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Abstract: Wound repair in the retina is a complex mechanism, and a deeper understanding of it is
necessary for the development of effective treatments to slow down or even prevent degenerative
processes leading to photoreceptor loss. In this study, we harnessed a laser-induced retinal degen-
eration model (532-nm laser photocoagulation with 300 µm spot size, 60 ms duration and 60 mV
pulse), enabling a profound molecular elucidation and a comprehensive, prolonged observation of the
wound healing sequence in a murine laser-induced degeneration model (C57BL/6J mice, 6–12 weeks)
until day 49 post-laser. Our observations included the expression of specific extracellular matrix
proteins and myofibroblast activity, along with an analysis of gene expression related to extracellular
matrix and adhesion molecules through RNA measurements. Furthermore, the administration of
pirfenidone (10 mg/kg via drinking water), an anti-inflammatory and anti-fibrotic compound, was
used to modulate scar formation after laser treatment. Our data revealed upregulated collagen
expression in late regenerative phases and sustained inflammation in the damaged tissue. Notably,
treatment with pirfenidone was found to mitigate scar tissue formation, effectively downregulating
collagen production and diminishing the presence of inflammatory markers. However, it did not
lead to the regeneration of the photoreceptor layer.

Keywords: retina degeneration; wound repair; extracellular matrix; pirfenidone; fibrosis; inflammation;
collagen

1. Introduction

Retinal fibrosis, which is the final phase of photoreceptor loss in retinal diseases
such as age-related macular degeneration (AMD), includes the formation of degenerated
tissue in the eye as a result of inflammatory responses and wound healing. The wound
healing process is typically segmented into four distinct phases: hemostasis, inflammation,
proliferation, and maturation. Fibrosis is a pathological condition characterized by the
excessive accumulation of fibrous connective tissue, primarily composed of collagen. This
process is a response to chronic inflammation, injury, or other underlying disorders and
can lead to impaired tissue function and structural alterations. A fibrotic scar is formed
by new extracellular matrix (ECM) hindering repair and resulting in vision loss [1,2]. In
AMD, alteration of Bruch’s membrane and chronic inflammation may lead to photoreceptor
loss [3]. Numerous publications have established a connection between increased cytokine
expression and progression of AMD [4–7]. Furthermore, local inflammation resulting from
the buildup of cellular debris has been found to trigger drusen formation in AMD patients
across all stages [8]. IL-1β has been shown to cause neurodegenerative damage, particularly
in tissue with long-term exposure [9,10]. Tumor necrosis factor–alpha (TNF-α), among
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others, has also been associated with the pathogenesis of AMD, and increased expression
of this factor was found in a laser-induced choroidal neovascularization (CNV) model in
mice [11]. Re-inflammation during the wound healing process leads to an inhibition of
regeneration as new healthy tissue is damaged and cytokines have a profound modulatory
effect on the regenerative activity of endogenous stem cells and progenitor cells [12]. As a
result of chronic inflammation, the axons of neurons in the affected area continue to lose
their ability to interact with other surrounding neurons and thus lose their functionality to
process visual information to the brain [13].

Therefore, we aim to inhibit fibrosis and inflammation during the proliferative stage
of wound healing by studying the influence of the non-peptide synthetic molecule pir-
fenidone (PFD) on retinal degeneration after laser-induced damage in the outer nuclear
layer (ONL). PFD thus blocks transforming growth factor-beta (TGF-β). TGF-β is a mul-
tifunctional factor in fibrotic remodeling, capable of triggering myofibroblast transition,
activating Smad signaling, and promoting the production of ECM [14]. Especially in the
retina, transforming growth factor β (TGF-β) signaling demonstrates pleiotropic effects
on various types of retinal cells, contributing to a wide array of functions, including the
maintenance of retinal neuronal differentiation and viability, as well as the regulation of
retinal vessel development and structural integrity [15]. PFD was approved in 2011 by the
European Medicines Agency (EMA) and in 2014 by the U.S. Food and Drug Administration
(Esbriet®) for the treatment of fibrotic diseases such as idiopathic pulmonary fibrosis in
adults. Idiopathic pulmonary fibrosis is a chronic fibrotic and inflammatory lung disease
characterized by release of pro-inflammatory cytokines, such as TNF-α and IL-1β. Al-
though the exact mechanism of action is not fully understood, the activity of connective
tissue growth factor (CTGF), platelet-derived growth factor (PDGF), α-smooth muscle actin
(α-SMA), and TGF-β is inhibited in the lung, as is the production of TNF-α, which plays
an important role in inflammation [16,17]. It has also demonstrated interactions with a
range of additional molecules known to play a role in fibrotic diseases. Thus, either direct
(inhibition of IL-1β, IL-6, IL-12p40, IL-13, IL-18 and increase of IL-10 secretion) or indirect
(inhibition of TGF-β1-induced over-expression of collagen type I and heat shock protein
47) actions are observed [18]. PFD also reduces fibroblast proliferation and the formation
of fibrosis-associated proteins, such as collagen and fibronectin [17,19]. In ophthalmology,
animal investigations suggest that PFD may have antifibrotic therapeutic potential for pro-
liferative vitreoretinopathy (PVR) and could offer a promising approach to treating corneal
haze [20–22]. Furthermore, in other experimental mouse models focused on choroidal
neovascularization (CNV), it was shown that treatment with PFD leads to the inhibition
of the fibrosis markers TGF-β2, Smad2/3 and a-SMA [14,23]. PFD treatment offers also a
promising avenue for addressing other eye pathologies involving inflammatory cytokines
and pro-fibrotic growth factors [24].

In this study, the laser-induced retinal degeneration model led to photoreceptor loss
with minimal rupture of Bruch’s membrane followed by ECM formation and consequently
scar formation in a focal area. After laser photocoagulation, we studied gene and protein
levels of ECM proteins in the damaged retina. Furthermore, we investigated the impact
of inhibiting inflammation and development of fibrosis with PFD on the formation of the
ECM during retinal scar formation.

2. Materials and Methods
2.1. Laser-Induced Retinal Damage

All animal experiments followed the recommendations in the ARRIVE guidelines.
Adult C57BL/6J mice (6–12 weeks, both sexes; Charles River Germany, Sulzfeld, Germany)
were kept under standard conditions in individually ventilate cages (IVC) in a temperature-
controlled animal facility with a 12-h light/dark cycle. They were fed standard laboratory
chow and water ad libitum.

