Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = retinal pigment epithelium (RPE) transplantation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 852 KiB  
Review
Retinal Pigment Epithelium Transplantation in Retinal Disease: Clinical Trial Development, Challenges, and Future Directions
by Qin Chen, Ting Zhang, Zhi Chen, Jingwen Zeng, Aine O’Connor, Meidong Zhu, Mark C. Gillies, Fang Lu and Ling Zhu
Biomolecules 2025, 15(8), 1167; https://doi.org/10.3390/biom15081167 - 15 Aug 2025
Viewed by 618
Abstract
Replacement of the retinal pigment epithelium (RPE) is emerging as a promising approach to treat degenerative retinal diseases, including age-related macular degeneration and Stargardt disease, in which RPE function cannot otherwise be restored. Despite the limitations of existing treatments, advances in cell sourcing [...] Read more.
Replacement of the retinal pigment epithelium (RPE) is emerging as a promising approach to treat degenerative retinal diseases, including age-related macular degeneration and Stargardt disease, in which RPE function cannot otherwise be restored. Despite the limitations of existing treatments, advances in cell sourcing and surgical methods have enabled initial human trials of RPE transplantation, with early results indicating potential efficacy. This review comprehensively examines the evolution of RPE transplantation in recent decades, highlighting the advantages and limitations of different cell sources and delivery methods. Current clinical trial data are analyzed with a particular focus on immune rejection risks, surgical complications, and long-term safety. Despite encouraging safety profiles, achieving consistent and sustained visual improvement remains a challenge, as vision outcomes might be influenced by factors such as disease stage at intervention, transplantation site, number of cells transplanted, and duration of follow-up. Key challenges, such as cell or graft survival and integration with the host retina, are discussed in depth, as overcoming these obstacles is essential for achieving stable and effective RPE replacement. Future research directions, including innovations in biomaterials, molecular modification strategies, and personalized approaches, hold promise for enhancing the efficacy and durability of RPE transplantation for retinal disease. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Retinal Pigment Epithelium)
Show Figures

Figure 1

33 pages, 178656 KiB  
Article
Molecular Determinants of the Human Retinal Pigment Epithelium Cell Fate and Potential Pharmacogenomic Targets for Precision Medicine
by Cristina Zibetti
Int. J. Mol. Sci. 2025, 26(12), 5817; https://doi.org/10.3390/ijms26125817 - 17 Jun 2025
Viewed by 1022
Abstract
Age-related macular degeneration (AMD) is a common cause of blindness worldwide, and it is projected to affect several million individuals by 2040. The human retinal pigment epithelium (hRPE) degenerates in dry AMD, prompting the need to develop stem cell therapies to replace the [...] Read more.
Age-related macular degeneration (AMD) is a common cause of blindness worldwide, and it is projected to affect several million individuals by 2040. The human retinal pigment epithelium (hRPE) degenerates in dry AMD, prompting the need to develop stem cell therapies to replace the lost tissue by autologous transplantation and restore the visual function. Nevertheless, the molecular factors behind the hRPE cell fate determination have not been elucidated. Here we identify all molecular determinants of the hRPE cell fate identity by comprehensive and unbiased screening of predicted pioneer factors in the human genome: such TFs mediate coordinated transitions in chromatin accessibility and transcriptional outcome along three major stages of the hRPE genesis. Furthermore, we compile a complete census of all transcription factor-specific binding sites by footprinting analysis of the human epigenome along the RPE developmental trajectory. Gene regulatory networks were found to be involved in cellular responses to glucose and hypoxia, RPE nitrosative stress, type II epithelial-to-mesenchymal transition (EMT), and type III tumorigenic EMT, providing routes for therapeutic intervention on pleiotropic targets dysregulated in AMD, diabetic retinopathy, and cancer progression. Genome editing technologies may leverage this repository to devise functional screenings of regulatory elements and pharmacogenomic therapies in complex diseases, paving the way for strategies in precision medicine. Full article
Show Figures

