Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = rosavins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7067 KiB  
Article
The Effect of Rosavin, a Characteristic Compound of Rhodiola rosea, on BMP-2 Induction and Osteoblast Proliferation In Vitro
by Piotr Wojdasiewicz, Edyta Wróbel, Krzysztof Stolarczyk, Elżbieta U. Stolarczyk, Agnieszka Mikulska and Dariusz Szukiewicz
Int. J. Mol. Sci. 2025, 26(13), 6075; https://doi.org/10.3390/ijms26136075 - 24 Jun 2025
Viewed by 519
Abstract
Rosavin, a glycoside isolated from Rhodiola rosea, exhibits various biological activities, including potential modulation of metabolic pathways. Despite promising findings in animal models, its effects on many human bone cells remain unexplored. This study aimed to investigate, for the first time, the [...] Read more.
Rosavin, a glycoside isolated from Rhodiola rosea, exhibits various biological activities, including potential modulation of metabolic pathways. Despite promising findings in animal models, its effects on many human bone cells remain unexplored. This study aimed to investigate, for the first time, the in vitro effects of rosavin on human osteoblasts (HOBs), focusing on BMP-2 expression, cell morphology, and culture confluence as indicators of osteogenic activity. HOB cultures were treated with 50 µM or 100 µM rosavin for 21 days. BMP-2 expression was measured by ELISA, collagen production was assessed via Sirius Red staining, and cell morphology and confluence were evaluated using phase-contrast microscopy. A significant increase in BMP-2 expression was observed in the 100 µM rosavin group compared to the mineralization control (p < 0.05), particularly on days 14 and 21. Both rosavin-treated groups exhibited higher confluence than controls, with the 50 µM group showing unexpectedly greater confluence than the 100 µM group. Rosavin at 50 µM also promoted a cuboidal morphology characteristic of active HOBs. The presence of collagen validated both the successful progression of the mineralization process and the correct implementation of the experimental protocol. Rosavin enhances BMP-2 expression and supports HOB proliferation and morphological maturation in vitro. These findings suggest its potential as a supportive agent in the prevention or treatment of metabolic bone diseases. Further research is necessary to determine its bioavailability, safety profile, and therapeutic relevance in clinical settings. Full article
(This article belongs to the Special Issue Medicinal Plants and Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

13 pages, 1024 KiB  
Review
The Role of Rosavin in the Pathophysiology of Bone Metabolism
by Piotr Wojdasiewicz, Paweł Turczyn, Anna Lach-Gruba, Łukasz A. Poniatowski, Daryush Purrahman, Mohammad-Reza Mahmoudian-Sani and Dariusz Szukiewicz
Int. J. Mol. Sci. 2024, 25(4), 2117; https://doi.org/10.3390/ijms25042117 - 9 Feb 2024
Cited by 10 | Viewed by 4966
Abstract
Rosavin, a phenylpropanoid in Rhodiola rosea’s rhizome, and an adaptogen, is known for enhancing the body’s response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin [...] Read more.
Rosavin, a phenylpropanoid in Rhodiola rosea’s rhizome, and an adaptogen, is known for enhancing the body’s response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin ring formation, and reduces the expression of osteoclastogenesis-related genes such as cathepsin K, calcitonin receptor (CTR), tumor necrosis factor receptor-associated factor 6 (TRAF6), tartrate-resistant acid phosphatase (TRAP), and matrix metallopeptidase 9 (MMP-9). It also impedes the nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), c-Fos, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways and blocks phosphorylation processes crucial for bone resorption. Moreover, rosavin promotes osteogenesis and osteoblast differentiation and increases mouse runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) expression. In vivo studies show its effectiveness in enhancing bone mineral density (BMD) in postmenopausal osteoporosis (PMOP) mice, restraining osteoclast maturation, and increasing the active osteoblast percentage in bone tissue. It modulates mRNA expressions by increasing eukaryotic translation elongation factor 2 (EEF2) and decreasing histone deacetylase 1 (HDAC1), thereby activating osteoprotective epigenetic mechanisms, and alters many serum markers, including decreasing cross-linked C-telopeptide of type I collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRACP5b), receptor activator for nuclear factor κ B ligand (RANKL), macrophage-colony-stimulating factor (M-CSF), and TRAP, while increasing alkaline phosphatase (ALP) and OCN. Additionally, when combined with zinc and probiotics, it reduces pro-osteoporotic matrix metallopeptidase 3 (MMP-3), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α), and enhances anti-osteoporotic interleukin 10 (IL-10) and tissue inhibitor of metalloproteinase 3 (TIMP3) expressions. This paper aims to systematically review rosavin’s impact on bone tissue metabolism, exploring its potential in osteoporosis prevention and treatment, and suggesting future research directions. Full article
Show Figures

