Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = retinal adhesive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1272 KB  
Review
Cell Motility Dynamics in Glaucoma: Mechanisms, Pathogenic Roles, and Therapeutic Targeting
by Dario Rusciano, Caterina Gagliano, Alessandro Avitabile and José Fernando Maya-Vetencourt
Medicina 2025, 61(12), 2219; https://doi.org/10.3390/medicina61122219 - 16 Dec 2025
Viewed by 121
Abstract
Cell motility—the dynamic process encompassing migration, adhesion modulation, cytoskeletal remodeling, and extracellular matrix (ECM) interactions—is fundamental to ocular homeostasis. In glaucoma, disrupted motility of trabecular meshwork (TM) and Schlemm’s canal (SC) cells contributes to impaired aqueous humor outflow and elevated intraocular pressure (IOP), [...] Read more.
Cell motility—the dynamic process encompassing migration, adhesion modulation, cytoskeletal remodeling, and extracellular matrix (ECM) interactions—is fundamental to ocular homeostasis. In glaucoma, disrupted motility of trabecular meshwork (TM) and Schlemm’s canal (SC) cells contributes to impaired aqueous humor outflow and elevated intraocular pressure (IOP), while reactive motility of optic nerve head (ONH) glial cells promotes fibrosis and neurodegeneration. Mechanistically, TM/SC motility is regulated by Rho GTPase and ROCK signaling, focal adhesion dynamics, and ECM interactions, while glial cells respond to mechanical stress and cytokines such as TGF-β2. Cytoskeletal alterations, ECM stiffening, and endothelial–mesenchymal transition (EndMT) contribute to glaucomatous damage by reducing normal cell motility and tissue remodeling capacity. Aberrant motility at the ONH, including heterogeneous astrocytic reactivity, leads to lamina cribrosa remodeling and retinal ganglion cell degeneration. Therapeutically, ROCK inhibitors improve TM/SC motility and outflow, suppress EndMT, and may confer neuroprotection. Stem cell-based strategies and modulation of TGF-β2 or mechanotransduction pathways represent emerging approaches to restore physiological motility and regenerative potential. Despite promising advances, challenges remain in ensuring targeted, durable, and safe modulation of cellular dynamics. Understanding and therapeutically harnessing cell motility offers a unifying framework to address both pressure-dependent and neurodegenerative mechanisms in glaucoma. Full article
(This article belongs to the Special Issue Ophthalmology: New Diagnostic and Treatment Approaches (2nd Edition))
Show Figures

Figure 1

20 pages, 926 KB  
Article
Exploring Molecular and Clinical Dimensions of Glaucoma as a Neurodegenerative Disease
by Sandra Carolina Durán-Cristiano, Gloria L. Duque-Chica, Viviana Torres-Osorio, Juan David Ospina-Villa, Alba Martin-Gil, Geysson Javier Fernandez and Gonzalo Carracedo
Int. J. Mol. Sci. 2025, 26(18), 9109; https://doi.org/10.3390/ijms26189109 - 18 Sep 2025
Viewed by 1180
Abstract
Glaucoma is traditionally defined as an ocular disease characterized by progressive retinal ganglion cell degeneration, in some cases with elevated intraocular pressure (IOP), and optic nerve damage. However, growing evidence indicates that glaucoma shares critical features with neurodegenerative disorders, including Alzheimer’s and Parkinson’s [...] Read more.
Glaucoma is traditionally defined as an ocular disease characterized by progressive retinal ganglion cell degeneration, in some cases with elevated intraocular pressure (IOP), and optic nerve damage. However, growing evidence indicates that glaucoma shares critical features with neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. This study aimed to explore the systemic nature of primary open-angle glaucoma (POAG) by integrating visual function, cognitive performance, and transcriptomic profiling. We conducted a multidimensional assessment of POAG patients and age-matched controls, accounting for demographic factors. Structural parameters included retinal nerve fiber layer (RNFL) thickness, measured using optical coherence tomography (OCT), and visual field indices mean deviation (MD) and pattern standard deviation (PSD). Cognitive function was evaluated across multiple domains, encompassing visual memory, executive function, processing speed, and verbal fluency. Additionally, transcriptomic analysis was performed from conjunctival samples to identify differentially expressed genes (DEGs) and enriched pathways. POAG patients exhibited significant RNFL thinning, which correlated with both visual field loss and cognitive impairments, particularly in terms of visual memory and executive function. Transcriptomic profiling revealed a distinct gene expression signature in POAG, including upregulation of TTBK1 and CCN2 (CTGF), genes associated with tau phosphorylation and extracellular matrix remodeling. Functional enrichment analysis indicated the involvement of neurodegenerative pathways, such as glutamate signaling, calcium signaling, and cell adhesion. Our findings support the reclassification of glaucoma as a neurodegenerative disease with both ocular and cognitive manifestations. Furthermore, biomarkers such as TTBK1 and CCN2 may serve as potential targets for early detection and neuroprotective therapy. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