Figure 1

27 pages, 6354 KiB  
Review
Advances in the Study of Age-Related Macular Degeneration Based on Cell or Cell-Biomaterial Scaffolds
by Ziming Li, Zhiyong Hu and Zhixian Gao
Bioengineering 2025, 12(3), 278; https://doi.org/10.3390/bioengineering12030278 - 11 Mar 2025
Viewed by 1262
Abstract
Age-related macular degeneration (AMD), a progressive neurodegenerative disorder affecting the central retina, is pathologically defined by the irreversible degeneration of photoreceptors and retinal pigment epithelium (RPE), coupled with extracellular drusen deposition and choroidal neovascularization (CNV), and AMD constitutes the predominant etiological factor for [...] Read more.
Age-related macular degeneration (AMD), a progressive neurodegenerative disorder affecting the central retina, is pathologically defined by the irreversible degeneration of photoreceptors and retinal pigment epithelium (RPE), coupled with extracellular drusen deposition and choroidal neovascularization (CNV), and AMD constitutes the predominant etiological factor for irreversible vision impairment in adults aged ≥60 years. Cell-based or cell-biomaterial scaffold-based approaches have been popular in recent years as a major research direction for AMD; monotherapy with cell-based approaches typically involves subretinal injection of progenitor-derived or stem cell-derived RPE cells to restore retinal homeostasis. Meanwhile, cell-biomaterial scaffolds delivered to the lesion site by vector transplantation have been widely developed, and the implanted cell-biomaterial scaffolds can promote the reintegration of cells at the lesion site and solve the problems of translocation and discrete cellular structure produced by cell injection. While these therapeutic strategies demonstrate preliminary efficacy, rigorous preclinical validation and clinical trials remain imperative to validate their long-term safety, functional durability, and therapeutic consistency. This review synthesizes current advancements and translational challenges in cell-based and cell-biomaterial scaffold approaches for AMD, aiming to inform future development of targeted interventions for AMD pathogenesis and management. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

14 pages, 6301 KiB  
Article
The Fate of RPE Cells Following hESC-RPE Patch Transplantation in Haemorrhagic Wet AMD: Pigmentation, Extension of Pigmentation, Thickness of Transplant, Assessment for Proliferation and Visual Function—A 5 Year-Follow Up
by Lyndon da Cruz, Taha Soomro, Odysseas Georgiadis, Britta Nommiste, Mandeep S. Sagoo and Peter Coffey
Diagnostics 2024, 14(10), 1005; https://doi.org/10.3390/diagnostics14101005 - 13 May 2024
Cited by 9 | Viewed by 2525
Abstract
(1) Background: We reviewed a stem cell-derived therapeutic strategy for advanced neovascular age-related macular degeneration (nAMD) using a human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) monolayer delivered on a coated, synthetic basement membrane (BM)—the patch—and assessed the presence and distribution of hESC-RPE [...] Read more.
(1) Background: We reviewed a stem cell-derived therapeutic strategy for advanced neovascular age-related macular degeneration (nAMD) using a human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) monolayer delivered on a coated, synthetic basement membrane (BM)—the patch—and assessed the presence and distribution of hESC-RPE over 5 years following transplantation, as well as functional outcomes. (2) Methods: Two subjects with acute vision loss due to sub-macular haemorrhage in advanced nAMD received the hESC-RPE patch. Systematic immunosuppression was used peri-operatively followed by local depot immunosuppression. The subjects were monitored for five years with observation of RPE patch pigmentation, extension beyond the patch boundary into surrounding retina, thickness of hESC-RPE and synthetic BM and review for migration and proliferation of hESC-RPE. Visual function was also assessed. (3) Results: The two study participants showed clear RPE characteristics of the patch, preservation of some retinal ultrastructure with signs of remodelling, fibrosis and thinning on optical coherence tomography over the 5-year period. For both participants, there was evidence of pigment extension beyond the patch continuing until 12 months post-operatively, which stabilised and was preserved until 5 years post-operatively. Measurement of hESC-RPE and BM thickness over time for both cases were consistent with predefined histological measurements of these two layers. There was no evidence of distant RPE migration or proliferation in either case beyond the monolayer. Sustained visual acuity improvement was apparent for 2 years in both subjects, with one subject maintaining the improvement for 5 years. Both subjects demonstrated initial improvement in fixation and microperimetry compared to baseline, at year 1, although only one maintained this at 4 years post-intervention. (4) Conclusions: hESC-RPE patches show evidence of continued pigmentation, with extension, to cover bare host basement membrane for up to 5 years post-implantation. There is evidence that this represents functional RPE on the patch and at the patch border where host RPE is absent. The measurements for thickness of hESC-RPE and BM suggest persistence of both layers at 5 years. No safety concerns were raised for the hypothetical risk of RPE migration, proliferation or tumour formation. Visual function also showed sustained improvement for 2 years in one subject and 5 years in the other subject. Full article
(This article belongs to the Special Issue Advances in Diagnostic Techniques in Retinal Diseases)
Show Figures