Figure 1

24 pages, 15897 KiB  
Article
Rosavin Alleviates LPS-Induced Acute Lung Injure by Modulating the TLR-4/NF-κB/MAPK Singnaling Pathways
by Qiao-Hui Liu, Ke Zhang, Shu-Shu Feng, Li-Juan Zhang, Shun-Ying Li, Hang-Yu Wang and Jin-Hui Wang
Int. J. Mol. Sci. 2024, 25(3), 1875; https://doi.org/10.3390/ijms25031875 - 3 Feb 2024
Cited by 6 | Viewed by 2595
Abstract
Acute lung injury (ALI) is a serious inflammatory disease with high morbidity and mortality. Rosavin is an anti-inflammatory and antioxidant phenylpropanoid and glucoside, which is isolated from Rhodiola rosea L. However, its potential molecular mechanisms and whether it has protective effects against lipopolysaccharide [...] Read more.
Acute lung injury (ALI) is a serious inflammatory disease with high morbidity and mortality. Rosavin is an anti-inflammatory and antioxidant phenylpropanoid and glucoside, which is isolated from Rhodiola rosea L. However, its potential molecular mechanisms and whether it has protective effects against lipopolysaccharide (LPS)-induced ALI remain to be elucidated. To assess the in vitro anti-inflammatory effects and anti-lung injury activity of rosavin, RAW264.7 and A549 cells were stimulated using 1 μg/mL LPS. Rosavin attenuated LPS-induced activation of the TLR-4/NF-κB signaling pathway in RAW264.7 cells and inhibited LPS-induced release of inflammatory factors in A549 cells. A mouse model of acute lung injury was constructed by intraperitoneal injection of 5 mg/kg LPS to observe the therapeutic effect of rosavin. Transcriptomics analysis and Western blot assays were utilized to verify the molecular mechanism, rosavin (20, 40, and 80 mg/kg) dose-dependently ameliorated histopathological alterations, reduced the levels of inflammatory factors, and inhibited the TLR-4/NF-κB/MAPK signaling pathway and apoptosis activation. Rosavin is a promising therapeutic candidate for acute lung injury by inhibiting the TLR-4/NF-κB/MAPK pathway. Full article
(This article belongs to the Special Issue Natural Products and Synthetic Compounds for Drug Development)
Show Figures

Figure 1

15 pages, 1620 KiB  
Review
Rosavin: Research Advances in Extraction and Synthesis, Pharmacological Activities and Therapeutic Effects on Diseases of the Characteristic Active Ingredients of Rhodiola rosea L.
by Shen Wang, Yanmin Feng, Lin Zheng, Panfeng He, Jingyi Tan, Jinhui Cai, Minhua Wu and Xiaoxia Ye
Molecules 2023, 28(21), 7412; https://doi.org/10.3390/molecules28217412 - 3 Nov 2023
Cited by 14 | Viewed by 5319
Abstract
Rhodiola rosea L. (RRL) is a popular plant in traditional medicine, and Rosavin, a characteristic ingredient of RRL, is considered one of the most important active ingredients in it. In recent years, with deepening research on its pharmacological actions, the clinical application value [...] Read more.
Rhodiola rosea L. (RRL) is a popular plant in traditional medicine, and Rosavin, a characteristic ingredient of RRL, is considered one of the most important active ingredients in it. In recent years, with deepening research on its pharmacological actions, the clinical application value and demand for Rosavin have been steadily increasing. Various routes for the extraction and all-chemical or biological synthesis of Rosavin have been gradually developed for the large-scale production and broad application of Rosavin. Pharmacological studies have demonstrated that Rosavin has a variety of biological activities, including antioxidant, lipid-lowering, analgesic, antiradiation, antitumor and immunomodulation effects. Rosavin showed significant therapeutic effects on a range of chronic diseases, including neurological, digestive, respiratory and bone-related disorders during in vitro and vivo experiments, demonstrating the great potential of Rosavin as a therapeutic drug for diseases. This paper gives a comprehensive and insightful overview of Rosavin, focusing on its extraction and synthesis, pharmacological activities, progress in disease-treatment research and formulation studies, providing a reference for the production and preparation, further clinical research and applications of Rosavin in the future. Full article
Show Figures

