Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = restricted Boltzmann machine (RBM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 820 KiB  
Article
An Efficient Algorithmic Way to Construct Boltzmann Machine Representations for Arbitrary Stabilizer Code
by Yuan-Hang Zhang, Zhian Jia, Yu-Chun Wu and Guang-Can Guo
Entropy 2025, 27(6), 627; https://doi.org/10.3390/e27060627 - 13 Jun 2025
Viewed by 418
Abstract
Restricted Boltzmann machines (RBMs) have demonstrated considerable success as variational quantum states; however, their representational power remains incompletely understood. In this work, we present an analytical proof that RBMs can exactly and efficiently represent stabilizer code states—a class of highly entangled quantum states [...] Read more.
Restricted Boltzmann machines (RBMs) have demonstrated considerable success as variational quantum states; however, their representational power remains incompletely understood. In this work, we present an analytical proof that RBMs can exactly and efficiently represent stabilizer code states—a class of highly entangled quantum states that are central to quantum error correction. Given a set of stabilizer generators, we develop an efficient algorithm to determine both the RBM architecture and the exact values of its parameters. Our findings provide new insights into the expressive power of RBMs, highlighting their capability to encode highly entangled states, and may serve as a useful tool for the classical simulation of quantum error-correcting codes. Full article
(This article belongs to the Special Issue Quantum Information and Quantum Computation)
Show Figures

Figure 1

19 pages, 1315 KiB  
Article
Advancing Structural Health Monitoring with Deep Belief Network-Based Classification
by Álvaro Presno Vélez, Zulima Fernández Muñiz and Juan Luis Fernández Martínez
Mathematics 2025, 13(9), 1435; https://doi.org/10.3390/math13091435 - 27 Apr 2025
Viewed by 540
Abstract
Structural health monitoring (SHM) plays a critical role in ensuring the safety and longevity of civil infrastructure by enabling the early detection of structural changes and supporting preventive maintenance strategies. In recent years, deep learning techniques have emerged as powerful tools for analyzing [...] Read more.
Structural health monitoring (SHM) plays a critical role in ensuring the safety and longevity of civil infrastructure by enabling the early detection of structural changes and supporting preventive maintenance strategies. In recent years, deep learning techniques have emerged as powerful tools for analyzing the complex data generated by SHM systems. This study investigates the use of deep belief networks (DBNs) for classifying structural conditions before and after retrofitting, using both ambient and train-induced acceleration data. Dimensionality reduction techniques such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) enabled a clear separation between structural states, emphasizing the DBN’s ability to capture relevant classification features. The DBN architecture, based on stacked restricted Boltzmann machines (RBMs) and supervised fine-tuning, was optimized via grid search and cross-validation. Compared to traditional unsupervised methods like K-means and PCA, DBNs demonstrated a superior performance in feature representation and classification accuracy. Experimental results showed median cross-validation accuracies of 98.04% for ambient data and 96.96% for train-induced data, with low variability. Although random forests slightly outperformed DBNs in classifying ambient data (99.19%), DBNs achieved better results with more complex train-induced signals (95.91%). Robustness analysis under Gaussian noise further demonstrated the DBN’s resilience, maintaining over 90% accuracy for ambient data at noise levels up to σnoise=0.5. These findings confirm that DBNs are a reliable and effective approach for data-driven structural condition assessment in SHM systems. Full article
Show Figures

Figure 1

18 pages, 966 KiB  
Article
Mean Field Initialization of the Annealed Importance Sampling Algorithm for an Efficient Evaluation of the Partition Function Using Restricted Boltzmann Machines
by Arnau Prat Pou, Enrique Romero, Jordi Martí and Ferran Mazzanti
Entropy 2025, 27(2), 171; https://doi.org/10.3390/e27020171 - 6 Feb 2025
Viewed by 985
Abstract
Probabilistic models in physics often require the evaluation of normalized Boltzmann factors, which in turn implies the computation of the partition function Z. Obtaining the exact value of Z, though, becomes a forbiddingly expensive task as the system size increases. A [...] Read more.
Probabilistic models in physics often require the evaluation of normalized Boltzmann factors, which in turn implies the computation of the partition function Z. Obtaining the exact value of Z, though, becomes a forbiddingly expensive task as the system size increases. A possible way to tackle this problem is to use the Annealed Importance Sampling (AIS) algorithm, which provides a tool to stochastically estimate the partition function of the system. The nature of AIS allows for an efficient and parallel implementation in Restricted Boltzmann Machines (RBMs). In this work, we evaluate the partition function of magnetic spin and spin-like systems mapped into RBMs using AIS. So far, the standard application of the AIS algorithm starts from the uniform probability distribution and uses a large number of Monte Carlo steps to obtain reliable estimations of Z following an annealing process. We show that both the quality of the estimation and the cost of the computation can be significantly improved by using a properly selected mean-field starting probability distribution. We perform a systematic analysis of AIS in both small- and large-sized problems, and compare the results to exact values in problems where these are known. As a result, we propose two successful strategies that work well in all the problems analyzed. We conclude that these are good starting points to estimate the partition function with AIS with a relatively low computational cost. The procedures presented are not linked to any learning process, and therefore do not require a priori knowledge of a training dataset. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