Figure 1

14 pages, 6733 KiB  
Article
The Effects of the Coating and Aging of Biodegradable Polylactic Acid Membranes on In Vitro Primary Human Retinal Pigment Epithelium Cells
by Georgina Faura, Hana Studenovska, David Sekac, Zdenka Ellederova, Goran Petrovski and Lars Eide
Biomedicines 2024, 12(5), 966; https://doi.org/10.3390/biomedicines12050966 - 26 Apr 2024
Cited by 2 | Viewed by 2048
Abstract
Age-related macular degeneration (AMD) is the most frequent cause of blindness in developed countries. The replacement of dysfunctional human retinal pigment epithelium (hRPE) cells by the transplantation of in vitro-cultivated hRPE cells to the affected area emerges as a feasible strategy for regenerative [...] Read more.
Age-related macular degeneration (AMD) is the most frequent cause of blindness in developed countries. The replacement of dysfunctional human retinal pigment epithelium (hRPE) cells by the transplantation of in vitro-cultivated hRPE cells to the affected area emerges as a feasible strategy for regenerative therapy. Synthetic biomimetic membranes arise as powerful hRPE cell carriers, but as biodegradability is a requirement, it also poses a challenge due to its limited durability. hRPE cells exhibit several characteristics that putatively respond to the type of membrane carrier, and they can be used as biomarkers to evaluate and further optimize such membranes. Here, we analyze the pigmentation, transepithelial resistance, genome integrity, and maturation markers of hRPE cells plated on commercial polycarbonate (PC) versus in-house electrospun polylactide-based (PLA) membranes, both enabling separate apical/basolateral compartments. Our results show that PLA is superior to PC-based membranes for the cultivation of hRPEs, and the BEST1/RPE65 maturation markers emerge as the best biomarkers for addressing the quality of hRPE cultivated in vitro. The stability of the cultures was observed to be affected by PLA aging, which is an effect that could be partially palliated by the coating of the PLA membranes. Full article
(This article belongs to the Topic Advanced Functional Materials for Regenerative Medicine)
Show Figures

Figure 1

17 pages, 2983 KiB  
Article
Soluble Collectin 11 (CL-11) Acts as an Immunosuppressive Molecule Potentially Used by Stem Cell-Derived Retinal Epithelial Cells to Modulate T Cell Response
by Giorgia Fanelli, Marco Romano, Giovanna Lombardi and Steven H. Sacks
Cells 2023, 12(13), 1805; https://doi.org/10.3390/cells12131805 - 7 Jul 2023
Cited by 2 | Viewed by 2246
Abstract
Retinal pigment epithelium (RPE) cell allotransplantation is seen as a possible solution to retinal diseases. However, the RPE-complement system triggered by the binding of collectin-11 (CL-11) is a potential barrier for RPE transplantation as the complement-mediated inflammatory response may promote T cell recognition. [...] Read more.
Retinal pigment epithelium (RPE) cell allotransplantation is seen as a possible solution to retinal diseases. However, the RPE-complement system triggered by the binding of collectin-11 (CL-11) is a potential barrier for RPE transplantation as the complement-mediated inflammatory response may promote T cell recognition. To address this, we investigated the role of CL-11 on T cell immuno-response. We confirmed that RPE cells up-regulated MHC class I and expressed MHC class II molecules in an inflammatory setting. Co-cultures of RPE cells with T cells led to the inhibition of T cell proliferation. We found that CL-11 was partially responsible for this effect as T cell binding of CL-11 inhibited T cell proliferation in association with the downregulation of CD28. We also found that the suppressive action of CL-11 was abrogated in the presence of the RGD peptide given to block the T cell binding of CL-11 by its collagen-like domain. Because RPE cells can bind and secrete CL-11 under stress conditions, we postulate that soluble CL-11 contributes to the immunosuppressive properties of RPE cells. The investigation of this dual biological activity of CL-11, namely as a trigger of the complement cascade and a modulator of T cell responses, may provide additional clues about the mechanisms that orchestrate the immunogenic properties of RPE cells. Full article
(This article belongs to the Special Issue The Role of Immune Cells in Ocular Diseases)
Show Figures