Graphical abstract

17 pages, 2121 KiB  
Review
Phenolic Compounds of Rhodiola rosea L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases
by Jurga Bernatoniene, Valdas Jakstas and Dalia M. Kopustinskiene
Int. J. Mol. Sci. 2023, 24(15), 12293; https://doi.org/10.3390/ijms241512293 - 31 Jul 2023
Cited by 34 | Viewed by 13033
Abstract
The roots and rhizomes of Rhodiola rosea L. (Crassulaceae), which is widely growing in Northern Europe, North America, and Siberia, have been used since ancient times to alleviate stress, fatigue, and mental and physical disorders. Phenolic compounds: phenylpropanoids rosavin, rosarin, and rosin, tyrosol [...] Read more.
The roots and rhizomes of Rhodiola rosea L. (Crassulaceae), which is widely growing in Northern Europe, North America, and Siberia, have been used since ancient times to alleviate stress, fatigue, and mental and physical disorders. Phenolic compounds: phenylpropanoids rosavin, rosarin, and rosin, tyrosol glucoside salidroside, and tyrosol, are responsible for the biological action of R. rosea, exerting antioxidant, immunomodulatory, anti-aging, anti-fatigue activities. R. rosea extract formulations are used as alternative remedies to enhance mental and cognitive functions and protect the central nervous system and heart during stress. Recent studies indicate that R. rosea may be used to treat diabetes, cancer, and a variety of cardiovascular and neurological disorders such as Alzheimer’s and Parkinson’s diseases. This paper reviews the beneficial effects of the extract of R. rosea, its key active components, and their possible use in the treatment of chronic diseases. R. rosea represents an excellent natural remedy to address situations involving decreased performance, such as fatigue and a sense of weakness, particularly in the context of chronic diseases. Given the significance of mitochondria in cellular energy metabolism and their vulnerability to reactive oxygen species, future research should prioritize investigating the potential effects of R. rosea main bioactive phenolic compounds on mitochondria, thus targeting cellular energy supply and countering oxidative stress-related effects. Full article
(This article belongs to the Special Issue The Effect of Phenolic Compounds in Human Diseases)
Show Figures

Figure 1

17 pages, 2718 KiB  
Article
Individual Differences in Growth and in Accumulation of Secondary Metabolites in Rhodiola rosea Cultivated in Western Siberia
by Anna A. Erst, Olga V. Kotsupiy, Andrey S. Erst and Alexander A. Kuznetsov
Int. J. Mol. Sci. 2023, 24(14), 11244; https://doi.org/10.3390/ijms241411244 - 8 Jul 2023
Cited by 3 | Viewed by 2057
Abstract
In this study, growth parameters of underground parts and concentrations of phenylpropanoids, phenylethanoids, flavonoids, hydroxybenzoic acids, and catechins in aqueous–ethanol extracts of 6-year-old cultivated plants of Rhodiola rosea (propagated in vitro) of Altai Mountain origin were analyzed, and differences in chemical composition among [...] Read more.
In this study, growth parameters of underground parts and concentrations of phenylpropanoids, phenylethanoids, flavonoids, hydroxybenzoic acids, and catechins in aqueous–ethanol extracts of 6-year-old cultivated plants of Rhodiola rosea (propagated in vitro) of Altai Mountain origin were analyzed, and differences in chemical composition among plant specimens and between plant parts (rhizome and root) were evaluated. High-performance liquid chromatography detected 13 phenolic compounds. Roots contained 1.28 times higher phenylethanoids levels (1273.72 mg/100 g) than rhizomes did. Overall, the concentration of phenylethanoids in underground organs was not high and ranged from 21.36 to 103.00 mg/100 g. High variation among R. rosea individual plants was noted both in growth characteristics and in levels of secondary metabolites under our cultivation conditions. It was found that concentrations of phenylpropanoids, phenylethanoids, and catechins significantly depend on the plant part analyzed (p ≤ 0.05). Specimen No. 4 is characterized by the highest concentration of rosavins (1230.99 mg/plant) and the lowest concentration of cinnamyl alcohol (62.87 mg/plant). Despite the wide range of values, all 10 tested specimens (underground part) met the minimum requirements of the United States Pharmacopeia (2015) for rosavins (0.3%) and of the Russia State Pharmacopoeia (2015) for the average level of rosavins (roots): (1%). Full article
(This article belongs to the Special Issue Bioactive Phenolics and Polyphenols 2024)
Show Figures