The mice were anesthetized with 1 mg/kg medetomidine (Domitor, 1 mg/mL; Provet
AG, Lyssach, Switzerland) and 80 mg/kg ketamine (Ketalar, 50 mg/mL; Parke-Davis,
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Zurich, Switzerland). The pupils were dilated with 2.5% phenylephrine and 0.5% tropi-
camide (ISPI, Bern, Switzerland). Hydroxypropyl methylcellulose (Methocel 2%; OmniVi-
sion AG, Neuhausen, Switzerland) was applied to keep the eyes hydrated. To induce retinal
damage in the ONL without Bruch’s membrane rupture, the eyes were lasered using a
300 µm spot size, a 60 ms duration, and 60 mV pulses of an 532-nm laser photocoagulation
(Visulas 532s laser workstation with slit lamp; Carl Zeiss Meditec AG, Jena, Germany).
Eight laser spots were centered with 2–3 disk diameters from the optic nerve, using a
coverslip to allow for viewing of the posterior pole of the eye. Lesions in which bubbles,
a criterion for Bruch’s membrane rupture, were identified during the laser process were
excluded from the study.

2.2. Pharmacological Treatment

Pirfenidone (PFD; 10 mg/kg; Catalog No. S2907, Selleck Chemicals, Houston, TX,
USA) was administered via drinking water. To protect drug stability, the water bottles were
shielded from light. The control animals received an equal amount of water under the
same conditions. For monitoring, the animals were weighed three times per week. Water
consumption was measured daily, and the water was changed on a daily basis. The PFD
treatments started on day 14 post-laser injury until samples were collected (day 21, day
35, and day 42 post-laser). Additionally, to investigate the influence of retinal recovery,
we terminated the PFD treatment on day 35 post-laser injury and harvested the retina
7 days later on day 42 post-laser. This sequence is defined as “D42 PFD D35” throughout
the manuscript.

2.3. Histology

Paraffin-embedded sections (5 µm) of mouse eyes were deparaffinized and rehydrated
with a graded series of xylol and alcohol. The sections were stained for 5 min with
hematoxylin (Sigma, St. Louis, MO, USA) and 1 min with eosin (Roth, Karlsruhe, Germany)
and then mounted with Eukitt® (Medite Service AG, Dietikon, Switzerland).

2.4. Immunohistochemistry

For immunostaining (IHC), deparaffinized samples were blocked at room temperature
in blocking solution containing 3% normal goat serum (Agilent Technologies, Santa Clara,
CA, USA), 0.5% casein (Sigma), and 0.05% Triton X-100 (Sigma) in Tris buffered saline (TBS)
for 30 min. Primary antibodies (Abs) were added and incubated at 4 ◦C overnight; these
were either Abs against gliosis-specific markers or ECM-relevant proteins, as summarized in
Table 1. After incubation, sections were washed for 20 min and stained at room temperature
with the respective secondary Abs (1:500; Alexa Fluor® 488 & 594 Abcam, Cambridge, UK)
and 4′,6-Diamidino-2-phenylindole (DAPI; Sigma) to counterstain nuclei for identification
for 3 h. Images were acquired using a Nikon Eclipse 80i microscope (Nikon, Tokyo,
Japan) at 20× magnification and processed using Image J 1.51n (Fiji-win64, NIH, Bethesda,
MD, USA).

Table 1. Primary antibodies used for immunostaining (IHC) and Western blot (WB) analysis.

Antibody Species Type Dilution Company Catalog. No.

αSMA Rabbit monoclonal 1:200 (IHC) 1:1000 (WB) Novus Biologicals,
Centennial, CO, USA NBP2-67436

GS Rabbit monoclonal 1:200 (IHC) Abcam, Cambridge, UK ab16802
Isolectin
GS-IB4

Griffonia
simplicifolia - 1:500 (IHC) ThermoFisher Scientific,

Reinach, Switzerland I21412

GFAP Mouse monoclonal 1:1000 (IHC) 1:1000 (WB) Novus Biologicals NBP1-05197
Collagen 1 Rabbit polyclonal 1:200 (IHC) 1:1000 (WB) Novus Biologicals NB600-408
Collagen 3 Rabbit polyclonal 1:200 (IHC) Novus Biologicals NB600-594
Collagen 4 Rabbit polyclonal 1:200 (IHC) 1:1000 (WB) Novus Biologicals PA1-28534
Collagen 5 Rabbit polyclonal 1:200 (IHC) Novus Biologicals NBP1-68938
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Table 1. Cont.

Antibody Species Type Dilution Company Catalog. No.

Fibronectin Rabbit polyclonal 1:200 (IHC) 1:1000 (WB) Novus Biologicals NBP1-91258
GAPDH Mouse monoclonal 1:1000 (WB) Novus Biologicals NB300-221

IL-1β Rabbit polyclonal 1:200 (IHC) Abcam ab9722
Versican Rabbit monoclonal 1:200 (WB) Novus Biologicals NBP2-75706

To determine the number of cells in the ganglion cell layer (GCL), the inner nuclear
layer (INL), and the ONL, manual counting was performed within the lasered area in the
hematoxylin and eosin (H&E) images. The size of the counted area corresponded to a
retinal section 100 µm in length.

2.5. Western Blot Analysis

To obtain tissue, the eyes were enucleated immediately after optical coherence tomog-
raphy (OCT) imaging. The retinas were microsurgically isolated from the choroid-retinal
pigment epithelium (RPE) complex, and two were combined in 100 µL of lysis buffer
(Table 2). There, they were supplemented with a protease inhibitor cocktail (cOmplete™
Mini; Merck, Darmstadt, Germany) and phosphatase inhibitors cocktail (P2850; Sigma)
and homogenized (Precellys® 24 tissue homogenizer; Bertin Technologies S.A.S, Montigny-
le-Bretonneux, France). The lysate was centrifuged (12,000 rpm, 15 min, 4 ◦C), and the
supernatant was collected. Each sample containing 30 µg of total protein, as quantified us-
ing the Bradford assay (ThermoFisher Scientific, Reinach, Switzerland), was separated via
SDS-PAGE and electroblotted onto nitrocellulose membranes (Trans-Blot® Turbo™ Transfer
System; Bio-Rad Laboratories, Cressier, Switzerland). To block nonspecific binding, the
membranes were washed with milk Intercept™ (TBS) Blocking Buffer (LI-COR, Lincoln,
NE, USA) and subsequently incubated at 4 ◦C overnight, followed by incubation for 3 h
with a donkey anti-rabbit IgG polyclonal antibody (IRDye® 800CW) or donkey anti-mouse
IgG polyclonal antibody (IRDye® 680RD), respectively. The signals were visualized using
infrared laser (Li-Core Odyssey; LI-COR). Quantification was performed using Fiji-win64
(Image J; NIH).