18 pages, 3246 KB  
Article
Role of Endogenous Galectin-3 on Cell Biology of Immortalized Retinal Pigment Epithelial Cells In Vitro
by Caspar Liesenhoff, Marlene Hillenmayer, Caroline Havertz, Arie Geerlof, Daniela Hartmann, Siegfried G. Priglinger, Claudia S. Priglinger and Andreas Ohlmann
Int. J. Mol. Sci. 2025, 26(15), 7622; https://doi.org/10.3390/ijms26157622 - 6 Aug 2025
Viewed by 861
Abstract
Galectin-3 is a multifunctional protein that is associated with diseases of the chorioretinal interface, in which the retinal pigment epithelium (RPE) plays a central role in disease development and progression. Since galectin-3 can function extracellularly as well as intracellularly via different mechanisms, we [...] Read more.
Galectin-3 is a multifunctional protein that is associated with diseases of the chorioretinal interface, in which the retinal pigment epithelium (RPE) plays a central role in disease development and progression. Since galectin-3 can function extracellularly as well as intracellularly via different mechanisms, we developed an immortalized human RPE cell line (ARPE-19) with a knockdown for galectin-3 expression (ARPE-19/LGALS3+/−) using a sgRNA/Cas9 all-in-one expression vector. By Western blot analysis, a reduced galectin-3 expression of approximately 48 to 60% in heterozygous ARPE-19/LGALS3+/− cells was observed when compared to native controls. Furthermore, ARPE-19/LGALS3+/− cells displayed a flattened, elongated phenotype with decreased E-cadherin as well as enhanced N-cadherin and α-smooth muscle actin mRNA expression, indicating an epithelial–mesenchymal transition of the cells. Compared to wildtype controls, ARPE-19/LGALS3+/− cells had significantly reduced metabolic activity to 86% and a substantially decreased proliferation to 73%. Furthermore, an enhanced cell adhesion and a diminished migration of immortalized galectin-3 knockdown RPE cells was observed compared to native ARPE-19 cells. Finally, by Western blot analysis, reduced pAKT, pERK1/2, and β-catenin signaling were detected in ARPE-19/LGALS3+/− cells when compared to wildtype controls. In summary, in RPE cells, endogenous galectin-3 appears to be essential for maintaining the epithelial phenotype as well as cell biological functions such as metabolism, proliferation, or migration, effects that might be mediated via a decreased activity of the AKT, ERK1/2, and β-catenin signaling pathways. Full article
(This article belongs to the Special Issue Galectins (Gals), 2nd Edition)
Show Figures