Figure 1

16 pages, 3512 KiB  
Article
Bioactivity Profiles on 15 Different Effect Mechanisms for 15 Golden Root Products via High-Performance Thin-Layer Chromatography, Planar Assays, and High-Resolution Mass Spectrometry
by Hanna Nikolaichuk, Irena M. Choma and Gertrud E. Morlock
Molecules 2023, 28(4), 1535; https://doi.org/10.3390/molecules28041535 - 5 Feb 2023
Cited by 7 | Viewed by 3268
Abstract
Planar chromatography has recently been combined with six different effect-directed assays for three golden root (Rhodiola rosea L.) samples. However, the profiles obtained showed an intense tailing, making zone differentiation impossible. The profiling was therefore improved to allow for the detection of [...] Read more.
Planar chromatography has recently been combined with six different effect-directed assays for three golden root (Rhodiola rosea L.) samples. However, the profiles obtained showed an intense tailing, making zone differentiation impossible. The profiling was therefore improved to allow for the detection of individual bioactive compounds, and the range of samples was extended to 15 commercial golden root products. Further effect-directed assays were studied providing information on 15 different effect mechanisms, i.e., (1) tyrosinase, (2) acetylcholinesterase, (3) butyrylcholinesterase, (4) β-glucuronidase, and (5) α-amylase inhibition, as well as endocrine activity via the triplex planar yeast antagonist-verified (6–8) estrogen or (9–11) androgen screen, (12) genotoxicity via the planar SOS-Umu-C bioassay, antimicrobial activity against (13) Gram-negative Aliivibrio fischeri and (14) Gram-positive Bacillus subtilis bacteria, and (15) antioxidative activity (DPPH• radical scavengers). Most of the golden root profiles obtained were characteristic, but some samples differed substantially. The United States Pharmacopeia reference product showed medium activity in most of the assays. The six most active compound zones were further characterized using high-resolution mass spectrometry, and the mass signals obtained were tentatively assigned to molecular formulae. In addition to confirming the known activities, this study is the first to report that golden root constituents inhibit butyrylcholinesterase (rosin was tentatively assigned), β-glucuronidase (rosavin, rosarin, rosiridin, viridoside, and salidroside were tentatively assigned), and α-amylase (stearic acid and palmitic acid were tentatively assigned) and that they are genotoxic (hydroquinone was tentatively assigned) and are both agonistic and antagonistic endocrine active. Full article
(This article belongs to the Special Issue Chromatographic Screening of Natural Products)
Show Figures

Figure 1

18 pages, 4604 KiB  
Article
Application of Natural Deep Eutectic Solvents for Extraction of Bioactive Components from Rhodiola rosea (L.)
by Nikita Tsvetov, Oksana Paukshta, Nadezhda Fokina, Natalia Volodina and Artemiy Samarov
Molecules 2023, 28(2), 912; https://doi.org/10.3390/molecules28020912 - 16 Jan 2023
Cited by 13 | Viewed by 3550
Abstract
Rhodiola rosea (L.) is a valuable source of nutrients. Nutrients have adaptogenic, immunostimulating, nootropic, anti-inflammatory and anti-cancer properties. Natural deep eutectic solvents (NADES) consisting of choline chloride and malonic, malic, tartaric or citric acids have been first used to extract biologically active substances [...] Read more.
Rhodiola rosea (L.) is a valuable source of nutrients. Nutrients have adaptogenic, immunostimulating, nootropic, anti-inflammatory and anti-cancer properties. Natural deep eutectic solvents (NADES) consisting of choline chloride and malonic, malic, tartaric or citric acids have been first used to extract biologically active substances from R. rosea. The total content of polyphenols has been determined by the Folin–Ciocalteu method for all extracts. Antioxidant activity has been determined by the phosphomolybdate method, and antiradical activity has been determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Rosavin concentration has been determined by high-performance liquid chromatography (HPLC). Extraction kinetics has been evaluated regarding the effectiveness of NADES with each other and with reference solvents (water and 50% ethanol) has been made. Extraction conditions have been optimized according to the Box–Behnken design of the experiment. The optimal parameters of the extraction process have been established. The antibacterial activity of NADES-based extracts against bacterial cultures of Micrococcus luteus, Pseudomonas fluorescens, and Bacillus subtilis has been studied. Full article
Show Figures