Table 2. Lysis buffer ingredients.

Ingredients Concentration

Tris-HCl (pH 7.5) 20 mM
NaCl 150 mM
EDTA 5 mM

Na-Pyrophosphate 5 mM
NaH2PO4 (pH 7.6) 20 mM

Na-β-glycerophosphate 3 mM
NaF 10 mM

2.6. RNA Extraction and RT-qPCR

Total RNA from the retinas, including negative controls (uninjured retinas without
drug treatment from age-matched siblings), was extracted at different time points (days 21,
35, and 42 days post-laser) after PFD treatment using the TRIzol™ (Thermo Fisher Scientific)
according to the manufacturer’s instructions. Three independent samples from two pooled
retinas were used for each condition. The cDNA was reverse-transcripted using iScript
cDNA Synthesis Kit (Bio-Rad) according to the manufacturer’s instructions and quantified
using a NANODROP 1000 spectrophotometer (Thermo Fisher Scientific). The primer sets
are summarized in Table 3. RT-PCR was performed in a 20 µL reaction containing cDNA
specific primers with iTaqTM Universal SYBR Green Supermix (Bio-Rad) using the CFX
Connect™ Real-Time PCR Detection System (Bio-Rad). The thermocycling conditions were
as follows: 98 ◦C for 3 min, followed by 40 cycles at 98 ◦C for 15 s, 58 ◦C for 15 s, and 72 ◦C
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for 15 s. The relative abundance of transcripts was normalized according to the relative
abundance of the reference gene glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).
Gene expression was measured according to the change in threshold (∆∆CT). Expression
data were presented as mean± SD calculated against the negative control samples, and
expression in the control samples was set to 1.

Table 3. Primer Pairs for RT-qPCR.

Gene Forward 5′-3′ Reverse 5′-3′ Annealing Temp.

IL-1β GCC CAT CCT CTG TGA CTC AT AGG CCA CAG GTA TTT TGT CG 58 ◦C

GAPDH TGC ACC ACC AAC TGC TTA GC GGC ATG GAC TGT GGT CAT GAG 58 ◦C

2.7. RT2 Profiler PCR Array

A SYBR green-based quantitative real-time RT2 qPCR array was used to profile genes
involved in ECM composition as well as adhesion molecule deposition via cell–cell and cell–
matrix interactions according to the manufacturer’s instructions (PAMM-013Z; QIAGEN,
Hilden, Germany). The 96-well RT2 profile plate contained primers for 84 genes of interest
(Table 4), five housekeeping genes, and three negative control wells. Also included are
control elements for data normalization, genomic DNA contamination detection, RNA
sample quality and general PCR performance. RNA extraction was performed as described
previously. Briefly, 111 µL cDNA was added to the master mix, and then 25 µL was
pipetted into each well. Real-time qPCR was performed on the Bio-Rad CFX 96 (Bio-
Rad) using the following cycles: 1 cycle at 95 ◦C for 10 min, 40 cycles at 95 ◦C for 15 s
and 60 ◦C for 1 min. A dissociation curve was performed at the end of the program
to ensure the amplification of a single product. The results were normalized against
the housekeeping gene and analyzed on an EXCEL-based spreadsheet (available on the
QIAGEN website: https://dataanalysis.qiagen.com/). Ct values above 35 were deemed
negative, and the normalized expression levels of lasered retinas were evaluated relative to
non-lasered controls using the 2−∆∆Ct method. A difference > 0.5 or <0.5 indicated up- or
downregulation, respectively.

Table 4. Summary of genes detected in the RT2 ECM and adhesion molecule kit.
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Entpd1, Icam1, Itga2, Itga3, Itga4 (Cd49d), Itga5, Itgae, Itgal,

Itgam, Itgav, Itgb1, Itgb2, Itgb3, Itgb4, Mmp14, Mmp15, Ncam1,
Ncam2, Pecam1, Sele, Sell (Lecam-1), Selp, Sgce, Syt1, Vcam1

Cell–Cell Adhesion Cdh1 (E-cadherin), Icam1, Vcam1

Cell–Extracellular Matrix (ECM) Adhesion Ccn2, Itga2, Itga3, Itga4 (Cd49d), Itga5, Itgae, Itgal, Itgam, Itgav,
Itgax, Itgb1, Itgb2, Itgb3, Itgb4, Spp1

Other Cell Adhesion Molecules
Cntn1, Col5a1, Col6a1, Ctnna1, Ctnna2, Ctnnb1, Emilin1, Fn1,
Hapln1, Lama1, Lama2, Lama3, Lamb2, Lamb3, Lamc1, Postn,
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Structural Constituents
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2.8. Statistical Analysis

Values were presented as mean ± SD. Normal distribution of the data and statistical
differences (Student’s t-test for two groups or one-way ANOVA with Bonferroni post hoc
test for multiple comparison) were analyzed using GraphPad Prism 9 (GraphPad Software,
Boston, MA, USA). Statistically significant differences are denoted by * with a probability
value (p) of <0.05, ** with p < 0.01, and highly significant differences by *** with p < 0.001
and **** with p < 0.0001.

3. Results
3.1. Extracellular Matrix and Fibrosis Development in Laser-Damaged Retina over Time

In order to quantify the laser-induced damage in the ONL, the mouse fundus was
imaged using infrared scanning (IR), OCT b-scan images were recorded and H&E overview
staining was performed at various time points, which revealed increased damage to the
ONL with scarring over time (Figure 1A). Live images were taken every week from 12 h
post-injury to day 49 to visualize wound healing. Quantification of the lesion area using
OCT measurements of 60 lesions of 12 eyes from six mice showed a consistent reduction in
lesion size until day 14. Afterwards, no significant reduction could be detected between
day 14 and day 49 (Figure 1B). However, a significant difference was only documented
when comparing day 1 and day 5 following laser induction. Furthermore, day 5 compared
with day 49 showed a substantial reduction in lesion size. However, hyperintensity in OCT
was stronger with time, indicating fibrosis.
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Figure 1. Fundus images of mouse retinas after photo coagulation with segmentation of OCT and
representative retinal sections stained with H&E. (A) Fundus photographs were taken using infrared
scanning (IR) (top) (scale bar is 200 mm) and SD-OCT (middle) at 12 h post-laser, as well as days 1,
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7, 14, 21, 35, 42, and 49 post-laser. H&E (bottom) shows time-dependent formation of retinal scar
with photoreceptor loss (yellow circle). (B) Quantification of the lesion area on all designated time
points (n = 60 lesions of 10 eyes of 6 mice per time point). The significance was analyzed with
one-way ANOVA with Bonferroni multiple comparisons test for p = 0.05 *, p = 0.01 **, p = 0.0001 ***,
p < 0.0001 ****, ns = not significant.