Figure 1

21 pages, 9781 KB  
Article
LRG1 Alters Pericyte Phenotype and Compromises Vascular Maturation
by Alexandra E. Hoeh, Jui-Hsien Chang, Ronja S. Mueller, Mark Basche, Alessandro Fantin, Anastasios Sepetis, Giulia De Rossi, Athina Dritsoula, Robin R. Ali, Patric Turowski, Stephen E. Moss and John Greenwood
Cells 2025, 14(8), 593; https://doi.org/10.3390/cells14080593 - 14 Apr 2025
Viewed by 1859
Abstract
Upregulation of leucine-rich alpha-2-glycoprotein-1 (LRG1) contributes to aberrant neovascularization in many different diseases. In contrast, LRG1 is not involved in developmental angiogenesis. Here, we investigated the vasculopathic properties of LRG1 by examining its effect on developing retinal blood vessels. By injecting recombinant protein [...] Read more.
Upregulation of leucine-rich alpha-2-glycoprotein-1 (LRG1) contributes to aberrant neovascularization in many different diseases. In contrast, LRG1 is not involved in developmental angiogenesis. Here, we investigated the vasculopathic properties of LRG1 by examining its effect on developing retinal blood vessels. By injecting recombinant protein or an expression vector into the mouse retina during vascular development, we showed that exogenous LRG1 reduces pericyte coverage and NG2 expression. It leads to diminished collagen IV sheathing, fewer adhesion and gap junctions, and reduced vessel calibre and vascular density. Moreover, in mouse retinae containing exogenous LRG1, the developing blood–retinal barrier remains more permeable with significantly higher numbers of transcytotic vesicles present in microvascular endothelial cells. These results reveal that exogeneous LRG1 is sufficient to interfere with the maturation of developing retinal vessels and drive vessel development towards a dysfunctional phenotype. These observations deliver further evidence that LRG1 is an angiopathic factor and highlight the therapeutic potential of blocking LRG1 in diseases characterized by pathogenic angiogenesis or vascular remodelling. Full article
Show Figures

Graphical abstract

18 pages, 5915 KB  
Article
In Silico Analysis of miRNA-Regulated Pathways in Spinocerebellar Ataxia Type 7
by Verónica Marusa Borgonio-Cuadra, Aranza Meza-Dorantes, Nonanzit Pérez-Hernández, José Manuel Rodríguez-Pérez and Jonathan J. Magaña
Curr. Issues Mol. Biol. 2025, 47(3), 170; https://doi.org/10.3390/cimb47030170 - 2 Mar 2025
Viewed by 1542
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, caused by an abnormal expansion of the CAG trinucleotide in the coding region of the ATXN7 gene. Currently, in silico analysis is used to explore mechanisms [...] Read more.
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, caused by an abnormal expansion of the CAG trinucleotide in the coding region of the ATXN7 gene. Currently, in silico analysis is used to explore mechanisms and biological processes through bioinformatics predictions in various neurodegenerative diseases. Therefore, the aim of this study was to identify candidate human gene targets of four miRNAs (hsa-miR-29a-3p, hsa-miR-132-3p, hsa-miR-25-3p, and hsa-miR-92a-3p) involved in pathways that could play an important role in SCA7 pathogenesis through comprehensive in silico analysis including the prediction of miRNA target genes, Gen Ontology enrichment, identification of core genes in KEGG pathways, transcription factors and validated miRNA target genes with the mouse SCA7 transcriptome data. Our results showed the participation of the following pathways: adherens junction, focal adhesion, neurotrophin signaling, endoplasmic reticulum processing, actin cytoskeleton regulation, RNA transport, and apoptosis and dopaminergic synapse. In conclusion, unlike previous studies, we highlight using a bioinformatics approach the core genes and transcription factors involved in the different biological pathways and which ones are targets for the four miRNAs, which, in addition to being associated with neurodegenerative diseases, are also de-regulated in the plasma of patients with SCA7. Full article
Show Figures

Figure 1

16 pages, 12401 KB  
Article
Glucose-Sensing Carbohydrate Response Element-Binding Protein in the Pathogenesis of Diabetic Retinopathy
by Christopher R. Starr, Assylbek Zhylkibayev, Oleg Gorbatyuk, Alli M. Nuotio-Antar, James Mobley, Maria B. Grant and Marina Gorbatyuk
Cells 2025, 14(2), 107; https://doi.org/10.3390/cells14020107 - 13 Jan 2025
Cited by 2 | Viewed by 1663
Abstract
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of [...] Read more.
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry. qRT-PCR was performed to quantify gene expression. To explore the role of ChREBP in rods, we generated caChREBPRP mice with constitutively active (ca) ChREBP. These mice underwent retinal functional testing, which was followed by proteomic analysis using LC-MS. Furthermore, ARPE-19 cells were infected with lentiviral particles expressing human ChREBP (ARPE-19ChREBP) and subjected to global proteomics. Our results demonstrate that both proteins were expressed across the retina, although with distinct distribution patterns: MondoA was more prominently expressed in cones, while ChREBP was broadly expressed throughout the retina. Elevated expression of both proteins was observed in DR. This may have contributed to rod photoreceptor degeneration, as we observed diminished scotopic ERG amplitudes in caChREBPRP mice at P35. The retinal proteomic landscape revealed a decline in the KEGG pathways associated with phototransduction, amino acid metabolism, and cell adhesion. Furthermore, rod-specific caChREBP induced TXNIP expression. Consistent with altered retinal proteomics, ARPE-19ChREBP cells exhibit a metabolic shift toward increased glyoxylate signaling, sugar metabolism, and lysosomal activation. Our study demonstrates that ChREBP overexpression causes significant metabolic reprogramming triggering retinal functional loss in mice. Full article
(This article belongs to the Special Issue Mechanism of Cell Signaling during Eye Development and Diseases)
Show Figures