Figure 1

19 pages, 2635 KiB  
Review
Retinal Pigment Epithelium Cell Development: Extrapolating Basic Biology to Stem Cell Research
by Santosh Gupta, Lyubomyr Lytvynchuk, Taras Ardan, Hana Studenovska, Georgina Faura, Lars Eide, Ljubo Znaor, Slaven Erceg, Knut Stieger, Jan Motlik, Kapil Bharti and Goran Petrovski
Biomedicines 2023, 11(2), 310; https://doi.org/10.3390/biomedicines11020310 - 23 Jan 2023
Cited by 15 | Viewed by 10127
Abstract
The retinal pigment epithelium (RPE) forms an important cellular monolayer, which contributes to the normal physiology of the eye. Damage to the RPE leads to the development of degenerative diseases, such as age-related macular degeneration (AMD). Apart from acting as a physical barrier [...] Read more.
The retinal pigment epithelium (RPE) forms an important cellular monolayer, which contributes to the normal physiology of the eye. Damage to the RPE leads to the development of degenerative diseases, such as age-related macular degeneration (AMD). Apart from acting as a physical barrier between the retina and choroidal blood vessels, the RPE is crucial in maintaining photoreceptor (PR) and visual functions. Current clinical intervention to treat early stages of AMD includes stem cell-derived RPE transplantation, which is still in its early stages of evolution. Therefore, it becomes essential to derive RPEs which are functional and exhibit features as observed in native human RPE cells. The conventional strategy is to use the knowledge obtained from developmental studies using various animal models and stem cell-based exploratory studies to understand RPE biogenies and developmental trajectory. This article emphasises such studies and aims to present a comprehensive understanding of the basic biology, including the genetics and molecular pathways of RPE development. It encompasses basic developmental biology and stem cell-based developmental studies to uncover RPE differentiation. Knowledge of the in utero developmental cues provides an inclusive methodology required for deriving RPEs using stem cells. Full article
(This article belongs to the Special Issue Biomedicines: 10th Anniversary)
Show Figures

Figure 1

18 pages, 4537 KiB  
Article
Recognizing the Differentiation Degree of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cells Using Machine Learning and Deep Learning-Based Approaches
by Chung-Yueh Lien, Tseng-Tse Chen, En-Tung Tsai, Yu-Jer Hsiao, Ni Lee, Chong-En Gao, Yi-Ping Yang, Shih-Jen Chen, Aliaksandr A. Yarmishyn, De-Kuang Hwang, Shih-Jie Chou, Woei-Chyn Chu, Shih-Hwa Chiou and Yueh Chien
Cells 2023, 12(2), 211; https://doi.org/10.3390/cells12020211 - 4 Jan 2023
Cited by 15 | Viewed by 5405
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into mesenchymal stem cells (iPSC-MSCs), retinal ganglion cells (iPSC-RGCs), and retinal pigmental epithelium cells (iPSC-RPEs) to meet the demand of regeneration medicine. Since the production of iPSCs and iPSC-derived cell lineages generally requires massive and [...] Read more.
Induced pluripotent stem cells (iPSCs) can be differentiated into mesenchymal stem cells (iPSC-MSCs), retinal ganglion cells (iPSC-RGCs), and retinal pigmental epithelium cells (iPSC-RPEs) to meet the demand of regeneration medicine. Since the production of iPSCs and iPSC-derived cell lineages generally requires massive and time-consuming laboratory work, artificial intelligence (AI)-assisted approach that can facilitate the cell classification and recognize the cell differentiation degree is of critical demand. In this study, we propose the multi-slice tensor model, a modified convolutional neural network (CNN) designed to classify iPSC-derived cells and evaluate the differentiation efficiency of iPSC-RPEs. We removed the fully connected layers and projected the features using principle component analysis (PCA), and subsequently classified iPSC-RPEs according to various differentiation degree. With the assistance of the support vector machine (SVM), this model further showed capabilities to classify iPSCs, iPSC-MSCs, iPSC-RPEs, and iPSC-RGCs with an accuracy of 97.8%. In addition, the proposed model accurately recognized the differentiation of iPSC-RPEs and showed the potential to identify the candidate cells with ideal features and simultaneously exclude cells with immature/abnormal phenotypes. This rapid screening/classification system may facilitate the translation of iPSC-based technologies into clinical uses, such as cell transplantation therapy. Full article
Show Figures