28 pages, 6569 KiB  
Article
A New Efficient Hybrid Technique for Human Action Recognition Using 2D Conv-RBM and LSTM with Optimized Frame Selection
by Majid Joudaki, Mehdi Imani and Hamid R. Arabnia
Technologies 2025, 13(2), 53; https://doi.org/10.3390/technologies13020053 - 1 Feb 2025
Cited by 3 | Viewed by 2495
Abstract
Recognizing human actions through video analysis has gained significant attention in applications like surveillance, sports analytics, and human–computer interaction. While deep learning models such as 3D convolutional neural networks (CNNs) and recurrent neural networks (RNNs) deliver promising results, they often struggle with computational [...] Read more.
Recognizing human actions through video analysis has gained significant attention in applications like surveillance, sports analytics, and human–computer interaction. While deep learning models such as 3D convolutional neural networks (CNNs) and recurrent neural networks (RNNs) deliver promising results, they often struggle with computational inefficiencies and inadequate spatial–temporal feature extraction, hindering scalability to larger datasets or high-resolution videos. To address these limitations, we propose a novel model combining a two-dimensional convolutional restricted Boltzmann machine (2D Conv-RBM) with a long short-term memory (LSTM) network. The 2D Conv-RBM efficiently extracts spatial features such as edges, textures, and motion patterns while preserving spatial relationships and reducing parameters via weight sharing. These features are subsequently processed by the LSTM to capture temporal dependencies across frames, enabling effective recognition of both short- and long-term action patterns. Additionally, a smart frame selection mechanism minimizes frame redundancy, significantly lowering computational costs without compromising accuracy. Evaluation on the KTH, UCF Sports, and HMDB51 datasets demonstrated superior performance, achieving accuracies of 97.3%, 94.8%, and 81.5%, respectively. Compared to traditional approaches like 2D RBM and 3D CNN, our method offers notable improvements in both accuracy and computational efficiency, presenting a scalable solution for real-time applications in surveillance, video security, and sports analytics. Full article
Show Figures

Figure 1

17 pages, 2169 KiB  
Article
Risk Zoning Method of Potential Sudden Debris Flow Based on Deep Neural Network
by Qinglun Xiao, Shaoqi Wang, Na He and Filip Gurkalo
Water 2024, 16(4), 518; https://doi.org/10.3390/w16040518 - 6 Feb 2024
Cited by 2 | Viewed by 1462
Abstract
With the continuous increase in global climate change and human activities, the risk of sudden debris flow disasters is becoming increasingly severe. In order to effectively evaluate and zone the potential hazards of debris flows, this paper proposes a method for zoning the [...] Read more.
With the continuous increase in global climate change and human activities, the risk of sudden debris flow disasters is becoming increasingly severe. In order to effectively evaluate and zone the potential hazards of debris flows, this paper proposes a method for zoning the potential sudden hazards of debris flows based on deep neural networks. According to hazard identification, ten risk indicators of potential sudden debris flows are determined. The risk indicators of a potential sudden debris flow in each region were used as the input factors of a deep trust network (DBN) composed of a back propagation (BP) neural network and a restricted Boltzmann machine (RBM). The DBN is pre-trained using the contrast divergence method to obtain the optimal value of the parameter set of the DBN model, and a BP network is set at the last layer of the DBN for fine-tuning to make the network optimal. Using the DBN model with the best parameters, the risk probability of debris flows corresponding to each region is taken as an output. The risk grade is divided, the risk degree of potential sudden debris flow in each region is analyzed, and the potential sudden debris flow risk in each region is divided individually. The results show that this method can effectively complete the risk zoning of sudden debris flow. Moreover, the cumulative contribution of the indicators selected by this method is significant, and the correlation of indicators is not significant, which can play a role in the risk assessment of potential sudden debris flow. This study not only provides new ideas and methods for risk assessment of sudden debris flow disasters, but also fills a gap in the field of geological hazard susceptibility mapping. Full article
(This article belongs to the Special Issue Flowing Mechanism of Debris Flow and Engineering Mitigation)
Show Figures