Figure 1

24 pages, 18910 KB  
Article
ADAMTS13 Improves Endothelial Function and Reduces Inflammation in Diabetic Retinopathy
by Ahmed M. Abu El-Asrar, Mohd I. Nawaz, Ajmal Ahmad, Mairaj Siddiquei, Eef Allegaert, Lowie Adyns, Lotte Vanbrabant, Priscilla W. Gikandi, Gert De Hertogh, Sofie Struyf and Ghislain Opdenakker
Cells 2025, 14(2), 85; https://doi.org/10.3390/cells14020085 - 9 Jan 2025
Cited by 7 | Viewed by 2580
Abstract
The protease, a disintegrin and metalloproteinase with thrombospondin type 1 motif member 13 (ADAMTS13), known to cleave only the von Willebrand factor (VWF), has powerful regulatory effects on microvascular platelet adhesion, thrombosis, inflammation, and endothelial dysfunction. We study the protection against diabetes-induced retinal [...] Read more.
The protease, a disintegrin and metalloproteinase with thrombospondin type 1 motif member 13 (ADAMTS13), known to cleave only the von Willebrand factor (VWF), has powerful regulatory effects on microvascular platelet adhesion, thrombosis, inflammation, and endothelial dysfunction. We study the protection against diabetes-induced retinal injury in experimental rats by supplementation with recombinant ADAMTS13. We compare human epiretinal membranes and vitreous samples from nondiabetic subjects and patients with proliferative diabetic retinopathy (PDR) and extend in vitro analyses with the use of various immunodetection and spectrofluorimetric methods on rat retina and human retinal glial and endothelial cell cultures. Functional studies include the assessment of the blood–retinal barrier (BRB), cell adhesion, and in vitro angiogenesis. In epiretinal membranes, endothelial cells and monocytes/macrophages express ADAMTS13. The levels of VWF, the platelet marker CD41, ADAMTS13, and the biomarkers of endothelial cell injury soluble VE-cadherin and soluble syndecan-1 are increased in PDR vitreous. ADAMTS13 is downregulated in diabetic rat retinas. The intravitreal administration of ADAMTS13 attenuates diabetes-induced BRB breakdown, the downregulation of VE-cadherin and β-catenin, and the upregulation of VWF, CD41, phospho-ERK1/2, HMGB1, VCAM-1, and ICAM-1. In Müller cells, ADAMTS13 attenuates MCP-1, MMP-9, and ROS upregulation induced by diabetic mimetic conditions. In HRMECs, ADAMTS13 attenuates the shedding of the soluble VE-cadherin and soluble syndecan-1 and the levels of phospho-ERK1/2, MCP-1, fractalkine, and ROS induced by diabetic mimetic conditions, the upregulation of ICAM-1 and VCAM-1 elicited by TNF-α, the adherence of monocytes induced by TNF-α, and VEGF-induced migration of human retinal microvascular endothelial cells. Our findings suggest that enhancing ADAMTS13 levels in situ ameliorates diabetes-induced retinal inflammation and vascular dysfunction. Full article
Show Figures