To limit new vessel growth, the laser settings were modified to inflict soft tissue
damage, and isolectin B4 was stained on day 7 post-laser to confirm absence of CNV at the
earliest measured time point (Supplementary Figure S1).

High expression of fibronectin was detectable on days 1, 7, and 14 post-laser; decreased
afterwards with its lowest expression on day 21; and then peaked on day 35 post-laser
(white outlined areas in Figure 2). Moreover, fibronectin was found mainly in a scaffold in
the RPE layer below the injury 12 h post-treatment. The expression of fibronectin was then
found in all retinal layers at later time points from day 1 until day 49, but was detected
in the RPE layer again on day 49 (Figure 2A,B). On day 35 post-laser, it was not present
in the entire retina any more, with the expression restricted to the damaged area only on
day 49. Western blot data also indicated a pattern of fibronectin protein expression across
the entire retina with slight decrease until day 21 post-damage and a subsequent, more
obvious decrease after day 35 (Figure 2C,D).
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Figure 2. Time dependent expression of ECM markers. (A) Representative retinal section of control
(CTRL) and lasered retinas on selected time points stained with specific antibodies against IL-1β
and fibronectin (red; white outlined) shown as merged images with DAPI staining (blue). Scale
bar is 50 µm. In (B), fluorescence intensity is shown in addition to the staining for every antibody.
(C,D) Western blot analysis of fibronectin. Relative protein quantification has revealed a significant
effect. Values are indicated as mean ± SD. One-way ANOVA with Bonferroni multiple comparison
test and * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** p < 0.0001, n = 3/group. Scale bar: 50 µm.



Cells 2024, 13, 164 8 of 22

Additionally, the fibrotic response in the retina showed IL-1β expression over time
starting from day 1 until the last time point investigated (Figure 2A). Thus, IL-1β expression
reached its maximum on day 21 with a second wave of inflammation on day 42 post-laser
(Figure 2B). Interestingly, IL-1β and fibronectin increased similarly at the beginning of
fibrosis (Days 1–14) but are expressed in the opposite way in the late phase (Days 21–49).
This depicts the proliferation phase of non-pathological wound healing progressing as
acute inflammation resolves.

Immunostaining showed that the signal intensity of the activated myofibroblast
marker αSMA peaked on day 21, was reduced on day 35, and slightly increased again at
day 42 post-laser (Figure 3A,B). In contrast, different collagens present in scar tissue as
fiber-forming collagens 1, 3 and 5, as well as the non-fiber-forming collagen 4, increased
later than αSMA detection, from 21 days until 49 days post-laser (Figure 3A,C). Collagen
1 reached a maximum on day 49, similar to collagen 5, whereas collagen types 3 and 4
showed their expression maximum on days 21 and 35 post-laser, respectively (Figure 3B,D).
Apart from collagens, the multifunctional proteoglycan protein versican demonstrated a
significant increase in expression in the retina, with the highest levels observed on day 40
post-damage, as detected through Western blot analysis (Figure 3C,D).

3.2. Extracellular Matrix-Related Genes Show Strong Dynamics during Tissue Replacement

To analyze ECM-involved genes, we used the RT2 Profiler™ PCR Array Mouse Ex-
tracellular Matrix & Adhesion Molecules array to profile 84 related genes (Supplementary
Table S1) simultaneously for 5 selected data collection points (CTRL, day 7, day 21, day 35,
and day 49). Beta2-microglobulin (B2m) was selected as the optimal internal control for
the candidate genes provided in the PCR array using the Gene Globe program offered
by QIAGEN.

3.2.1. General Comparison

Among the 84 genes studied, the majority (70 genes) were expressed at higher levels
compared to the CTRL samples on day 49 post-laser, whereas 73 genes were expressed
at lower levels compared to CTRL samples on day 21 post-laser (Figure 4). Of these
genes, only five (Col4a3, Fbln1, Itgal, Icam1, and Vcan) showed statistically significant
overexpression between the CTRL samples and day 49, the latest time point investigated
(n = 3, p > 0.05). Additionally, Vcan showed a significant downregulation at day 21 (n = 3,
p > 0.05; Supplementary Table S1). At day 7, four genes (Cdh3, Icam1, Sell, Vcan) showed
significant different expression compared to the CTRL samples, while five genes (Col3a1,
Col4a1, Col4a3, Fbln1, Vcan) did so on day 35 (n = 3, p > 0.05).