Figure 1

10 pages, 1910 KiB  
Article
The Effect of Low Positive Temperatures on the Formation of Secondary Metabolites in Rhodiola quadrifida (Pall.) Fisch. et C.A. Mey. In Vitro Cultures
by Anna Y. Stepanova, Evgeny A. Gladkov, Dmitry V. Tereshonok, Renat N. Selimov, Elisaveta N. Goncharova and Aleksandra I. Solov’eva
Processes 2023, 11(1), 28; https://doi.org/10.3390/pr11010028 - 23 Dec 2022
Cited by 1 | Viewed by 1918
Abstract
Global warming is one of the most serious problems leading to changes in the distribution areas of species and biodiversity. Rhodiola quadrifida is a rare plant with adaptogenic properties and grows in the highlands in a narrow temperature range of 2–15 °C. The [...] Read more.
Global warming is one of the most serious problems leading to changes in the distribution areas of species and biodiversity. Rhodiola quadrifida is a rare plant with adaptogenic properties and grows in the highlands in a narrow temperature range of 2–15 °C. The aim of our work was to study the growth and content of the main metabolites in two in vitro cultures of Rhodiola quadrifida at temperatures of 5, 15 and 25 °C. Hairy roots and calli were cultivated on agar medium for 28 days. The maximum values of the growth index were observed at 25 °C (2.32 and 2.12 for calli and hairy roots, respectively). HPLC-MS showed the absence of tyrosol and rosarin in both cultures, and rosin in the root culture. The content of salidroside changed slightly in calli and roots. Cultivation at 5 °C significantly stimulated the formation of rosin in calli. Only a residual amount of rosavin was noted in the roots, regardless of temperature. The content of rosin was higher in calli at 15 °C with a maximum content at the end of the cultivation cycle 25 µg/g DW. Thus, Rhodiola quadrifida will be able to grow with an increase in temperature by 10 °C but this will be accompanied by a significant reduction in its medicinal value Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

11 pages, 2867 KiB  
Article
Qualitative and Quantitative Evaluation of Rosavin, Salidroside, and p-Tyrosol in Artic Root Products via TLC-Screening, HPLC-DAD, and NMR Spectroscopy
by Hanna Nikolaichuk, Marek Studziński, Marek Stankevič and Irena M. Choma
Molecules 2022, 27(23), 8299; https://doi.org/10.3390/molecules27238299 - 28 Nov 2022
Cited by 2 | Viewed by 2608
Abstract
Artic root is a well-known plant adaptogen with multipotential pharmacological properties. Thin-layer chromatography (TLC)—screening followed by diode-array high-performance liquid chromatography and nuclear magnetic resonance spectroscopy proved to be a reliable and convenient method for the simultaneous determination of the quality of various herbal [...] Read more.
Artic root is a well-known plant adaptogen with multipotential pharmacological properties. Thin-layer chromatography (TLC)—screening followed by diode-array high-performance liquid chromatography and nuclear magnetic resonance spectroscopy proved to be a reliable and convenient method for the simultaneous determination of the quality of various herbal raw materials and supplements. This combination allowed for comparing and differentiating arctic root samples as well as defining their authenticity. The study provided information on the chemical and biological properties of the seven chosen samples as well as qualitative and quantitative evaluation of the quality markers: rosavin, salidroside, and p-tyrosol. The absence of rosavin, salidroside, and p-tyrosol in three samples was detected using TLC screening and confirmed by HPLC-DAD and NMR. The paper highlighted the importance of quality control and strict regulation for herbal medicine supplements and preparations. Full article
(This article belongs to the Special Issue Chromatographic Science of Natural Products III)
Show Figures