Figure 1

18 pages, 13311 KiB  
Article
Subretinal Implantation of Human Primary RPE Cells Cultured on Nanofibrous Membranes in Minipigs
by Lyubomyr Lytvynchuk, Annabelle Ebbert, Hana Studenovska, Richárd Nagymihály, Natasha Josifovska, David Rais, Štěpán Popelka, Lucie Tichotová, Yaroslav Nemesh, Jana Čížková, Jana Juhásová, Štefan Juhás, Pavla Jendelová, Janka Franeková, Igor Kozak, Slaven Erceg, Zbynek Straňák, Brigitte Müller, Zdenka Ellederová, Jan Motlík, Knut Stieger, Taras Ardan and Goran Petrovskiadd Show full author list remove Hide full author list
Biomedicines 2022, 10(3), 669; https://doi.org/10.3390/biomedicines10030669 - 14 Mar 2022
Cited by 13 | Viewed by 3933
Abstract
Purpose: The development of primary human retinal pigmented epithelium (hRPE) for clinical transplantation purposes on biodegradable scaffolds is indispensable. We hereby report the results of the subretinal implantation of hRPE cells on nanofibrous membranes in minipigs. Methods: The hRPEs were collected from human [...] Read more.
Purpose: The development of primary human retinal pigmented epithelium (hRPE) for clinical transplantation purposes on biodegradable scaffolds is indispensable. We hereby report the results of the subretinal implantation of hRPE cells on nanofibrous membranes in minipigs. Methods: The hRPEs were collected from human cadaver donor eyes and cultivated on ultrathin nanofibrous carriers prepared via the electrospinning of poly(L-lactide-co-DL-lactide) (PDLLA). “Libechov” minipigs (12–36 months old) were used in the study, supported by preoperative tacrolimus immunosuppressive therapy. The subretinal implantation of the hRPE-nanofibrous carrier was conducted using general anesthesia via a custom-made injector during standard three-port 23-gauge vitrectomy, followed by silicone oil endotamponade. The observational period lasted 1, 2, 6 and 8 weeks, and included in vivo optical coherence tomography (OCT) of the retina, as well as post mortem immunohistochemistry using the following antibodies: HNAA and STEM121 (human cell markers); Bestrophin and CRALBP (hRPE cell markers); peanut agglutining (PNA) (cone photoreceptor marker); PKCα (rod bipolar marker); Vimentin, GFAP (macroglial markers); and Iba1 (microglial marker). Results: The hRPEs assumed cobblestone morphology, persistent pigmentation and measurable trans-epithelial electrical resistance on the nanofibrous PDLLA carrier. The surgical delivery of the implants in the subretinal space of the immunosuppressed minipigs was successfully achieved and monitored by fundus imaging and OCT. The implanted hRPEs were positive for HNAA and STEM121 and were located between the minipig’s neuroretina and RPE layers at week 2 post-implantation, which was gradually attenuated until week 8. The neuroretina over the implants showed rosette or hypertrophic reaction at week 6. The implanted cells expressed the typical RPE marker bestrophin throughout the whole observation period, and a gradual diminishing of the CRALBP expression in the area of implantation at week 8 post-implantation was observed. The transplanted hRPEs appeared not to form a confluent layer and were less capable of keeping the inner and outer retinal segments intact. The cone photoreceptors adjacent to the implant scaffold were unchanged initially, but underwent a gradual change in structure after hRPE implantation; the retina above and below the implant appeared relatively healthy. The glial reaction of the transplanted and host retina showed Vimentin and GFAP positivity from week 1 onward. Microglial activation appeared in the retinal area of the transplant early after the surgery, which seemed to move into the transplant area over time. Conclusions: The differentiated hRPEs can serve as an alternative cell source for RPE replacement in animal studies. These cells can be cultivated on nanofibrous PDLLA and implanted subretinally into minipigs using standard 23-gauge vitrectomy and implantation injector. The hRPE-laden scaffolds demonstrated relatively good incorporation into the host retina over an eight-week observation period, with some indication of a gliotic scar formation, and a likely neuroinflammatory response in the transplanted area despite the use of immunosuppression. Full article
(This article belongs to the Special Issue New Drugs in the Treatment of Retinal Diseases)
Show Figures

