by the oblique incidence of incoming components of the beams. Magnetic anisotropy field for four-layered samples with orthogonal uniaxial magnetic anisotropy axes in the adjacent layers and the thickness of individual layers of 10 nm and 40 nm turned out to be less than in single-layered films. The magnetic properties peculiarities of the eight-layered sample FeNi (10 nm) × 8 obtained by rotation of the sample holder by 45° before deposition of each subsequent layer suggest the formation of a helix-like magnetic structure through the thickness of the multilayered sample similar to the magnetization arrangement in the Bloch-type magnetic domain wall. Full article
(This article belongs to the Special Issue Surface Deposition and Nano-Film Fabrication Process)
Show Figures

Figure 1

Back to TopTop