Graphical abstract

22 pages, 4151 KiB  
Article
Chemical Profiling and Biological Activity of Extracts from Nine Norwegian Medicinal and Aromatic Plants
by Rune Slimestad, Amritha Johny, Mette Goul Thomsen, Christian Renè Karlsen and Jan Thomas Rosnes
Molecules 2022, 27(21), 7335; https://doi.org/10.3390/molecules27217335 - 28 Oct 2022
Cited by 13 | Viewed by 4414
Abstract
There is an increased interest in identifying beneficial compounds of plant origin that can be added to animal diets to improve animal performance and have a health-promoting effect. In the present study, nine herb species of the Norwegian wild flora or which can [...] Read more.
There is an increased interest in identifying beneficial compounds of plant origin that can be added to animal diets to improve animal performance and have a health-promoting effect. In the present study, nine herb species of the Norwegian wild flora or which can be cultivated in Norway were selected for phytogenic evaluation (hops, maral root, mint, oregano, purslane, rosemary, roseroot, sweet wormwood, yarrow). Dried herbs were sequentially extracted with dichloromethane (DCM), ethanol (EtOH) and finally water (H2O) by ultrasound-assisted extraction (UAE). The UAE protocol was found to be more rational than conventional Soxhlet with respect to DCM extraction. Total extraction yield was found to be highest for oregano (Origanum vulgare) with 34.4 g 100−1 g dry matter (DM). H2O-extracts gave the highest yields of the three solvents, with up to 25 g 100−1 g DM for purslane (Portulaca oleracea ssp. sativa) and mint (Mentha piperita). EtOH- and H2O-extracts were the most efficient extracts with respect to free radical scavenging capacity (ABTS (=2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), and oregano, mint, hops (Humulus lupulus) and maral root-leaves (Leuzea carthamoides) were found to be the most efficient antioxidant sources. Hops (EtOH-extract) contained α- and β-acids, xanthohumols, chlorogenic acid and the hitherto unreported 3-O-glucosides of kaempferol and quercetin. Maral root-leaves contained among other compounds hexosides of the 6-hydroxy- and 6-methoxy-kaempferol and -quercetin, whereas roseroot (Rosea rhodiola) revealed contents of rosavin, rhodiosin and rhodionin. Sweet wormwood (Artemisia annua) contained chlorogenic acid and several derivatives thereof, scopoletin and poly-methylated flavones (eupatin, casticin, chrysoplenetin). Antimicrobial potential of different plant extracts was demonstrated against Gram-positive and Gram-negative bacteria using the indicator organisms Staphylococcus aureus, and Escherichia coli, and the Atlantic salmon bacterial pathogens Moritella viscosa, Tenacibaculum finnmarkense and Aliivibrio wodanis. DCM extracts possessed the highest activities. Data demonstrate the potential ability of herb extracts as natural antimicrobials. However, future safety studies should be performed to elucidate any compromising effect on fish health. Full article
Show Figures