Figure 1

18 pages, 1166 KB  
Review
The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications
by Cheng-Yung Lee and Chang-Hao Yang
Int. J. Mol. Sci. 2025, 26(1), 378; https://doi.org/10.3390/ijms26010378 - 4 Jan 2025
Cited by 3 | Viewed by 2085
Abstract
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have [...] Read more.
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies. Fractalkine (CX3CL1), a chemokine with dual roles as a membrane-bound adhesion molecule and a soluble chemoattractant, has emerged as a potential therapeutic target. Its receptor, CX3CR1, is expressed on immune cells and mediates processes such as immune cell recruitment and microglial activation through intracellular signaling pathways. In DR, soluble fractalkine plays critical roles in retinal inflammation, angiogenesis, and neuroprotection, balancing tissue damage and repair. In DR, elevated fractalkine levels are associated with retinal inflammation and endothelial dysfunction. Experimental studies suggest that fractalkine deficiency exacerbates the severity of diabetic retinopathy (DR), whereas exogenous fractalkine appears to reduce inflammation, oxidative stress, and neuronal damage. However, its role in pathological angiogenesis within DR remains unclear and warrants further investigation. Preclinical evidence indicates that fractalkine may hold therapeutic potential, particularly in mitigating tissue injury and inflammation associated with early-stage DR. Full article
Show Figures

Figure 1

14 pages, 787 KB  
Article
Soluble P-Selectin as an Indicator of Cutaneous Microangiopathy in Uncomplicated Young Patients with Type 1 Diabetes
by Jolanta Neubauer-Geryk, Małgorzata Myśliwiec, Katarzyna Zorena and Leszek Bieniaszewski
Life 2024, 14(12), 1587; https://doi.org/10.3390/life14121587 - 2 Dec 2024
Cited by 2 | Viewed by 1235
Abstract
This study aimed to analyze the relationship between cutaneous microcirculation reactivity, retinal circulation, macrocirculation function, and specific adhesion molecules in young patients with uncomplicated type 1 diabetes. Fifty-five patients with type 1 diabetes mellitus (T1DM), aged 8 to 18 years, were divided into [...] Read more.
This study aimed to analyze the relationship between cutaneous microcirculation reactivity, retinal circulation, macrocirculation function, and specific adhesion molecules in young patients with uncomplicated type 1 diabetes. Fifty-five patients with type 1 diabetes mellitus (T1DM), aged 8 to 18 years, were divided into subgroups based on skin microcirculation reactivity. The cutaneous microcirculatory vessels were considered reactive if post-test PORH coverage increased compared to pre-test coverage. Optical coherence tomography (OCT) was conducted to detect early retinopathic changes. Macrocirculation was described using pulsatility indices (PIs) determined for common carotid (CCA) and peripheral arteries of the upper and lower limbs. The ankle–brachial index was also assessed. There were no significant differences in retinal circulation and macrocirculation between the studied subgroups. However, there were significant differences between the various subgroups concerning the age at onset of diabetes and the sP-selectin levels but not ICAM-1 and sVCAM-1. The sP-selectin differences remained true after adjusting for age at onset. The sP-selectin level was significantly higher in the subgroup of patients with non-reactive cutaneous microcirculation. The results of our study indicate that sP-selectin may be considered as an immunological marker for cutaneous abnormalities, which serve as an early indicator of endothelial dysfunction in young patients with type 1 diabetes in the absence of classical complication. Full article
(This article belongs to the Special Issue Management of Patients with Diabetes)
Show Figures

