Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = ribonuclease inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2984 KiB  
Article
Design, Synthesis and Biological Evaluation of 3-Hydrazonoindolin-2-one Derivatives as Novel HIV-1 RNase H Inhibitors
by Yiying Zhang, Rao Wang, Yueyue Bu, Angela Corona, Laura Dettori, Enzo Tramontano, Christophe Pannecouque, Erik De Clercq, Shuai Wang, Ge Meng and Fen-Er Chen
Molecules 2025, 30(9), 1868; https://doi.org/10.3390/molecules30091868 - 22 Apr 2025
Viewed by 692
Abstract
Targeting ribonuclease H (RNase H) has emerged as a highly promising strategy for treating HIV-1. In this study, a series of novel 3-hydrazonoindolin-2-one derivatives were designed and synthesized as potential inhibitors of HIV-1 RNase H. Notably, several of these derivatives displayed micromolar inhibitory [...] Read more.
Targeting ribonuclease H (RNase H) has emerged as a highly promising strategy for treating HIV-1. In this study, a series of novel 3-hydrazonoindolin-2-one derivatives were designed and synthesized as potential inhibitors of HIV-1 RNase H. Notably, several of these derivatives displayed micromolar inhibitory activity. Among the compounds examined, the hit compound demonstrated potent inhibition of HIV-1 RNase H, boasting a Ki value of 2.31 μM. Additionally, the most potent compound of this general structure exhibited remarkable inhibitory activity, with Ki values of 0.55 μM. Through docking studies, the key interactions of this ligand within the active site of RNase H were uncovered. This novel chemical structure can be regarded as a prospective scaffold for the future development of RNase H inhibitors. Full article
(This article belongs to the Special Issue Synthesis and Evaluation of Bioactivity of Enzyme Inhibitors)
Show Figures

Graphical abstract

21 pages, 6008 KiB  
Article
The Potential Impact of Edible Fruit Extracts on Bacterial Nucleases in Preliminary Research—In Silico and In Vitro Insight
by Łukasz Szeleszczuk, Malwina Brożyna, Bartłomiej Dudek, Marcin Czarnecki, Adam Junka and Monika E. Czerwińska
Int. J. Mol. Sci. 2025, 26(4), 1757; https://doi.org/10.3390/ijms26041757 - 19 Feb 2025
Viewed by 695
Abstract
The extracts from fruits of Chaenomeles japonica (Thunb.) Lindl. ex Spach (CJE), Cornus mas L. (CME), and Hippophaё rhamnoides L. (HRE) are known inhibitors of a variety of eukaryotic hydrolases, engaged in the digestion of fats and polysaccharides. However, there are no data [...] Read more.
The extracts from fruits of Chaenomeles japonica (Thunb.) Lindl. ex Spach (CJE), Cornus mas L. (CME), and Hippophaё rhamnoides L. (HRE) are known inhibitors of a variety of eukaryotic hydrolases, engaged in the digestion of fats and polysaccharides. However, there are no data on their potential interaction with the bacterial hydrolases participating in the replication of microbial nucleic acids. This analysis predicted the interaction of the most abundant constituents of HRE, CJE, and CME with the bacterial nucleases. The analysis covered the molecular docking of isorhamnetin glycosides, procyanidins C1 and B2, epicatechin, loganic acid, and cornuside with bacterial enzymes (Escherichia coli endonuclease 1, colicin E9, and ribonuclease H; or Staphylococcus aureus thermonuclease and nuclease SbcCD). The suggested complexes have been subjected to molecular mechanics with generalized Born and surface area solvation (MM/GBSA) calculations. The second aim was the in vitro evaluation of the influence of the CJE, HRE, and CME on the metabolic activity of bacterial biofilm of selected microbial strains, as well as fibroblasts (L929) and adenocarcinoma intestinal cells (Caco-2) toxicity. Among all extracts, CME showed the most relevant effect on the survival of planktonic cells and biofilm of E. coli and Pseudomonas aeruginosa. As a result of in silico studies, most virtual hits were predicted to inhibit the proteins under investigation, except for procyanidin C1. Further research on the direct interaction of phytochemicals and selected enzymes in vitro is required and challenged. Full article
(This article belongs to the Special Issue Antimicrobial Agents and Resistance Mechanisms)
Show Figures