3.2.2. Extracellular Matrix Components

Twenty-six genes included in the array (Col1a1, Col2a1, Col3a1, Col4a1, Col4a2, Col4a3,
Col5a1, Col6a1, Ecm1, Emilin1, Fbln1, Fn1, Hapln1, Lama1, Lama2, Lama3, Lamb2, Lamb3,
Lamc1, Sparc, Spock1, Spp1, Syt1, Tnc, Can, Vtn) were clustered as a separate group of ECM
matrix proteins (Figure 5A,B; Supplementary Table S1). Considering all time points, Vcan
was significantly upregulated on days 35 and 49 (n = 3, p > 0.05). Furthermore, all collagen
genes were significantly downregulated on day 21 (n = 3, p ≤ 0.05). Versican and fibulin
1 (Fbln1) were the only two genes that were substantially upregulated at this time point
(n = 3, p ≤ 0.05). In comparison, 18 genes showed a trend towards upregulation (Col4a3,
Fbln1, and Vcan significantly so) on day 49 (n = 3, p > 0.05). At this time point, only Col2a1
was downregulated (p = 0.176). On day 35, Col4a3 and Fbln1 were significantly upregulated
(n = 3, p > 0.05).
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Figure 3. Time-dependent expression of αSMA and major component of ECM proteins in the retinas
of control and laser-treated mice. (A) Retinal sections were stained with specific antibodies against
αSMA and collagen 1, 3, 4, and 5 (red) and DAPI staining of the nuclei (blue), and fluorescence
intensity was measured for each antibody in (B). Scale bar is 50 µm. (C) Western blot analysis was
performed to quantify fibronectin, αSMA, collagen 1, collagen 4 and versican. (D) Statistical analysis
was performed using one-way ANOVA with the Bonferroni multiple comparison test, and values are
expressed as mean ± SD. The study involved three mice per group, and significance levels were set
at p < 0.05 *, p < 0.01 **, p < 0.001 ***, and p < 0.0001 ****, ns = not significant.
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Figure 4. (A) Heatmap of ECM and adhesion molecule genes in murine retinas after laser injury at
selected data collection points (CTRL, 7 dpi, 21 dpi, 35 dpi, 49 dpi). Differential gene expression in
uninjured (CTRL) and injured retinas over time is shown. The RNA expression profile of grouped data
from three mice (2 retinas pooled) per time point is shown as a heatmap graph. The data are displayed
using a standard red–green map, with red indicating values above the mean, black indicating the
mean, and green indicating values below the mean of a row (gene) across all columns (samples).
The entire dataset is hierarchically clustered in a non-supervised manner in this clustergram, which
displays a heatmap with dendrograms that show co-regulated genes. The marked area on the
magnitude expression bar shows the defined average area for categorizing gene expression as
upregulated, downregulated, or neutral. (B) Venn diagrams summarize gene expression per time
point grouped in upregulated, downregulated, or neutral genes.

3.2.3. Transmembrane Molecules and Adhesion Molecules

Another separate group of transmembrane and adhesion molecule proteins contained
35 genes. On day 7, 18 of these genes were upregulated compared to the CTRL. However,
only Icam1 was substantially upregulated (n = 3, p = 0.05; Figure 5D,E; Supplementary
Table S2). The only upregulation at day 21 was found with Cdh1 (n = 3, p > 0.05). Cdh2,
Icam1, Itga5, Itgb4, Mmp14, and Mmp15 were upregulated on day 35 (n = 3, p > 0.05),
while Cdh3, Sele, and Sell were significantly downregulated (n = 3, p > 0.05). The highest
upregulation was shown on day 49 post-laser; 23 of 29 genes in this subgroup were higher
compared to CTRL (Selp and Itgal significantly n = 3, p = 0.03).
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Figure 5. Fold change of RT2 mouse assay lasered mouse retinas. (A,B): ECM components, (C) ECM
protease and inhibitors, (D,E) transmembrane and adhesion molecules, (F) other ECM proteins. For
statistical analysis, the p-value was computed using Student’s t-test, which employs a parametric,
unpaired, two-sample equal variance. * p > 0.05, ** p > 0.01, *** p > 0.001.

3.2.4. Proteases and Inhibitors

Of the 19 protease and inhibitor genes investigated, only three showed significant
differences compared to CTRL at any time point. However, Timps1, Timps2, and Mmp11
were upregulated on day 7 (n = 3, p ≤ 0.05). Furthermore, Mmp 10, Mmp3, Mmp7, and
Mmp8 showed a downregulation at day 35 post-laser (n = 3, p ≤ 0.05), while Adamts8 and
Mmp11 were upregulated but without significance on day 49 post-laser. Mmp15 and Mmp14
showed a trend of upregulation at all selected time points, except on day 21 post-laser
(Figure 5C; Supplementary Table S3).

3.2.5. Other ECM Proteins

Three genes included in the array (Entpd1, Hc, Tgfbi) did not fit in any of the previously
mentioned groups and were gathered separately. None showed significant differences
compared to CTRL at any time point. Tgfbi shows a trend for upregulation at day 7 (n = 3,
p = 0.06) and also on the other measured time points (Figure 5F; Supplementary Table S4).
Also, Entpd1 showed post-laser upregulation on day 7 and on day 49 (n = 3, p ≤ 0.05).

3.3. Extracellular Matrix and Fibrosis Development after Treatment with Pirfenidone
3.3.1. Treatment with Pirfenidone Alters the Cell Count in the Outer Nuclear Layer and
Results in Reduced Scar Formation

To determine whether PFD changed the lesion size, we quantified the volume of
the laser spot with OCT measurements (b-scan, IR or AF). Comparing all collected data
points of PFD-treated samples with lasered-only animals (CTRL and days 21, 35, and 42),
we observed reduction in lesion size (Figure 6A,B). Thus, a significant reduction among
all PFD samples was observed on day 21 as well as on day 42 when comparing treated
versus untreated samples. Interestingly, when PFD treatment ended on day 35 post-laser,
the lesion size increased again until day 42 to a size comparable to the untreated sample
(Figure 6C). Additional H&E was performed at the selected time points to analyze cell
numbers in the GCL, INL, and ONL over time (Figure 6D,E). By treating animals with PFD,
a significant increase of nuclei could be only detected in the ONL at day 35.
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as hyper-reflective spot (yellow outlined). (C) The ellipsoid volume was analyzed with one-way
ANOVA with the Bonferroni multiple comparisons test for p = 0.05 *, p = 0.0001 ***, p < 0.0001 ****.
(D) Hematoxylin and eosin staining showed thinning of the retina. (E) Quantification of cell nuclei in
ONL, INL, and GCL in lasered and additional PFD treated samples was determined using one-way
ANOVA with the Bonferroni multiple comparisons test for p = 0.05 * and n.s. (not significant). Scale
bar is 50 µm.