Figure 1

19 pages, 4206 KB  
Article
Alpha-Tocopherol-Infused Flexible Liposomal Nanocomposite Pressure-Sensitive Adhesive: Enhancing Skin Permeation of Retinaldehyde
by Kanokwan Singpanna, Puchapong Jiratananan, Santipharp Paiboonwasin, Nawinda Petcharawuttikrai, Prin Chaksmithanont, Chaiyakarn Pornpitchanarong and Prasopchai Patrojanasophon
Polymers 2024, 16(20), 2930; https://doi.org/10.3390/polym16202930 - 18 Oct 2024
Cited by 1 | Viewed by 2734
Abstract
Retinaldehyde (RAL), or retinal, is a vitamin A derivative that is widely used for several skin conditions. However, it is light sensitive and has low water solubility, limiting its efficiency in transdermal delivery. This study developed a novel delivery system for retinal (RAL) [...] Read more.
Retinaldehyde (RAL), or retinal, is a vitamin A derivative that is widely used for several skin conditions. However, it is light sensitive and has low water solubility, limiting its efficiency in transdermal delivery. This study developed a novel delivery system for retinal (RAL) using flexible liposomes (FLPs) infused with α-tocopherol succinate (α-TS) to improve stability, and enhance skin permeability. The RAL-FLPs were embedded in pressure-sensitive adhesive (PSA) hydrogels, creating a delivery platform that supports prolonged skin residence and efficient permeation of RAL. The stability and skin permeation as well as human skin irritation and adhesion capabilities were assessed to determine the formulation’s safety and efficacy. Our findings suggested that the addition of α-TS could improve liposomal stability and RAL chemical stability. Moreover, the skin permeation and fluorescence microscopic-based studies suggested that the addition of α-TS could enhance skin permeability of RAL through hair follicles. The RAL-FLP was embedded in PSA hydrogels fabricated from 25% GantrezTM S-97 (GT) and 1% hyaluronic acid (Hya) with aluminum as a crosslinker. The PSA hydrogel exhibited desirable peeling and tacking strengths. The developed hydrogels also demonstrated greater skin deposition of RAL compared with its aqueous formulation. Additionally, the RAL-FLP-embedded PSA hydrogels showed no skin irritation and maintained better adhesion for up to 24 h compared to commercial patches. Hence, the developed hydrogels could serve as a beneficial platform for delivering RAL in treating skin conditions. Full article
(This article belongs to the Special Issue Biopolymer Composites for Biomedicine Applications)
Show Figures

Figure 1

20 pages, 10279 KB  
Article
Exploration into Galectin-3 Driven Endocytosis and Lattices
by Massiullah Shafaq-Zadah, Estelle Dransart, Satish Kailasam Mani, Julio Lopes Sampaio, Lydia Bouidghaghen, Ulf J. Nilsson, Hakon Leffler and Ludger Johannes
Biomolecules 2024, 14(9), 1169; https://doi.org/10.3390/biom14091169 - 18 Sep 2024
Cited by 6 | Viewed by 2935
Abstract
Essentially all plasma membrane proteins are glycosylated, and their activity is regulated by tuning their cell surface dynamics. This is achieved by glycan-binding proteins of the galectin family that either retain glycoproteins within lattices or drive their endocytic uptake via the clathrin-independent glycolipid-lectin [...] Read more.
Essentially all plasma membrane proteins are glycosylated, and their activity is regulated by tuning their cell surface dynamics. This is achieved by glycan-binding proteins of the galectin family that either retain glycoproteins within lattices or drive their endocytic uptake via the clathrin-independent glycolipid-lectin (GL-Lect) mechanism. Here, we have used immunofluorescence-based assays to analyze how lattice and GL-Lect mechanisms affect the internalization of the cell adhesion and migration glycoprotein α5β1 integrin. In retinal pigment epithelial (RPE-1) cells, internalized α5β1 integrin is found in small peripheral endosomes under unperturbed conditions. Pharmacological compounds were used to competitively inhibit one of the galectin family members, galectin-3 (Gal3), or to inhibit the expression of glycosphingolipids, both of which are the fabric of the GL-Lect mechanism. We found that under acute inhibition conditions, endocytic uptake of α5β1 integrin was strongly reduced, in agreement with previous studies on the GL-Lect driven internalization of the protein. In contrast, upon prolonged inhibitor treatment, the uptake of α5β1 integrin was increased, and the protein was now internalized by alternative pathways into large perinuclear endosomes. Our findings suggest that under these prolonged inhibitor treatment conditions, α5β1 integrin containing galectin lattices are dissociated, leading to an altered endocytic compartmentalization. Full article
(This article belongs to the Special Issue Cell Biology and Biomedical Application of Galectins)
Show Figures