Figure 1

32 pages, 7557 KiB  
Review
Potential Broad-Spectrum Antiviral Agents: A Key Arsenal Against Newly Emerging and Reemerging Respiratory RNA Viruses
by Quynh Xuan Thi Luong, Phuong Thi Hoang, Phuong Thi Ho, Ramadhani Qurrota Ayun, Taek Kyun Lee and Sukchan Lee
Int. J. Mol. Sci. 2025, 26(4), 1481; https://doi.org/10.3390/ijms26041481 - 10 Feb 2025
Cited by 7 | Viewed by 3496
Abstract
Respiratory viral infections present significant global health challenges, causing substantial morbidity and mortality, particularly among highly susceptible components of the population. The emergence of pandemics and epidemics, such as those caused by influenza viruses and coronaviruses, emphasizes the urgent need for effective antiviral [...] Read more.
Respiratory viral infections present significant global health challenges, causing substantial morbidity and mortality, particularly among highly susceptible components of the population. The emergence of pandemics and epidemics, such as those caused by influenza viruses and coronaviruses, emphasizes the urgent need for effective antiviral therapeutics. In this review, we explore the potential of broad-spectrum antiviral agents targeting respiratory RNA viruses, including influenza viruses, coronaviruses, respiratory syncytial virus, human metapneumovirus, human parainfluenza viruses, and rhinoviruses. Various broad-spectrum direct-acting and host-targeting antivirals are discussed, including monoclonal antibodies targeting conserved regions of viral surface proteins, molecules interfering with host cell receptors or viral replication machinery, viral protease inhibitors, siRNA therapies, ribonuclease, and 3D8 scFv. Advancements in host-targeting approaches to reduce resistance and RNA-based therapeutics offer significant potential for combating respiratory viral threats. Despite challenges, broad-spectrum antiviral agents represent a crucial strategy, particularly when specific viral pathogens are unidentified or rapid intervention is essential, such as during pandemics or outbreaks. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

24 pages, 4500 KiB  
Article
Identification of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Inhibitors Based on 2-Hydroxy-1,4-naphthoquinone Mannich Bases
by Nhat Quang Tu, Clémence Richetta, Federica Putzu, Olivier Delelis, Khursheed Ahmed, Vijay H. Masand, Rainer Schobert, Enzo Tramontano, Angela Corona and Bernhard Biersack
Molecules 2025, 30(3), 495; https://doi.org/10.3390/molecules30030495 - 23 Jan 2025
Viewed by 1417
Abstract
There is a strong demand for new and efficient antiviral compounds. A series of 2-hydroxy-1,4-naphthoquinone Mannich bases were screened for their HIV-1-RNase H inhibitory activity. An HIV-1-RNase H assay was used to study the RNase H inhibition by the test compounds. Docking of [...] Read more.
There is a strong demand for new and efficient antiviral compounds. A series of 2-hydroxy-1,4-naphthoquinone Mannich bases were screened for their HIV-1-RNase H inhibitory activity. An HIV-1-RNase H assay was used to study the RNase H inhibition by the test compounds. Docking of active derivatives into the active site of the enzyme was carried out. Compounds 1e and 2k showed distinctly higher HIV-1-RNase H inhibitory activity (IC50 = 2.8–3.1 µM) than the known inhibitors RDS1759 and compound 13. The binding mode and possible interactions of 1e and 2k with the HIV-1-RNase H active site were determined using molecular docking, which led to the identification of salient and concealed pharmacophoric features of these molecules. The docking analysis revealed that there are significant differences in the binding mode of these compounds within the active site of the target enzyme. A selection of HIV-1-RNase H-inhibitory Mannich bases was tested for antiviral activity against HIV-1, and compound 2k showed the highest activity at low toxicity to host cells. The lawsone Mannich bases 1e and 2k also underwent a preliminary screening for activity against SARS-CoV-2, and compound 1e was found to inhibit SARS-CoV-2 replication (IC50 = 11.2 µM). Full article
Show Figures