Figure 1

24 pages, 3044 KiB  
Article
Privacy-Preserving Deep Learning Framework Based on Restricted Boltzmann Machines and Instance Reduction Algorithms
by Alya Alshammari and Khalil El Hindi
Appl. Sci. 2024, 14(3), 1224; https://doi.org/10.3390/app14031224 - 1 Feb 2024
Cited by 3 | Viewed by 3020
Abstract
The combination of collaborative deep learning and Cyber-Physical Systems (CPSs) has the potential to improve decision-making, adaptability, and efficiency in dynamic and distributed environments. However, it brings privacy, communication, and resource restrictions concerns that must be properly addressed for successful implementation in real-world [...] Read more.
The combination of collaborative deep learning and Cyber-Physical Systems (CPSs) has the potential to improve decision-making, adaptability, and efficiency in dynamic and distributed environments. However, it brings privacy, communication, and resource restrictions concerns that must be properly addressed for successful implementation in real-world CPS systems. Various privacy-preserving techniques have been proposed, but they often add complexity and decrease accuracy and utility. In this paper, we propose a privacy-preserving deep learning framework that combines Instance Reduction Techniques (IR) and the Restricted Boltzmann Machine (RBM) to preserve privacy while overcoming the limitations of other frameworks. The RBM encodes training data to retain relevant features, and IR selects the relevant encoded instances to send to the server for training. Privacy is preserved because only a small subset of the training data is sent to the server. Moreover, it is sent after encoding it using RBM. Experiments show that our framework preserves privacy with little loss of accuracy and a substantial reduction in training time. For example, using our framework, a CNN model for the MNIST dataset achieves 96% accuracy compared to 99% in a standard collaborative framework (with no privacy measures taken), with training time reduced from 133.259 s to 99.391 s. Our MLP model for MNIST achieves 97% accuracy compared to 98% in the standard collaborative framework, with training time reduced from 118.146 s to 87.873 s. Compared to other studies, our method is a simple approach that protects privacy, maintains the utility of deep learning models, and reduces training time and communication costs. Full article
(This article belongs to the Special Issue Safety, Security and Privacy in Cyber-Physical Systems (CPS))
Show Figures

Figure 1

22 pages, 10974 KiB  
Article
Comparing Classical and Quantum Generative Learning Models for High-Fidelity Image Synthesis
by Siddhant Jain, Joseph Geraci and Harry E. Ruda
Technologies 2023, 11(6), 183; https://doi.org/10.3390/technologies11060183 - 18 Dec 2023
Cited by 3 | Viewed by 4370
Abstract
The field of computer vision has long grappled with the challenging task of image synthesis, which entails the creation of novel high-fidelity images. This task is underscored by the Generative Learning Trilemma, which posits that it is not possible for any image synthesis [...] Read more.
The field of computer vision has long grappled with the challenging task of image synthesis, which entails the creation of novel high-fidelity images. This task is underscored by the Generative Learning Trilemma, which posits that it is not possible for any image synthesis model to simultaneously excel at high-quality sampling, achieve mode convergence with diverse sample representation, and perform rapid sampling. In this paper, we explore the potential of Quantum Boltzmann Machines (QBMs) for image synthesis, leveraging the D-Wave 2000Q quantum annealer. We undertake a comprehensive performance assessment of QBMs in comparison to established generative models in the field: Restricted Boltzmann Machines (RBMs), Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and Denoising Diffusion Probabilistic Models (DDPMs). Our evaluation is grounded in widely recognized scoring metrics, including the Fréchet Inception Distance (FID), Kernel Inception Distance (KID), and Inception Scores. The results of our study indicate that QBMs do not significantly outperform the conventional models in terms of the three evaluative criteria. Moreover, QBMs have not demonstrated the capability to overcome the challenges outlined in the Trilemma of Generative Learning. Through our investigation, we contribute to the understanding of quantum computing’s role in generative learning and identify critical areas for future research to enhance the capabilities of image synthesis models. Full article
(This article belongs to the Topic Quantum Information and Quantum Computing, 2nd Volume)
Show Figures