3.3.2. Pirfenidone Prevents Changes in Collagen Expression during Fibrotic Development

To characterize the changes in fibrotic response after PFD treatment, we harvested
retinas at days 21, 35, and 42 post-laser to perform WB, rtPCR, and IHC. After drug treat-
ment, we found a reduction in collagen expression as shown in Figure 7. Levels of collagen
types 1, 3, and 4 were unchanged compared to non-lasered controls (Figure 7A,B) and
showed no increase in collagen expression as found without PFD treatment as previously
depicted (Figure 3). In line with these findings, quantitative Western blot analysis con-
firmed no significantly changed collagen protein levels in the PFD-treated samples over
time. Furthermore, Western blot data showed comparatively low collagen levels, as seen in
IHC (Figure 7C,D). Similar protein levels were observed for fibronectin with both Western
blot and IHC at all measured time points compared to intact retina control samples. The
inhibitory effect of PFD on the immune response yielded no significant changes in IL-1β
expression, either on the protein or the gene level compared to CTRL samples (Figure 7A,E).
This is in contrast to previously detected changes after laser treatment (Figure 2). However,
the activated myofibroblast marker αSMA was increased and localized in the damaged
area at all measured time points until day 42 post-laser. Nevertheless, neither Western
blot analysis nor IHC showed significantly higher protein levels and fluorescence intensity
compared to the CTRL.
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Figure 7. Time-dependent retinal expression of ECM markers. (A) Representative retinal section of
control (CTRL) and lasered retina on selected time points stained with specific antibodies against
IL-1β, fibronectin, αSMA, and collagens 1, 3, 4, and 5 (red) shown as merged images with DAPI
staining (blue). Scale bar is 50 µm. (B) Fluorescence intensity is shown in addition to staining
for each antibody. (C) Western blot analysis of fibronectin, αSMA, collagen 1, and collagen 4 was
performed. Relative protein quantification did not show significant changes of the investigated
markers (D). (E) mRNA expression of IL-1β showed no significant changes compared to control
(CTRL). ns = not significant.

3.3.3. Screening of ECM and Adhesion Molecules Involved in the ECM Formation during
Damage Response after PFD Treatment

Herein, we analyzed gain the 84 genes related to fibrotic response and extracellular
matrix performance (see Table 1) to show the influence of PFD on ECM formation at the
selected data points (CTRL, day 21 PFD, day 35 PFD, day 42 PFD, and D42 PFD D35).

3.3.4. General Comparisons

Among the 84 genes studied after PFD treatment, we found a balanced expression of
proteins with similar numbers of up- and downregulated genes. At day 21, 27 genes were
downregulated and 26 genes were upregulated, whereas 28 genes were downregulated
and 27 genes were upregulated at day 42 (Figure 8). Of these time-listed genes, 15 showed
statistically significant differences compared to CTRL at the selected time points (n = 3,
p > 0.05). Two genes (Col3a1 and Col4a1) showed a significant downregulation and three
genes (Mmp8, Selp, and Tgfbi) showed a significant upregulation (n = 3, p > 0.05) at all time
points (Figure 9).

3.3.5. Extracellular Matrix Components

Col3a1 and Col4a1 were significantly downregulated compared to the CTRL (n = 3,
p > 0.05), as was Lama2, but without significance (n = 3, p > 0.05), at all time points
(Figure 9A,B; Supplementary Table S1). The analysis showed significant upregulation
of Col4a2 and Lama2 on day 21. Moreover, Col1a1, Lamb3, and Col4a3 showed an upregula-
tion at all selected time points (p ≤ 0.05). Both PFD treated animal groups until day 42 were
analyzed and depicted an upregulation for Col1a1 without significance. Emilin1 showed a
trend and was slightly increased at all observed time points (p = 0.8).
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Figure 8. (A) Heatmap for ECM components and adhesion molecules in murine retinas after laser
injury at selected time points (day 21 PFD, Day 35 PFD, Day 42 PFD, and Day 42 PFD D 35 post injury).
Differential gene expression in normal (CTRL) and injured retinas over time is shown. Grouped data
from three mice (2 retinas pooled) per time point are shown. The data are displayed using a standard
red-green-map, with red indicating values above the mean, black indicating the mean, and green
indicating values below the mean of a row (gene) across all columns (samples). Marked area on the
magnitude expression bar shows defined average area for grouping gene expression into upregulated,
downregulated, or neutral. (B) Venn diagrams summarize gene expression per time point grouped
by upregulated, downregulated, or neutral genes.

3.3.6. Transmembrane Molecules and Adhesion Molecules

Of the 34 genes, Itgb2, Itgb3, Sele, Sell, and Selp were upregulated at all time points.
Sele, Itgb2, and Itgb3 showed a trend and were increased on day 21, day 42, and day 42 PFD
day 35. Sell was increased for both samples of day 42 (n = 3, p ≤ 0.05), while Selp showed
significant upregulation at all time points (p = 0.02; Figure 9E,F; Supplementary Table S6).

3.3.7. Proteases and Inhibitors

Mmp8 was significantly upregulated at all time points, as was Mmp12, but only
significantly at day 21 and D42 PFD D35 (Figure 9C; Supplementary Table S7). Furthermore,
the Timp genes showed a non-significant upregulation at all measured time points (n = 3,
p > 0.05).

3.3.8. Other ECM Proteins

Only Tgfbi was significantly upregulated at all measured time points compared to the
CTRL (n = 3, p > 0.05; Figure 9F; Supplementary Table S8).
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Figure 9. Fold change of RT2 lasered mouse assay and PFD mouse retinas. (A,B) ECM components,
(C) ECM protease and inhibitors, (D,E) transmembrane and adhesion molecules, (F) other ECM
proteins. For statistical analysis, the p-value is computed using a student’s t-test, which employs a
parametric, unpaired, two-sample equal variance. * p > 0.05, ** p > 0.01, *** p > 0.001.

4. Discussion

Retinal wound repair is a complex process which involves interconnected biological
mechanisms, including inflammation, cell proliferation, and tissue remodeling. In general,
four overlapping phases in the process of general wound healing have been defined. The
first phase is characterized by hemostasis, during which the bleeding is stopped. The second
phase is an immediate inflammatory response that involves the infiltration of leukocytes,
which release cytokines with antimicrobial properties. These cytokines activate the third
phase, the proliferative phase, in which, among other processes, new ECM is generated.
Finally, in the fourth phase, the wound contracts over a period of weeks to months as the
ECM is restructured [25]. These specific changes to the ECM during remodeling of the
retina after the loss of photoreceptors are dependent on a complex of several cellular and
molecular components, which are not fully understood. Thus, the function of the ECM
is not only structural support, but also regulation of fluid and solute passage from the
choroid to the retina. In this study, the expression of key ECM components after laser-
induced damage in adult mouse retinas was investigated by inducing the photoreceptor
degeneration and retinal thinning that occurs in many retinal diseases. This time-dependent
model enabled spatial observation of internal processes during retinal scarring caused by
photoreceptor loss. The laser model employed herein differs from a recently published
CNV model, which leads to subretinal fibrosis [26]. In comparison, the subretinal fibrosis
model published by Zandi at al., we showed absence of neovascularization at all time
points post-laser by negative isolectin B4 staining. In contrast, therein an increase in CNV
until day 14 and a regression of CNV with an increase of subretinal fibrosis after day 21
post injury by initially rupturing Bruch’s membrane and inducing a characteristic bubble,
was displayed.