Figure 1

9 pages, 6587 KiB  
Communication
Discovery of Substituted 5-(2-Hydroxybenzoyl)-2-Pyridone Analogues as Inhibitors of the Human Caf1/CNOT7 Ribonuclease
by Ishwinder Kaur, Gopal P. Jadhav, Peter M. Fischer and Gerlof Sebastiaan Winkler
Molecules 2024, 29(18), 4351; https://doi.org/10.3390/molecules29184351 - 13 Sep 2024
Viewed by 1408
Abstract
The Caf1/CNOT7 nuclease is a catalytic component of the Ccr4-Not deadenylase complex, which is a key regulator of post-transcriptional gene regulation. In addition to providing catalytic activity, Caf1/CNOT7 and its paralogue Caf1/CNOT8 also contribute a structural function by mediating interactions between the large, [...] Read more.
The Caf1/CNOT7 nuclease is a catalytic component of the Ccr4-Not deadenylase complex, which is a key regulator of post-transcriptional gene regulation. In addition to providing catalytic activity, Caf1/CNOT7 and its paralogue Caf1/CNOT8 also contribute a structural function by mediating interactions between the large, non-catalytic subunit CNOT1, which forms the backbone of the Ccr4-Not complex and the second nuclease subunit Ccr4 (CNOT6/CNOT6L). To facilitate investigations into the role of Caf1/CNOT7 in gene regulation, we aimed to discover and develop non-nucleoside inhibitors of the enzyme. Here, we disclose that the tri-substituted 2-pyridone compound 5-(5-bromo-2-hydroxy-benzoyl)-1-(4-chloro-2-methoxy-5-methyl-phenyl)-2-oxo-pyridine-3-carbonitrile is an inhibitor of the Caf1/CNOT7 nuclease. Using a fluorescence-based nuclease assay, the activity of 16 structural analogues was determined, which predominantly explored substituents on the 1-phenyl group. While no compound with higher potency was identified among this set of structural analogues, the lowest potency was observed with the analogue lacking substituents on the 1-phenyl group. This indicates that substituents on the 1-phenyl group contribute significantly to binding. To identify possible binding modes of the inhibitors, molecular docking was carried out. This analysis suggested that the binding modes of the five most potent inhibitors may display similar conformations upon binding active site residues. Possible interactions include π-π interactions with His225, hydrogen bonding with the backbone of Phe43 and Van der Waals interactions with His225, Leu209, Leu112 and Leu115. Full article
Show Figures

Graphical abstract

18 pages, 4596 KiB  
Article
Ribonuclease Inhibitor 1 (RNH1) Regulates Sperm tsRNA Generation for Paternal Inheritance through Interacting with Angiogenin in the Caput Epididymis
by Zhuoyao Ma, Ningyuan Tang, Ruiyan Zhang, Hanyu Deng, Kexin Chen, Yue Liu and Zhide Ding
Antioxidants 2024, 13(8), 1020; https://doi.org/10.3390/antiox13081020 - 22 Aug 2024
Cited by 1 | Viewed by 1691
Abstract
Environmental stressors can induce paternal epigenetic modifications that are a key determinant of the intergenerational inheritance of acquired phenotypes in mammals. Some of them can affect phenotypic expression through inducing changes in tRNA-derived small RNAs (tsRNAs), which modify paternal epigenetic regulation in sperm. [...] Read more.
Environmental stressors can induce paternal epigenetic modifications that are a key determinant of the intergenerational inheritance of acquired phenotypes in mammals. Some of them can affect phenotypic expression through inducing changes in tRNA-derived small RNAs (tsRNAs), which modify paternal epigenetic regulation in sperm. However, it is unclear how these stressors can affect changes in the expression levels of tsRNAs and their related endonucleases in the male reproductive organs. We found that Ribonuclease inhibitor 1 (RNH1), an oxidation responder, interacts with ANG to regulate sperm tsRNA generation in the mouse caput epididymis. On the other hand, inflammation and oxidative stress induced by either lipopolysaccharide (LPS) or palmitate (PA) treatments weakened the RNH1-ANG interaction in the epididymal epithelial cells (EEC). Accordingly, ANG translocation increased from the nucleus to the cytoplasm, which led to ANG upregulation and increases in cytoplasmic tsRNA expression levels. In conclusion, as an antioxidant, RNH1 regulates tsRNA generation through targeting ANG in the mouse caput epididymis. Moreover, the tsRNA is an epigenetic factor in sperm that modulates paternal inheritance in offspring via the fertilization process. Full article
(This article belongs to the Special Issue Oxidative and Nitrosative Stress in Male Reproduction)
Show Figures