Figure 1

13 pages, 1537 KiB  
Article
Rhodiola rosea Reduces Intercellular Signaling in Campylobacter jejuni
by Ajda Kunčič, Franz Bucar and Sonja Smole Možina
Antibiotics 2022, 11(9), 1220; https://doi.org/10.3390/antibiotics11091220 - 8 Sep 2022
Cited by 8 | Viewed by 2464
Abstract
Campylobacter jejuni is a major foodborne pathogen and the leading cause of bacterial gastroenteritis, i.e., campylobacteriosis. Besides searching for novel antimicrobials, identification of new targets for their action is becoming increasingly important. Rhodiola rosea has long been used in traditional medicine. Ethanolic extracts [...] Read more.
Campylobacter jejuni is a major foodborne pathogen and the leading cause of bacterial gastroenteritis, i.e., campylobacteriosis. Besides searching for novel antimicrobials, identification of new targets for their action is becoming increasingly important. Rhodiola rosea has long been used in traditional medicine. Ethanolic extracts from the roots and rhizomes of the plant contain a wide range of bioactive compounds with various pharmacological activities. In this study, cultivated plant materials have been used, i.e., “Mattmark” and “Rosavine”. Through optimized protocols, we obtained fractions of the initial ethanolic extracts rich in most important bioactive compounds from R. rosea, including salidroside, rosavins, proanthocyanidins (PACs), and flavonoids. The antimicrobial activity in relation to the chemical composition of the extracts and their fractions was studied with an emphasis on C. jejuni AI-2-mediated intercellular signaling. At concentration 15.625 mg/L, bioluminescence reduction rates varied from 27% to 72%, and the membrane remained intact. Fractions rich in PACs had the strongest antimicrobial effect against C. jejuni, with the lowest minimal inhibitory concentrations (MICs) (M F3 40%: 62.5 mg/L; R F3 40%: 250 mg/L) and the highest intercellular signaling reduction rates (M F3 40%: 72%; R F3 40%: 65%). On the other hand, fractions without PACs were less effective (MICs: M F5 PVP: 250 mg/L; R F5 PVP: 1000 mg/L and bioluminescence reduction rates: M F5 PVP: 27%; R F5 PVP: 43%). Additionally, fractions rich in flavonoids had strong antimicrobial activity (MICs: M F4 70%: 125 mg/L; R F4 70%: 250 mg/L and bioluminescence reduction rates: M F4 70%: 68%; R F4 70%: 50%). We conclude that PACs and flavonoids are crucial compound groups responsible for the antimicrobial activity of R. rosea roots and rhizomes in C. jejuni. Full article
Show Figures

Figure 1

19 pages, 7184 KiB  
Article
Rosavin Ameliorates Hepatic Inflammation and Fibrosis in the NASH Rat Model via Targeting Hepatic Cell Death
by Reda Albadawy, Amany Helmy Hasanin, Sara H. A. Agwa, Shaimaa Hamady, Yasmin M. Aboul-Ela, Mona Hussien Raafat, Samaa Samir Kamar, Mohamed Othman, Yahia A. Yahia and Marwa Matboli
Int. J. Mol. Sci. 2022, 23(17), 10148; https://doi.org/10.3390/ijms231710148 - 5 Sep 2022
Cited by 18 | Viewed by 4296
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease that urgently needs effective therapy. Rosavin, a major constituent of the Rhodiola Rosea plant of the family Crassulaceae, is believed to exhibit multiple pharmacological effects on diverse diseases. [...] Read more.
Background: Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic liver disease that urgently needs effective therapy. Rosavin, a major constituent of the Rhodiola Rosea plant of the family Crassulaceae, is believed to exhibit multiple pharmacological effects on diverse diseases. However, its effect on non-alcoholic steatohepatitis (NASH), the progressive form of NAFLD, and the underlying mechanisms are not fully illustrated. Aim: Investigate the pharmacological activity and potential mechanism of rosavin treatment on NASH management via targeting hepatic cell death-related (HSPD1/TNF/MMP14/ITGB1) mRNAs and their upstream noncoding RNA regulators (miRNA-6881-5P and lnc-SPARCL1-1:2) in NASH rats. Results: High sucrose high fat (HSHF) diet-induced NASH rats were treated with different concentrations of rosavin (10, 20, and 30 mg/kg/day) for the last four weeks of dietary manipulation. The data revealed that rosavin had the ability to modulate the expression of the hepatic cell death-related RNA panel through the upregulation of both (HSPD1/TNF/MMP14/ITGB1) mRNAs and their epigenetic regulators (miRNA-6881-5P and lnc-SPARCL1-1:2). Moreover, rosavin ameliorated the deterioration in both liver functions and lipid profile, and thereby improved the hepatic inflammation, fibrosis, and apoptosis, as evidenced by the decreased protein levels of IL6, TNF-α, and caspase-3 in liver sections of treated animals compared to the untreated NASH rats. Conclusion: Rosavin has demonstrated a potential ability to attenuate disease progression and inhibit hepatic cell death in the NASH animal model. The produced effect was correlated with upregulation of the hepatic cell death-related (HSPD1, TNF, MMP14, and ITGB1) mRNAs—(miRNA-6881-5P—(lnc-SPARCL1-1:2) RNA panel. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 4771 KiB  
Article
Optimization of Biomass Accumulation and Production of Phenolic Compounds in Callus Cultures of Rhodiola rosea L. Using Design of Experiments
by Anna A. Erst, Anastasia A. Petruk, Andrey S. Erst, Denis A. Krivenko, Nadezhda V. Filinova, Svetlana Y. Maltseva, Maxim S. Kulikovskiy and Evgeny V. Banaev
Plants 2022, 11(1), 124; https://doi.org/10.3390/plants11010124 - 2 Jan 2022
Cited by 14 | Viewed by 4073
Abstract
Rhodiola rosea L. is a valuable medicinal plant with adaptogenic, neuroprotective, antitumor, cardioprotective, and antidepressant effects. In this study, design of experiments methodology was employed to analyze and optimize the interacting effects of mineral compounds (concentration of NO3 and the ratio [...] Read more.
Rhodiola rosea L. is a valuable medicinal plant with adaptogenic, neuroprotective, antitumor, cardioprotective, and antidepressant effects. In this study, design of experiments methodology was employed to analyze and optimize the interacting effects of mineral compounds (concentration of NO3 and the ratio of NH4+ to K+) and two plant growth regulators [total 6-benzylaminopurine (BAP) and α-naphthylacetic acid (NAA) concentration and the ratio of BAP to NAA] on the growth and the production of total phenolic compounds (TPCs) in R. rosea calluses. The overall effect of the model was highly significant (p < 0.0001), indicating that NH4+, K+, NO3, BAP, and NAA significantly affected growth. The best callus growth (703%) and the highest production of TPCs (75.17 mg/g) were achieved at an NH4+/K+ ratio of 0.33 and BAP/NAA of 0.33, provided that the concentration of plant growth regulators was 30 μM and that of NO3 was ≤40 mM. According to high-performance liquid chromatography analyses of aerial parts (leaves and stems), in vitro seedlings and callus cultures of R. rosea contain no detectable rosarin, rosavin, rosin, and cinnamyl alcohol. This is the first report on the creation of an experiment for the significant improvement of biomass accumulation and TPC production in callus cultures of R. rosea. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Secondary Metabolites Production)
Show Figures