Current research has shown that several types of retinal cells, including RPE cells,
endothelial cells, epithelial cells, Müller cells, and macrophages, have the ability to trans-
form into myofibroblasts. These myofibroblasts are the primary cell type responsible for
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triggering fibrosis and producing ECM components [1,27,28]. They also express α-SMA, a
filamentous contractile protein, during their activation state and their persistent stimulation
is associated with excessive ECM deposition leading to organ dysfunction [29]. Our data
show that α-SMA expression displays biphasic kinetics after laser-induced retinal damage.
However, as shown in the unlasered control, α-SMA is also present in the choroidal space
under normal physiological conditions, where it plays a pivotal role in regulating vascular
diameter, vascular tone, and retinal blood flow [30].

One primary response of wound healing is acute inflammation through recruitment of
immune cells and fibroblasts to the site of tissue damage. However, effective wound repair
necessitates the resolution of inflammation, while an excessive inflammatory response can
lead to the formation of retinal scars [31]. In our model, we showed the development of
three stages of cytokine secretion indicating several waves of inflammation. Firstly, an
initial IL-1β production within 24 h post injury. Second, an intermediate phase with no
difference compered to baseline amounts. Finally, a repeated biphasic increase was noted
on days 21 and 42. Tissue with regenerative potential resolves the inflammatory response
within a few days with the removal of myofibroblasts and inflammatory macrophages, so
that the scar gradually breaks down within several weeks [27]. In wet AMD, the connection
between inflammation and abnormal blood vessel growth is well known [1]. In dry AMD,
the role of inflammation caused by drusen formation due to accumulation of toxic debris,
such as lipofuscin, has been found to form a chronic and toxic milieu for RPE cells, thus
creating a pro-inflammatory microenvironment [32]. As we did not induce CNV lesions that
actively destabilize the Bruch’s membrane and had no drusen formation as inflammatory
mediators in our mouse model, our data indicate repeated release of IL-1β in the damaged
area. This might lead to the destabilizing of the BRB and leukocyte infiltration. It is also
known that macroglia cells show upregulation of the pro-inflammatory cytokine S100β
under stress conditions and microglia are initiators of chronic scarring [33]. However,
the observed three-phasic inflammation signal influences the fibrotic response towards
chronic scar formation and hindering therewith any repair process. As one of the earliest
ECM matrix proteins, fibronectin appears 10 min post injury and was recently described
as an inflammatory mediator [25,34]. Fibronectin expression in the RPE layer peaks at
early and late stages of wound repair in the injured area. We therefore hypothesize that
inflammatory mediators are active in the RPE layer as well as in retinal cells so that the
complex architecture of the ECM is continuously synthesized.

Since collagens are the key components of a healing wound and are the most prominent
proteins of the ECM scaffold, we investigated the appearance of collagen types 1, 3, 4, and
5 via immunochemistry. While collagen types 1, 3, and 5 belong to the group responsible
for fiber formation with long ropelike structures and assemble into polymers; collagen type
4 stands out as the primary constituent of the basement membrane, possesses the ability
to organize into sheet-like networks within this structure [35]. Increased expression was
detectable for collagen 1 from day 14, for collagen 3 from day 21, and for collagens 4 and 5
from day 35 on. The expression of all analyzed collages was found until day 49 post-laser.

Similar to the observed inflammation marker IL1β, collagens showed a wavelike
expression. Compared to findings in other tissues, including the skin, heart and liver, our
results diverge from reported observations regarding a shift in the collagen 1 to collagen 3
ratio. These changes typically manifest as an increased concentration of collagen 3 during
the healing phase, followed by a subsequent rise in collagen 1 content in the healed
tissue [36]. On the other hand, our data indicate a substantial presence of collagen types
1 and 3 persisting until the last recorded time point on day 49. This suggests a notable
constraint on wound healing, with no discernible indications of regenerative processes. The
gene expression levels showed significant increase only for Col4a3, even with the majority
of collagens upregulated at day 7 and day 35 post-laser. This result fits the characteristics
of the retina as a collagen 4-rich tissue which is mainly found in the Bruch’s membrane and
the inner limiting membrane and is critical for neuronal survival and angiogenesis [37].
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On the other hand, its abnormal deposition is seen in fibrotic lesions of certain organs,
including the kidneys and lungs [38,39].

Herein, we provide an overview of the complex ECM formation in our injury model
and show that the most robust alterations in gene expression were detected for Col4α3,
fibulin1 (Fbln1), cadherin 3 (Cdh3), intracellular adhesion molecule-1 (Icam1), integrin
alpha L (Itgal), selectin E (Sele), transforming growth factor beta-induced (Tgfbi), and
versican (Vcan). Except Cdh3 and Sele, all genes were significantly upregulated, mainly
at day 35 and day 49 post-laser in the late stage of retinal fibrosis. Most of these genes
indicate a causal role for leucocyte infiltration during the regenerative phase, which might
inhibit remodeling. The observed upregulation of Fibulin 1 in our wound healing model
corresponds to a study on patients with pulmonary fibrosis. This study identified the
bioactive region/s of fibulin-1C responsible for promoting fibrosis, indicating potential
shared mechanisms in fibrotic processes [40]. A binding partner of fibulin 1 is versican,
a member of the hyalectin family of ECM components. In the retina, similar to the brain,
ECM is formed from proteoglycan proteins, such as versican (Vcan), to implement the
three-dimensional network of extracellular macromolecules. In most diseases, including
lung disease and several different cancers, these proteoglycans increase dramatically during
inflammation [41]. Our data concurred, as we observed Vcan upregulation in the late stage
of tissue response. The literature indicates that neurons and glial cells might synthesize
proteoglycans and glycoproteins together with fibrous proteins, such as collagens and
fibronectin [42]. Thus, proteoglycan as well as P- and L-selectins increase dramatically
during inflammation and interacts with receptors that are found on the surface of immune
cells [43–45]. According to existing literature, the ECM exhibits an organization into cable-
like structures involving versican and other proteins, including hyaluronan, which bind to
leukocytes. Further investigations are warranted to elucidate the specific contributions of
these complex components to the phenotype of leukocytes.