Figure 1

19 pages, 2771 KiB  
Article
The Influence of Chitosan Derivatives in Combination with Bacillus subtilis Bacteria on the Development of Systemic Resistance in Potato Plants with Viral Infection and Drought
by Liubov Yarullina, Joanna Kalatskaja, Vyacheslav Tsvetkov, Guzel Burkhanova, Ninel Yalouskaya, Katerina Rybinskaya, Evgenia Zaikina, Ekaterina Cherepanova, Kseniya Hileuskaya and Viktoryia Nikalaichuk
Plants 2024, 13(16), 2210; https://doi.org/10.3390/plants13162210 - 9 Aug 2024
Cited by 5 | Viewed by 1902
Abstract
Viral diseases of potatoes are among the main problems causing deterioration in the quality of tubers and loss of yield. The growth and development of potato plants largely depend on soil moisture. Prevention strategies require comprehensive protection against pathogens and abiotic stresses, including [...] Read more.
Viral diseases of potatoes are among the main problems causing deterioration in the quality of tubers and loss of yield. The growth and development of potato plants largely depend on soil moisture. Prevention strategies require comprehensive protection against pathogens and abiotic stresses, including modeling the beneficial microbiome of agroecosystems combining microorganisms and immunostimulants. Chitosan and its derivatives have great potential for use in agricultural engineering due to their ability to induce plant immune responses. The effect of chitosan conjugate with caffeic acid (ChCA) in combination with Bacillus subtilis 47 on the transcriptional activity of PR protein genes and changes in the proteome of potato plants during potato virus Y (PVY) infection and drought was studied. The mechanisms of increasing the resistance of potato plants to PVY and lack of moisture are associated with the activation of transcription of genes encoding PR proteins: the main protective protein (PR-1), chitinase (PR-3), thaumatin-like protein (PR-5), protease inhibitor (PR-6), peroxidase (PR-9), and ribonuclease (PR-10), as well as qualitative and quantitative changes in the plant proteome. The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of combined treatment with B. subtilis and chitosan conjugate indicate that, in potato plants, the formation of resistance to viral infection in drought conditions proceeds synergistically. By two-dimensional electrophoresis of S. tuberosum leaf proteins followed by MALDI-TOF analysis, 10 proteins were identified, the content and composition of which differed depending on the experiment variant. In infected plants treated with ChCA, the synthesis of proteinaceous RNase P 1 and oxygen-evolving enhancer protein 2 was enhanced in conditions of normal humidity, and 20 kDa chaperonin and TMV resistance protein N-like was enhanced in conditions of lack of moisture. The virus coat proteins were detected, which intensively accumulated in the leaves of plants infected with potato Y-virus. ChCA treatment reduced the content of these proteins in the leaves, and in plants treated with ChCA in combination with Bacillus subtilis, viral proteins were not detected at all, both in conditions of normal humidity and lack of moisture, which suggests the promising use of chitosan derivatives in combination with B. subtilis bacteria in the regulation of plant resistance. Full article
(This article belongs to the Special Issue The Role of Signaling Molecules in Plant Stress Tolerance)
Show Figures

Figure 1

13 pages, 3427 KiB  
Article
Identification of Ribonuclease Inhibitors for the Control of Pathogenic Bacteria
by Rute G. Matos, Katie J. Simmons, Colin W. G. Fishwick, Kenneth J. McDowall and Cecília M. Arraiano
Int. J. Mol. Sci. 2024, 25(15), 8048; https://doi.org/10.3390/ijms25158048 - 24 Jul 2024
Cited by 1 | Viewed by 1489
Abstract
Bacteria are known to be constantly adapting to become resistant to antibiotics. Currently, efficient antibacterial compounds are still available; however, it is only a matter of time until these compounds also become inefficient. Ribonucleases are the enzymes responsible for the maturation and degradation [...] Read more.
Bacteria are known to be constantly adapting to become resistant to antibiotics. Currently, efficient antibacterial compounds are still available; however, it is only a matter of time until these compounds also become inefficient. Ribonucleases are the enzymes responsible for the maturation and degradation of RNA molecules, and many of them are essential for microbial survival. Members of the PNPase and RNase II families of exoribonucleases have been implicated in virulence in many pathogens and, as such, are valid targets for the development of new antibacterials. In this paper, we describe the use of virtual high-throughput screening (vHTS) to identify chemical compounds predicted to bind to the active sites within the known structures of RNase II and PNPase from Escherichia coli. The subsequent in vitro screening identified compounds that inhibited the activity of these exoribonucleases, with some also affecting cell viability, thereby providing proof of principle for utilizing the known structures of these enzymes in the pursuit of new antibacterials. Full article
(This article belongs to the Special Issue Role of RNA Decay in Bacterial Gene Regulation)
Show Figures