Figure 1

13 pages, 1486 KiB  
Article
Detection of Mycoplasma Contamination in Transplanted Retinal Cells by Rapid and Sensitive Polymerase Chain Reaction Test
by Sunao Sugita, Ayumi Hono, Shoko Fujino, Yoko Futatsugi, Yuta Yunomae, Norio Shimizu and Masayo Takahashi
Int. J. Mol. Sci. 2021, 22(22), 12555; https://doi.org/10.3390/ijms222212555 - 21 Nov 2021
Cited by 7 | Viewed by 5238
Abstract
Contamination of cells/tissues by infectious pathogens (e.g., fungi, viruses, or bacteria, including mycoplasma) is a major problem in cell-based transplantation. In this study, we tested a polymerase chain reaction (PCR) method to provide rapid, simple, and sensitive detection of mycoplasma contamination in laboratory [...] Read more.
Contamination of cells/tissues by infectious pathogens (e.g., fungi, viruses, or bacteria, including mycoplasma) is a major problem in cell-based transplantation. In this study, we tested a polymerase chain reaction (PCR) method to provide rapid, simple, and sensitive detection of mycoplasma contamination in laboratory cultures for clinical use. This mycoplasma PCR system covers the Mycoplasma species (spp.) listed for testing in the 17th revision of the Japanese Pharmacopoeia, and we designed it for use in transplantable retinal cells. Here, we analyzed mycoplasma contamination in induced pluripotent stem cell (iPS cell)-derived transplantable retinal pigment epithelium (RPE) cells. In the spike tests to RPE cells with nine species of class Mollicutes bacteria, including seven Mycoplasma spp. and one of each Acholeplasma spp. and Ureaplasma spp., contamination at the concentration of 100 and 10 CFU/mL were detected with 100% probability in all cases, while 1 CFU/mL had a detection rate of 0–75%. DNA prepared from bacteria species other than class Mollicutes species was not detectable, indicating the specificity of this PCR. While iPS cells and iPS-RPE cells established in our laboratory were all negative by this PCR, some of the commercially available cell lines were positive. Cells for transplantation should never have infection, as once pathogens are implanted into the eyes, they can cause severe intraocular inflammation. Thus, it is imperative to monitor for infections in the transplants, although generally, mycoplasma infection is difficult to detect. Full article
(This article belongs to the Special Issue Infectious Ocular Disorders and Molecular Analysis)
Show Figures

Graphical abstract

17 pages, 3380 KiB  
Article
Long-Term Transplant Effects of iPSC-RPE Monolayer in Immunodeficient RCS Rats
by Deepthi S. Rajendran Nair, Danhong Zhu, Ruchi Sharma, Juan Carlos Martinez Camarillo, Kapil Bharti, David R. Hinton, Mark S. Humayun and Biju B. Thomas
Cells 2021, 10(11), 2951; https://doi.org/10.3390/cells10112951 - 29 Oct 2021
Cited by 22 | Viewed by 4899
Abstract
Retinal pigment epithelium (RPE) replacement therapy is evolving as a feasible approach to treat age-related macular degeneration (AMD). In many preclinical studies, RPE cells are transplanted as a cell suspension into immunosuppressed animal eyes and transplant effects have been monitored only short-term. We [...] Read more.
Retinal pigment epithelium (RPE) replacement therapy is evolving as a feasible approach to treat age-related macular degeneration (AMD). In many preclinical studies, RPE cells are transplanted as a cell suspension into immunosuppressed animal eyes and transplant effects have been monitored only short-term. We investigated the long-term effects of human Induced pluripotent stem-cell-derived RPE (iPSC-RPE) transplants in an immunodeficient Royal College of Surgeons (RCS) rat model, in which RPE dysfunction led to photoreceptor degeneration. iPSC-RPE cultured as a polarized monolayer on a nanoengineered ultrathin parylene C scaffold was transplanted into the subretinal space of 28-day-old immunodeficient RCS rat pups and evaluated after 1, 4, and 11 months. Assessment at early time points showed good iPSC-RPE survival. The transplants remained as a monolayer, expressed RPE-specific markers, performed phagocytic function, and contributed to vision preservation. At 11-months post-implantation, RPE survival was observed in only 50% of the eyes that were concomitant with vision preservation. Loss of RPE monolayer characteristics at the 11-month time point was associated with peri-membrane fibrosis, immune reaction through the activation of macrophages (CD 68 expression), and the transition of cell fate (expression of mesenchymal markers). The overall study outcome supports the therapeutic potential of RPE grafts despite the loss of some transplant benefits during long-term observations. Full article
(This article belongs to the Special Issue The Retina in Health and Disease)
Show Figures