Figure 1

9 pages, 6139 KB  
Article
Multimodal Evaluation and Management of Wagner Syndrome—Three Patients from an Affected Family
by Tomasz Szeligowski, Jasmina Cehajic-Kapetanovic, Shabnam Raji, Ravi Purohit, Hoda Amin, Chetan K. Patel and Kanmin Xue
Genes 2024, 15(9), 1178; https://doi.org/10.3390/genes15091178 - 8 Sep 2024
Cited by 1 | Viewed by 2001
Abstract
Wagner syndrome is a rare autosomal dominant vitreoretinopathy caused by mutations in chondroitin sulphate proteoglycan 2 (CSPG2)/Versican (VCAN). Here, we present a retrospective case series of a family pedigree with genetically confirmed Wagner syndrome (heterozygous VCAN exon 8 deletion), as follows: a 34-year-old [...] Read more.
Wagner syndrome is a rare autosomal dominant vitreoretinopathy caused by mutations in chondroitin sulphate proteoglycan 2 (CSPG2)/Versican (VCAN). Here, we present a retrospective case series of a family pedigree with genetically confirmed Wagner syndrome (heterozygous VCAN exon 8 deletion), as follows: a 34-year-old mother (P1), 12-year-old daughter (P2), and a 2-year-old son (P3). The phenotype included early-onset cataract (P1), optically empty vitreous with avascular membranes (P1, 2), nasal dragging of optic nerve heads associated with foveal hypoplasia (P1, 2), tractional retinoschisis on optical coherence tomography (P2), and peripheral circumferential vitreo-retinal interface abnormality resembling white-without-pressure (P3) progressing to pigmented chorio-retinal atrophy (P1, 2). P2 developed a macula-off retinal detachment, which was treated initially with encircling band + vitrectomy + gas, followed by vitrectomy + heavy silicone oil tamponade for re-detachment from new inferior breaks. Strong vitreo-retinal adhesion was noted intraoperatively, which prevented the separation of posterior hyaloid beyond the equator. Electroretinograms from P1&2 demonstrated attenuated b-waves, a-waves, and flicker responses in light- and dark-adapted conditions, suggestive of generalised retinal dysfunction. Our patients demonstrated the clinical spectrum of Wagner syndrome, highlighting nasal dragging with foveal disruption as a distinguishing feature from other inherited vitreoretinopathies. Surgical outcomes demonstrate significant challenges in managing vitreo-retinal traction and need for further research into strategies to prevent sight loss. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 2721 KB  
Article
Nogo Receptor Antagonist LOTUS Promotes Neurite Outgrowth through Its Interaction with Teneurin-4
by Yuji Kurihara, Yuki Kawaguchi, Yuki Ohta, Nana Kawasaki, Yuki Fujita and Kohtaro Takei
Cells 2024, 13(16), 1369; https://doi.org/10.3390/cells13161369 - 17 Aug 2024
Viewed by 1754
Abstract
Neurite outgrowth is a crucial process for organizing neuronal circuits in neuronal development and regeneration after injury. Regenerative failure in the adult mammalian central nervous system (CNS) is attributed to axonal growth inhibitors such as the Nogo protein that commonly binds to Nogo [...] Read more.
Neurite outgrowth is a crucial process for organizing neuronal circuits in neuronal development and regeneration after injury. Regenerative failure in the adult mammalian central nervous system (CNS) is attributed to axonal growth inhibitors such as the Nogo protein that commonly binds to Nogo receptor-1 (NgR1). We previously reported that lateral olfactory tract usher substance (LOTUS) functions as an endogenous antagonist for NgR1 in forming neuronal circuits in the developing brain and improving axonal regeneration in the adult injured CNS. However, another molecular and cellular function of LOTUS remains unknown. In this study, we found that cultured retinal explant neurons extend their neurites on the LOTUS-coating substrate. This action was also observed in cultured retinal explant neurons derived from Ngr1-deficient mouse embryos, indicating that the promoting action of LOTUS on neurite outgrowth may be mediated by unidentified LOTUS-binding protein(s). We therefore screened the binding partner(s) of LOTUS by using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). LC-MS/MS analysis and pull-down assay showed that LOTUS interacts with Teneurin-4 (Ten-4), a cell adhesion molecule. RNAi knockdown of Ten-4 inhibited neurite outgrowth on the LOTUS substrate in retinoic acid (RA)-treated Neuro2A cells. Furthermore, a soluble form of Ten-4 attenuates the promoting action on neurite outgrowth in cultured retinal explant neurons on the LOTUS substrate. These results suggest that LOTUS promotes neurite outgrowth by interacting with Ten-4. Our findings may provide a new molecular mechanism of LOTUS to contribute to neuronal circuit formation in development and to enhance axonal regeneration after CNS injury. Full article
Show Figures