Figure 1

10 pages, 1292 KiB  
Article
Discovery of Benzisothiazolone Derivatives as Bifunctional Inhibitors of HIV-1 Reverse Transcriptase DNA Polymerase and Ribonuclease H Activities
by Alondra Vázquez Rivera, Heather Donald, Mounia Alaoui-El-Azher, John J. Skoko, John S. Lazo, Michael A. Parniak, Paul A. Johnston and Nicolas Sluis-Cremer
Biomolecules 2024, 14(7), 819; https://doi.org/10.3390/biom14070819 - 9 Jul 2024
Cited by 1 | Viewed by 1915
Abstract
The ribonuclease H (RNase H) active site of HIV-1 reverse transcriptase (RT) is the only viral enzyme not targeted by approved antiretroviral drugs. Using a fluorescence-based in vitro assay, we screened 65,239 compounds at a final concentration of 10 µM to identify inhibitors [...] Read more.
The ribonuclease H (RNase H) active site of HIV-1 reverse transcriptase (RT) is the only viral enzyme not targeted by approved antiretroviral drugs. Using a fluorescence-based in vitro assay, we screened 65,239 compounds at a final concentration of 10 µM to identify inhibitors of RT RNase H activity. We identified 41 compounds that exhibited 50% inhibitory concentration (i.e., IC50) values < 1.0 µM. Two of these compounds, 2-(4-methyl-3-(piperidin-1-ylsulfonyl)phenyl)benzo[d]isothiazol-3(2H)-one (1) and ethyl 2-(2-(3-oxobenzo[d]isothiazol-2(3H)-yl)thiazol-4-yl)acetate (2), which both share the same benzisothiazolone pharmacophore, demonstrate robust antiviral activity (50% effective concentrations of 1.68 ± 0.94 µM and 2.68 ± 0.54, respectively) in the absence of cellular toxicity. A limited structure–activity relationship analysis identified two additional benzisothiazolone analogs, 2-methylbenzo[d]isothiazol-3(2H)-one (3) and N,N-diethyl-3-(3-oxobenzo[d]isothiazol-2(3H)-yl)benzenesulfonamide (4), which also resulted in the inhibition of RT RNase H activity and virus replication. Compounds 1, 2 and 4, but not 3, inhibited the DNA polymerase activity of RT (IC50 values~1 to 6 µM). In conclusion, benzisothiazolone derivatives represent a new class of multifunctional RT inhibitors that warrants further assessment for the treatment of HIV-1 infection. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