Graphical abstract

19 pages, 3519 KiB  
Article
Scaffold-Free Retinal Pigment Epithelium Microtissues Exhibit Increased Release of PEDF
by Abdullah Al-Ani, Derek Toms, Saud Sunba, Kayla Giles, Yacine Touahri, Carol Schuurmans and Mark Ungrin
Int. J. Mol. Sci. 2021, 22(21), 11317; https://doi.org/10.3390/ijms222111317 - 20 Oct 2021
Cited by 6 | Viewed by 3896
Abstract
The retinal pigmented epithelium (RPE) plays a critical role in photoreceptor survival and function. RPE deficits are implicated in a wide range of diseases that result in vision loss, including age-related macular degeneration (AMD) and Stargardt disease, affecting millions worldwide. Subretinal delivery of [...] Read more.
The retinal pigmented epithelium (RPE) plays a critical role in photoreceptor survival and function. RPE deficits are implicated in a wide range of diseases that result in vision loss, including age-related macular degeneration (AMD) and Stargardt disease, affecting millions worldwide. Subretinal delivery of RPE cells is considered a promising avenue for treatment, and encouraging results from animal trials have supported recent progression into the clinic. However, the limited survival and engraftment of transplanted RPE cells delivered as a suspension continues to be a major challenge. While RPE delivery as epithelial sheets exhibits improved outcomes, this comes at the price of increased complexity at both the production and transplant stages. In order to combine the benefits of both approaches, we have developed size-controlled, scaffold-free RPE microtissues (RPE-µTs) that are suitable for scalable production and delivery via injection. RPE-µTs retain key RPE molecular markers, and interestingly, in comparison to conventional monolayer cultures, they show significant increases in the transcription and secretion of pigment-epithelium-derived factor (PEDF), which is a key trophic factor known to enhance the survival and function of photoreceptors. Furthermore, these microtissues readily spread in vitro on a substrate analogous to Bruch’s membrane, suggesting that RPE-µTs may collapse into a sheet upon transplantation. We anticipate that this approach may provide an alternative cell delivery system to improve the survival and integration of RPE transplants, while also retaining the benefits of low complexity in production and delivery. Full article
(This article belongs to the Special Issue Retina Degeneration, Neuroprotection and Repair)
Show Figures

Figure 1

21 pages, 6660 KiB  
Article
Transplantation of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in a Swine Model of Geographic Atrophy
by Anna Duarri, Eduardo Rodríguez-Bocanegra, Gema Martínez-Navarrete, Marc Biarnés, Miriam García, Lucía Lee Ferraro, Bernd Kuebler, Begoña Aran, Elisabeth Izquierdo, Eli Aguilera-Xiol, Ricardo P. Casaroli-Marano, Esteve Trias, Eduardo Fernandez, Ángel Raya, Anna Veiga and Jordi Monés
Int. J. Mol. Sci. 2021, 22(19), 10497; https://doi.org/10.3390/ijms221910497 - 28 Sep 2021
Cited by 21 | Viewed by 5860
Abstract
Background: The aim of this study was to test the feasibility and safety of subretinal transplantation of human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells into the healthy margins and within areas of degenerative retina in a swine model of [...] Read more.
Background: The aim of this study was to test the feasibility and safety of subretinal transplantation of human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells into the healthy margins and within areas of degenerative retina in a swine model of geographic atrophy (GA). Methods: Well-delimited selective outer retinal damage was induced by subretinal injection of NaIO3 into one eye in minipigs (n = 10). Thirty days later, a suspension of hiPSC-derived RPE cells expressing green fluorescent protein was injected into the subretinal space, into the healthy margins, and within areas of degenerative retina. In vivo follow-up was performed by multimodal imaging. Post-mortem retinas were analyzed by immunohistochemistry and histology. Results: In vitro differentiated hiPSC-RPE cells showed a typical epithelial morphology, expressed RPE-related genes, and had phagocytic ability. Engrafted hiPSC-RPE cells were detected in 60% of the eyes, forming mature epithelium in healthy retina extending towards the border of the atrophy. Histological analysis revealed RPE interaction with host photoreceptors in the healthy retina. Engrafted cells in the atrophic zone were found in a patchy distribution but failed to form an epithelial-like layer. Conclusions: These results might support the use of hiPSC-RPE cells to treat atrophic GA by providing a housekeeping function to aid the overwhelmed remnant RPE, which might improve its survival and therefore slow down the progression of GA. Full article
(This article belongs to the Special Issue Retina Degeneration, Neuroprotection and Repair)
Show Figures