Furthermore, the upregulation of the protein Icam 1 is particularly essential for the
migration of leukocytes and has been described in several ocular diseases, such as diabetic
retinopathy and CNV [46]. In other organs, such as the liver, Icam 1 has been described as
an inflammatory and fibrotic marker [47]. We could detect two peaks for Icam 1 expression
at the gene level, namely on day 7 and day 49 post-laser. These findings could imply not
only leukocytes entering the retina but also their role in fibrosis. Another marker, Itgal, was
significantly upregulated on day 49 post-laser. This gene encodes integrin components,
including lymphocyte function-associated antigen 1 (LFA-1), which are expressed on
lymphocytes to participate in immune and inflammatory responses [27]. In contrast, Cdh3
(also known as P-cadherin) was significantly downregulated on day 7 and day 35 post-laser.
Previous publications have shown that Cdh3 is the dominant cadherin in mature RPE
cells [48]. It plays a critical role in maintaining the structural integrity of epithelial tissues,
regulating processes involved in embryonic development, and maintaining adult tissue
architecture and cell differentiation. The downregulation of Cdh3 suggests a decreased
density of RPE after laser damage. Thus, the two-wave dynamic of Cdh3 downregulation
might indicate a destabilized RPE layers, leading to higher permeability with migration of
peripheral immune cells. Chd3 might also influence stem cell activity. Earlier studies have
reported a significant loss of epithelial progenitor cells and downregulation of putative
stem cell markers in organ-cultured limbal tissue [49].

To modulate the laser-induced damage including fibrosis and ensuing immune re-
sponse, we used PFD, which is not only anti-inflammatory but has anti-fibrotic properties
also. PFD inhibits fibroblast proliferation and the production of fibrosis-associated pro-
teins and cytokines that increase the biosynthesis of ECM proteins, such as collagen and
fibronectin. Such cytokine secretion is mediated by TGF-β or PDGF pathways [50]. Despite
demonstrating a reduced expression of collagen 1, 3, 4 and 5 and IL-1β after PFD treatment,
we were not able to detect long-term effects on the scar tissue. This finding suggests a yet-
undefined time window in which inflammation must be prevented or halted. Otherwise,
even after the inhibition of inflammation and reduction of fibrotic signals, fibrosis inevitably
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occurs [51]. Day 14 post-laser is likely already too late as the starting point for inhibition
of fibrosis development and modulation. Alternatively, additional pro-inflammatory cy-
tokines are produced, or inflammation is not downregulated in general. Tissue with limited
regenerative capacity, such as the retina, has a high risk for repetitive fibrotic responses or
chronic developments with aggregation of ECM, myofibroblasts, and macrophages [52].
Examining the expression of involved genes, we found a shifting of gene expression toward
12 pro-fibrotic genes after PFD treatment compared to non-treated samples. Thus, Col3α1
and Col4α1 were downregulated, whereas Itgb2 and Itgb3 were upregulated.

The selectin family, composed of L-selectin (SELL), E-selectin (SELE), and P-selectin
(SELP), plays a significant role in mediating cell adhesion. Most leukocytes express L-
selectin, while activated endothelial cells express E-selectin and P-selectin [53,54]. All
three family members were significantly upregulated after PFD treatment. Based on our
hypothesis, the drug treatment might have activated endothelial cells in the surrounding
blood vessels which facilitate leukocyte infiltration by assisting in their adhesion and
subsequent transportation into the retinal layers, thereby influencing remodeling processes.

The expression of transforming growth factor beta induced (Tgfbi), which is regulated
by TGF-β signaling, was significantly upregulated at all detected time points. The ability
of Tgfbi to bind to ECM proteins, such as fibronectin, laminin, vitronectin, and collagens, is
likely due to fasciclin 1 (FAS1) [55].

Matrix metalloproteinases (MMPs) are a class of enzymes responsible for breaking
down ECM and regulating ECM turnover and homeostasis. Tissue inhibitors of metallo-
proteinases (TIMPs) are specific inhibitors of MMPs that bind to active MMPs and inhibit
the process of ECM degradation. Previous research has shown that excessive expression of
TIMP-1 may hinder wound healing by impeding epithelial cell migration, a critical aspect
of re-epithelialization [56]. Although we observed an upregulation of Timp1 levels at all
selected time points after PDF treatment, this upregulation was not significant.

We showed that, inflammation peaks on day 1, day 21 and day 49 in the used laser-
based retina degeneration model. This inflammation hindered remodeling as fibrosis
continued over 49 days post-laser treatment. Our findings suggested that Cdh3 downreg-
ulation in the late stage might explain the absence of stem cell activation or proliferative
capacity in the mouse retina.

5. Conclusions

In conclusion, our data identify a three-phasic inflammation during retinal degener-
ation and scar formation, detect significant changes in gene expression of ECM-related
genes during retinal wound healing with Col4α3, ICAM1, fibulin1, itgal and selp as in-
volved key genes, and shows that pirfenidone reduces the expression of ECM proteins
and inflammatory markers but may not prevent long-term fibrotic responses. The study
had some limitations, as the focus lay mainly on the mRNA expression in lasered retina
samples. The samples showed a limited amount of laser damage that might explain the
low significance for most of the detected genes. Additionally, we did not focus on changes
in the surrounding tissues (e.g., choroid) during scarring, which may also be part of the
interaction between ECM/adhesion molecules and, especially, the involved cells. However,
the employed laser model of retinal degeneration mimics disease phenotypes in humans
histologically as well as regarding its gliotic/fibrotic changes [57]. Still, further studies are
needed to validate our findings and conjectures in vivo.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells13020164/s1, Figure S1: Isolectin GS-B4 staining for CNV detection
without Bruch’s membrane rupture after modification of the laser setting; Table S1: Fold change of
ECM component proteins post-lasered samples; Table S2: Transmembrane and adhesion molecules
fold change laser treated samples; Table S3: Fold change data of ECM protease and inhibitors
post-laser; Table S4: Fold change of other ECM proteins post-laser; Table S5: Fold change of ECM
components PFD samples; Table S6: Fold change of Transmembrane and adhesion molecules PFD
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samples; Table S7: Fold change of ECM protease and inhibitors PFD samples; Table S8: Fold change
of other ECM proteins PFD samples.
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