31 pages, 8543 KiB  
Article
N-Hydroxypiridinedione: A Privileged Heterocycle for Targeting the HBV RNase H
by Dimitrios Moianos, Maria Makri, Georgia-Myrto Prifti, Aristeidis Chiotellis, Alexandros Pappas, Molly E. Woodson, Razia Tajwar, John E. Tavis and Grigoris Zoidis
Molecules 2024, 29(12), 2942; https://doi.org/10.3390/molecules29122942 - 20 Jun 2024
Cited by 3 | Viewed by 2321
Abstract
Hepatitis B virus (HBV) remains a global health threat. Ribonuclease H (RNase H), part of the virus polymerase protein, cleaves the pgRNA template during viral genome replication. Inhibition of RNase H activity prevents (+) DNA strand synthesis and results in the accumulation of [...] Read more.
Hepatitis B virus (HBV) remains a global health threat. Ribonuclease H (RNase H), part of the virus polymerase protein, cleaves the pgRNA template during viral genome replication. Inhibition of RNase H activity prevents (+) DNA strand synthesis and results in the accumulation of non-functional genomes, terminating the viral replication cycle. RNase H, though promising, remains an under-explored drug target against HBV. We previously reported the identification of a series of N-hydroxypyridinedione (HPD) imines that effectively inhibit the HBV RNase H. In our effort to further explore the HPD scaffold, we designed, synthesized, and evaluated 18 novel HPD oximes, as well as 4 structurally related minoxidil derivatives and 2 barbituric acid counterparts. The new analogs were docked on the RNase H active site and all proved able to coordinate the two Mg2+ ions in the catalytic site. All of the new HPDs effectively inhibited the viral replication in cell assays exhibiting EC50 values in the low μM range (1.1–7.7 μM) with low cytotoxicity, resulting in selectivity indexes (SI) of up to 92, one of the highest reported to date among HBV RNase H inhibitors. Our findings expand the structure–activity relationships on the HPD scaffold, facilitating the development of even more potent anti-HBV agents. Full article
(This article belongs to the Special Issue Design, Synthesis and Biological Evaluation of Heterocyclic Compounds)
Show Figures

Graphical abstract

17 pages, 3790 KiB  
Article
Structure-Based Design of Novel Thiazolone[3,2-a]pyrimidine Derivatives as Potent RNase H Inhibitors for HIV Therapy
by Xuan-De Zhu, Angela Corona, Stefania Maloccu, Enzo Tramontano, Shuai Wang, Christophe Pannecouque, Erik De Clercq, Ge Meng and Fen-Er Chen
Molecules 2024, 29(9), 2120; https://doi.org/10.3390/molecules29092120 - 3 May 2024
Cited by 6 | Viewed by 1798
Abstract
Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified [...] Read more.
Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 μM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors. Full article
(This article belongs to the Special Issue Synthesis and Evaluation of Bioactivity of Enzyme Inhibitors)
Show Figures

Figure 1

21 pages, 3303 KiB  
Article
Relative Abundance of Spermadhesin-1 in the Seminal Plasma of Young Nellore Bulls Is in Agreement with Reproductive Parameters
by Camilo José Ramírez-López, Edvaldo Barros, Pedro Marcus Pereira Vidigal, Denise Silva Okano, Juliana Nascimento Duarte Rodrigues, Lidiany Lopes Gomes, José Carlos Montes-Vergara, Victor Gerardo Petro Hernandez, Maria Cristina Baracat-Pereira, Simone Eliza Facioni Guimarães and José Domingos Guimarães
Vet. Sci. 2023, 10(10), 610; https://doi.org/10.3390/vetsci10100610 - 7 Oct 2023
Cited by 5 | Viewed by 2936
Abstract
This study aimed to evaluate the proteomic profile of seminal plasma from young Nellore bulls. We used 20 bulls aged between 19.8 and 22.7 months, divided into two groups according to the results of the Breeding Soundness Evaluation (BSE): approved (FIT n = [...] Read more.
This study aimed to evaluate the proteomic profile of seminal plasma from young Nellore bulls. We used 20 bulls aged between 19.8 and 22.7 months, divided into two groups according to the results of the Breeding Soundness Evaluation (BSE): approved (FIT n = 10) and not approved (UNFIT n = 10). The scrotal perimeter was measured and a semen collection was performed through electroejaculation. The percentage of sperm motility, mass motility, and sperm vigor were calculated using conventional microscopy, and the percentage of sperm abnormalities was calculated using phase-contrast microscopy of all ejaculates. Seminal plasma was separated from spermatozoa using centrifugation and processed for proteomic analysis by LC-MS/MS. Seminal plasma proteins were identified using MASCOT Daemon software v.2.4.0 and label-free quantification analysis was carried out by SCAFFOLD Q+ software v.4.0 using the Exponentially Modified Protein Abundance Index (emPAI) method. Functional classification of proteins was performed based on their genetic ontology terms using KOG. Functional cluster analysis was performed on DAVID. There were no differences in scrotal perimeter and physical semen characteristics between FIT and UNFIT groups of bulls. The percentage of sperm abnormalities was higher (p < 0.05) in the UNFIT group of bulls. A total of 297 proteins were identified for the two groups. There were a total of 11 differentially abundant proteins (p < 0.05), two of them more abundant in FIT bulls (Spermadhesin-1 and Ig gamma-1 chain C region) and nine in UNFIT bulls (Vasoactive intestinal peptide, Metalloproteinase inhibitor 2, Ig lambda-1 chain C regions, Protein FAM3C, Hemoglobin beta, Seminal ribonuclease, Spermadhesin 2, Seminal plasma protein BSP-30kDa, and Spermadhesin Z13). Spermadhesin-1 was the protein with the highest relative abundance (36.7%) in the seminal plasma among all bulls, corresponding to 47.7% for the FIT bulls and 25,7% for the UNFIT bulls. Posttranslational modification, protein turnover, and chaperones were the functional categories with the highest number of classified proteins. Protein functional annotation clusters were related to Phospholipid efflux, ATP binding, and chaperonin-containing T-complex. The differentially abundant proteins in the group of FIT bulls were related to sperm capacitation and protection against reactive species of oxygen. In contrast, differentially expressed proteins in the group of UNFIT bulls were related to motility inhibition, intramembrane cholesterol removal and oxidative stress. In conclusion, the proteomic profile of the seminal plasma of FIT bulls presents proteins with participation in several biological processes favorable to fertilization, while the proteins of the seminal plasma of UNFIT bulls indicate a series of alterations that can compromise the fertilizing capacity of the spermatozoa. In addition, the relative abundance of spermadhesin-1 found in the seminal plasma of young Nellore bulls could be studied as a reproductive parameter for selection. Full article
(This article belongs to the Section Veterinary Reproduction and Obstetrics)
Show Figures