Figure 1

22 pages, 9384 KB  
Article
Modulation of Extracellular Matrix Composition and Chronic Inflammation with Pirfenidone Promotes Scar Reduction in Retinal Wound Repair
by Laura Jahnke, Virginie Perrenoud, Souska Zandi, Yuebing Li, Federica Maria Conedera and Volker Enzmann
Cells 2024, 13(2), 164; https://doi.org/10.3390/cells13020164 - 16 Jan 2024
Cited by 4 | Viewed by 2898
Abstract
Wound repair in the retina is a complex mechanism, and a deeper understanding of it is necessary for the development of effective treatments to slow down or even prevent degenerative processes leading to photoreceptor loss. In this study, we harnessed a laser-induced retinal [...] Read more.
Wound repair in the retina is a complex mechanism, and a deeper understanding of it is necessary for the development of effective treatments to slow down or even prevent degenerative processes leading to photoreceptor loss. In this study, we harnessed a laser-induced retinal degeneration model (532-nm laser photocoagulation with 300 μm spot size, 60 ms duration and 60 mV pulse), enabling a profound molecular elucidation and a comprehensive, prolonged observation of the wound healing sequence in a murine laser-induced degeneration model (C57BL/6J mice, 6–12 weeks) until day 49 post-laser. Our observations included the expression of specific extracellular matrix proteins and myofibroblast activity, along with an analysis of gene expression related to extracellular matrix and adhesion molecules through RNA measurements. Furthermore, the administration of pirfenidone (10 mg/kg via drinking water), an anti-inflammatory and anti-fibrotic compound, was used to modulate scar formation after laser treatment. Our data revealed upregulated collagen expression in late regenerative phases and sustained inflammation in the damaged tissue. Notably, treatment with pirfenidone was found to mitigate scar tissue formation, effectively downregulating collagen production and diminishing the presence of inflammatory markers. However, it did not lead to the regeneration of the photoreceptor layer. Full article
Show Figures

Figure 1

16 pages, 10406 KB  
Article
Extraciliary OFD1 Is Involved in Melanocyte Survival through Cell Adhesion to ECM via Paxillin
by Nan-Hyung Kim, Chang Hoon Lee and Ai-Young Lee
Int. J. Mol. Sci. 2023, 24(24), 17528; https://doi.org/10.3390/ijms242417528 - 15 Dec 2023
Cited by 1 | Viewed by 1715
Abstract
Primary cilia play a significant role in influencing cell fate, including apoptosis in multiple cell types. In the lesional epidermis of vitiligo patients, a reduced number of ciliated cells was observed. Our study also revealed a downregulation of oral–facial digital syndrome type 1 [...] Read more.
Primary cilia play a significant role in influencing cell fate, including apoptosis in multiple cell types. In the lesional epidermis of vitiligo patients, a reduced number of ciliated cells was observed. Our study also revealed a downregulation of oral–facial digital syndrome type 1 (OFD1) in the affected skin of vitiligo patients. However, it remains unknown whether primary cilia are involved in the control of melanocyte apoptosis. While both intraflagellar transport 88 (IFT88) and retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L) are associated with ciliogenesis in melanocytes, only the knockdown of OFD1, but not IFT88 and RPGRIP1L, resulted in increased melanocyte apoptosis. OFD1 knockdown led to a decrease in the expression of proteins involved in cell–extracellular matrix (ECM) interactions, including paxillin. The OFD1 amino acid residues 601-1012 interacted with paxillin, while the amino acid residues 1-601 were associated with ciliogenesis, suggesting that the OFD1 domains responsible for paxillin binding are distinct from those involved in ciliogenesis. OFD1 knockdown, but not IFT88 knockdown, inhibited melanocyte adhesion to the ECM, a defect that was restored by paxillin overexpression. In summary, our findings indicate that the downregulation of OFD1 induces melanocyte apoptosis, independent of any impairment in ciliogenesis, by reducing melanocyte adhesion to the ECM via paxillin. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

Back to TopTop