Figure 1

9 pages, 1093 KiB  
Article
Enhancing the Accumulation of Rosavins in Rhodiola rosea L. Plants Grown In Vitro by Precursor Feeding
by Aaqib Javid, Nóra Gampe, Fulea Gelana and Zsuzsanna György
Agronomy 2021, 11(12), 2531; https://doi.org/10.3390/agronomy11122531 - 13 Dec 2021
Cited by 9 | Viewed by 4167
Abstract
Rhodiola rosea produces nearly 150 bioactive compounds. Cinnamyl alcohol glycosides (CAGs) are among the most important secondary metabolites which are specific to this plant species, exhibiting adaptogenic properties along with salidroside. However, raw material supplies for the pharmaceutical industry are hindered by limited [...] Read more.
Rhodiola rosea produces nearly 150 bioactive compounds. Cinnamyl alcohol glycosides (CAGs) are among the most important secondary metabolites which are specific to this plant species, exhibiting adaptogenic properties along with salidroside. However, raw material supplies for the pharmaceutical industry are hindered by limited access to the plant material. The species is endangered and protected in many areas: cultivation is long and ineffective. Precursor feeding has been found to be an effective strategy for improving the production of secondary metabolites in various plant tissues cultures, including in Rhodiola species. In this study, whole R. rosea plants grown in vitro were subjected to three different precursor treatments, including with trans-cinnamic acid, cinnamaldehyde and cinnamyl alcohol at 2 mM concentrations. The different treatments affected the secondary metabolite production differently. Trans-cinnamic acid did not affect the synthesis significantly, which contradicts earlier studies with cell suspensions. On the other hand, cinnamyl alcohol and cinnamaldehyde were beneficial, improving the production rate of rosin and rosavin by 13.8- and 6.9-fold, and 92.7- and 8.0-fold, respectively. The significant improvement in CAG accumulation due to cinnamaldehyde treatment was unexpected based on previous studies. In addition, cinnamaldehyde triggered the production of rosarin, which the other two treatments failed to do. The study presents the beneficial application of precursors to whole plants grown in vitro. Full article
(This article belongs to the Special Issue Medicinal Plants—Natural Sources of Bioactive Secondary Metabolites)
Show Figures

Figure 1

Back to TopTop