Figure 1

26 pages, 4596 KiB  
Article
Let-7g Upregulation Attenuated the KRAS–PI3K–Rac1–Akt Axis-Mediated Bioenergetic Functions
by Kuang-Chen Hung, Ni Tien, Da-Tian Bau, Chun-Hsu Yao, Chan-Hung Chen, Jiun-Long Yang, Meng-Liang Lin and Shih-Shun Chen
Cells 2023, 12(18), 2313; https://doi.org/10.3390/cells12182313 - 19 Sep 2023
Cited by 2 | Viewed by 2426
Abstract
The aberrant activation of signaling pathways contributes to cancer cells with metabolic reprogramming. Thus, targeting signaling modulators is considered a potential therapeutic strategy for cancer. Subcellular fractionation, coimmunoprecipitation, biochemical analysis, and gene manipulation experiments revealed that decreasing the interaction of kirsten rat sarcoma [...] Read more.
The aberrant activation of signaling pathways contributes to cancer cells with metabolic reprogramming. Thus, targeting signaling modulators is considered a potential therapeutic strategy for cancer. Subcellular fractionation, coimmunoprecipitation, biochemical analysis, and gene manipulation experiments revealed that decreasing the interaction of kirsten rat sarcoma viral oncogene homolog (KRAS) with p110α in lipid rafts with the use of naringenin (NGN), a citrus flavonoid, causes lipid raft-associated phosphatidylinositol 3-kinase (PI3K)−GTP-ras-related C3 botulinum toxin substrate 1 (Rac1)−protein kinase B (Akt)-regulated metabolic dysfunction of glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), leading to apoptosis in human nasopharyngeal carcinoma (NPC) cells. The use of lethal-7g (let-7g) mimic and let-7g inhibitor confirmed that elevated let-7g resulted in a decrease in KRAS expression, which attenuated the PI3K−Rac1−Akt−BCL-2/BCL-xL-modulated mitochondrial energy metabolic functions. Increased let-7g depends on the suppression of the RNA-specificity of monocyte chemoattractant protein-induced protein-1 (MCPIP1) ribonuclease since NGN specifically blocks the degradation of pre-let-7g by NPC cell-derived immunoprecipitated MCPIP1. Converging lines of evidence indicate that the inhibition of MCPIP1 by NGN leads to let-7g upregulation, suppressing oncogenic KRAS-modulated PI3K–Rac1–Akt signaling and thereby impeding the metabolic activities of aerobic glycolysis and mitochondrial OXPHOS. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Graphical abstract