Figure 1

22 pages, 938 KiB  
Review
Recent Advances in Hydrogels: Ophthalmic Applications in Cell Delivery, Vitreous Substitutes, and Ocular Adhesives
by Kenny T. Lin, Athena Wang, Alexandra B. Nguyen, Janaki Iyer and Simon D. Tran
Biomedicines 2021, 9(9), 1203; https://doi.org/10.3390/biomedicines9091203 - 12 Sep 2021
Cited by 29 | Viewed by 5788
Abstract
With the prevalence of eye diseases, such as cataracts, retinal degenerative diseases, and glaucoma, different treatments including lens replacement, vitrectomy, and stem cell transplantation have been developed; however, they are not without their respective shortcomings. For example, current methods to seal corneal incisions [...] Read more.
With the prevalence of eye diseases, such as cataracts, retinal degenerative diseases, and glaucoma, different treatments including lens replacement, vitrectomy, and stem cell transplantation have been developed; however, they are not without their respective shortcomings. For example, current methods to seal corneal incisions induced by cataract surgery, such as suturing and stromal hydration, are less than ideal due to the potential for surgically induced astigmatism or wound leakage. Vitrectomy performed on patients with diabetic retinopathy requires an artificial vitreous substitute, with current offerings having many shortcomings such as retinal toxicity. The use of stem cells has also been investigated in retinal degenerative diseases; however, an optimal delivery system is required for successful transplantation. The incorporation of hydrogels into ocular therapy has been a critical focus in overcoming the limitations of current treatments. Previous reviews have extensively documented the use of hydrogels in drug delivery; thus, the goal of this review is to discuss recent advances in hydrogel technology in surgical applications, including dendrimer and gelatin-based hydrogels for ocular adhesives and a variety of different polymers for vitreous substitutes, as well as recent advances in hydrogel-based retinal pigment epithelium (RPE) and retinal progenitor cell (RPC) delivery to the retina. Full article
(This article belongs to the Special Issue Hydrogels for Biomedical Application)
Show Figures

Figure 1

16 pages, 4034 KiB  
Article
PEDF-Mediated Mitophagy Triggers the Visual Cycle by Enhancing Mitochondrial Functions in a H2O2-Injured Rat Model
by Jae Yeon Kim, Sohae Park, Hee Jung Park, Se Ho Kim, Helen Lew and Gi Jin Kim
Cells 2021, 10(5), 1117; https://doi.org/10.3390/cells10051117 - 6 May 2021
Cited by 11 | Viewed by 3743
Abstract
Retinal degenerative diseases result from oxidative stress and mitochondrial dysfunction, leading to the loss of visual acuity. Damaged retinal pigment epithelial (RPE) and photoreceptor cells undergo mitophagy. Pigment epithelium-derived factor (PEDF) protects from oxidative stress in RPE and improves mitochondrial functions. Overexpression of [...] Read more.
Retinal degenerative diseases result from oxidative stress and mitochondrial dysfunction, leading to the loss of visual acuity. Damaged retinal pigment epithelial (RPE) and photoreceptor cells undergo mitophagy. Pigment epithelium-derived factor (PEDF) protects from oxidative stress in RPE and improves mitochondrial functions. Overexpression of PEDF in placenta-derived mesenchymal stem cells (PD-MSCs; PD-MSCsPEDF) provides therapeutic effects in retinal degenerative diseases. Here, we investigated whether PD-MSCsPEDF restored the visual cycle through a mitophagic mechanism in RPE cells in hydrogen peroxide (H2O2)-injured rat retinas. Compared with naïve PD-MSCs, PD-MSCsPEDF augmented mitochondrial biogenesis and translation markers as well as mitochondrial respiratory states. In the H2O2-injured rat model, intravitreal administration of PD-MSCsPEDF restored total retinal layer thickness compared to that of naïve PD-MSCs. In particular, PTEN-induced kinase 1 (PINK1), which is the major mitophagy marker, exhibited increased expression in retinal layers and RPE cells after PD-MSCPEDF transplantation. Similarly, expression of the visual cycle enzyme retinol dehydrogenase 11 (RDH11) showed the same patterns as PINK1 levels, resulting in improved visual activity. Taken together, these findings suggest that PD-MSCsPEDF facilitate mitophagy and restore the loss of visual cycles in H2O2-injured rat retinas and RPE cells. These data indicate a new strategy for next-generation MSC-based treatment of retinal degenerative diseases. Full article
(This article belongs to the Special Issue Aging and Disease)
Show Figures

Figure 1

Back to TopTop