16 pages, 7098 KiB  
Article
Transcriptome Analysis Revealed That Hydrogen Peroxide-Regulated Oxidative Phosphorylation Plays an Important Role in the Formation of Pleurotus ostreatus Cap Color
by Ludan Hou, Kexing Yan, Shuai Dong, Lifeng Guo, Jingyu Liu, Shurong Wang, Mingchang Chang and Junlong Meng
J. Fungi 2023, 9(8), 823; https://doi.org/10.3390/jof9080823 - 3 Aug 2023
Cited by 3 | Viewed by 2010
Abstract
Pleurotus ostreatus is widely cultivated in China. H2O2, as a signaling molecule, can regulate the formation of cap color, but its regulatory pathway is still unclear, severely inhibiting the breeding of dark-colored strains. In this study, 614 DEGs specifically [...] Read more.
Pleurotus ostreatus is widely cultivated in China. H2O2, as a signaling molecule, can regulate the formation of cap color, but its regulatory pathway is still unclear, severely inhibiting the breeding of dark-colored strains. In this study, 614 DEGs specifically regulated by H2O2 were identified by RNA-seq analysis. GO-enrichment analysis shows that DEGs can be significantly enriched in multiple pathways related to ATP synthesis, mainly including proton-transporting ATP synthesis complex, coupling factor F(o), ATP biosynthetic process, nucleoside triphosphate metabolic processes, ATP metabolic process, purine nucleoside triphosphate biosynthetic and metabolic processes, and purine ribonuclease triphosphate biosynthetic metabolic processes. Further KEGG analysis revealed that 23 DEGs were involved in cap color formation through the oxidative phosphorylation pathway. They were enriched in Complexes I, III, IV, and V in the respiratory chain. Further addition of exogenous uncoupling agents and ATP synthase inhibitors clarifies the important role of ATP synthesis in color formation. In summary, H2O2 may upregulate the expression of complex-encoding genes in the respiratory chain and promote ATP synthesis, thereby affecting the formation of cap color. The results of this study lay the foundation for the breeding of dark-colored strains of P. ostreatus and provide a basis for the color-formation mechanism of edible fungi. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

18 pages, 5514 KiB  
Article
Analogs of the Catechol Derivative Dynasore Inhibit HIV-1 Ribonuclease H, SARS-CoV-2 nsp14 Exoribonuclease, and Virus Replication
by Abhishek Asthana, Angela Corona, Woo-Jin Shin, Mi-Jeong Kwak, Christina Gaughan, Enzo Tramontano, Jae U. Jung, Rainer Schobert, Babal Kant Jha, Robert H. Silverman and Bernhard Biersack
Viruses 2023, 15(7), 1539; https://doi.org/10.3390/v15071539 - 13 Jul 2023
Cited by 5 | Viewed by 2835
Abstract
Viral replication often depends on RNA maturation and degradation processes catalyzed by viral ribonucleases, which are therefore candidate targets for antiviral drugs. Here, we synthesized and studied the antiviral properties of a novel nitrocatechol compound (1c) and other analogs that are [...] Read more.
Viral replication often depends on RNA maturation and degradation processes catalyzed by viral ribonucleases, which are therefore candidate targets for antiviral drugs. Here, we synthesized and studied the antiviral properties of a novel nitrocatechol compound (1c) and other analogs that are structurally related to the catechol derivative dynasore. Interestingly, compound 1c strongly inhibited two DEDD box viral ribonucleases, HIV-1 RNase H and SARS-CoV-2 nsp14 3′-to-5′ exoribonuclease (ExoN). While 1c inhibited SARS-CoV-2 ExoN activity, it did not interfere with the mRNA methyltransferase activity of nsp14. In silico molecular docking placed compound 1c in the catalytic pocket of the ExoN domain of nsp14. Finally, 1c inhibited SARS-CoV-2 replication but had no toxicity to human lung adenocarcinoma cells. Given its simple chemical synthesis from easily available starting materials, these results suggest that 1c might be a lead compound for the design of new antiviral compounds that target coronavirus nsp14 ExoN and other viral ribonucleases. Full article
(This article belongs to the Special Issue Innovative Inhibitors against Viral Targets)
Show Figures

Graphical abstract

Back to TopTop