Figure 1

25 pages, 15573 KiB  
Article
The Capabilities of Boltzmann Machines to Detect and Reconstruct Ising System’s Configurations from a Given Temperature
by Mauricio A. Valle
Entropy 2023, 25(12), 1649; https://doi.org/10.3390/e25121649 - 12 Dec 2023
Cited by 1 | Viewed by 1975
Abstract
The restricted Boltzmann machine (RBM) is a generative neural network that can learn in an unsupervised way. This machine has been proven to help understand complex systems, using its ability to generate samples of the system with the same observed distribution. In this [...] Read more.
The restricted Boltzmann machine (RBM) is a generative neural network that can learn in an unsupervised way. This machine has been proven to help understand complex systems, using its ability to generate samples of the system with the same observed distribution. In this work, an Ising system is simulated, creating configurations via Monte Carlo sampling and then using them to train RBMs at different temperatures. Then, 1. the ability of the machine to reconstruct system configurations and 2. its ability to be used as a detector of configurations at specific temperatures are evaluated. The results indicate that the RBM reconstructs configurations following a distribution similar to the original one, but only when the system is in a disordered phase. In an ordered phase, the RBM faces levels of irreproducibility of the configurations in the presence of bimodality, even when the physical observables agree with the theoretical ones. On the other hand, independent of the phase of the system, the information embodied in the neural network weights is sufficient to discriminate whether the configurations come from a given temperature well. The learned representations of the RBM can discriminate system configurations at different temperatures, promising interesting applications in real systems that could help recognize crossover phenomena. Full article
(This article belongs to the Special Issue Ising Model: Recent Developments and Exotic Applications II)
Show Figures

Figure 1

10 pages, 659 KiB  
Article
A Real Neural Network State for Quantum Chemistry
by Yangjun Wu, Xiansong Xu, Dario Poletti, Yi Fan, Chu Guo and Honghui Shang
Mathematics 2023, 11(6), 1417; https://doi.org/10.3390/math11061417 - 15 Mar 2023
Cited by 10 | Viewed by 2452
Abstract
The restricted Boltzmann machine (RBM) has recently been demonstrated as a useful tool to solve the quantum many-body problems. In this work we propose tanh-FCN, which is a single-layer fully connected neural network adapted from RBM, to study ab initio quantum chemistry problems. [...] Read more.
The restricted Boltzmann machine (RBM) has recently been demonstrated as a useful tool to solve the quantum many-body problems. In this work we propose tanh-FCN, which is a single-layer fully connected neural network adapted from RBM, to study ab initio quantum chemistry problems. Our contribution is two-fold: (1) our neural network only uses real numbers to represent the real electronic wave function, while we obtain comparable precision to RBM for various prototypical molecules; (2) we show that the knowledge of the Hartree-Fock reference state can be used to systematically accelerate the convergence of the variational Monte Carlo algorithm as well as to increase the precision of the final energy. Full article
Show Figures

Figure 1

24 pages, 14938 KiB  
Article
A Hybrid Stacked Restricted Boltzmann Machine with Sobel Directional Patterns for Melanoma Prediction in Colored Skin Images
by A. Sherly Alphonse, J. V. Bibal Benifa, Abdullah Y. Muaad, Channabasava Chola, Md Belal Bin Heyat, Belal Abdullah Hezam Murshed, Nagwan Abdel Samee, Maali Alabdulhafith and Mugahed A. Al-antari
Diagnostics 2023, 13(6), 1104; https://doi.org/10.3390/diagnostics13061104 - 14 Mar 2023
Cited by 7 | Viewed by 3040
Abstract
Melanoma, a kind of skin cancer that is very risky, is distinguished by uncontrolled cell multiplication. Melanoma detection is of the utmost significance in clinical practice because of the atypical border structure and the numerous types of tissue it can involve. The identification [...] Read more.
Melanoma, a kind of skin cancer that is very risky, is distinguished by uncontrolled cell multiplication. Melanoma detection is of the utmost significance in clinical practice because of the atypical border structure and the numerous types of tissue it can involve. The identification of melanoma is still a challenging process for color images, despite the fact that numerous approaches have been proposed in the research that has been done. In this research, we present a comprehensive system for the efficient and precise classification of skin lesions. The framework includes preprocessing, segmentation, feature extraction, and classification modules. Preprocessing with DullRazor eliminates skin-imaging hair artifacts. Next, Fully Connected Neural Network (FCNN) semantic segmentation extracts precise and obvious Regions of Interest (ROIs). We then extract relevant skin image features from ROIs using an enhanced Sobel Directional Pattern (SDP). For skin image analysis, Sobel Directional Pattern outperforms ABCD. Finally, a stacked Restricted Boltzmann Machine (RBM) classifies skin ROIs. Stacked RBMs accurately classify skin melanoma. The experiments have been conducted on five datasets: Pedro Hispano Hospital (PH2), International Skin Imaging Collaboration (ISIC 2016), ISIC 2017, Dermnet, and DermIS, and achieved an accuracy of 99.8%, 96.5%, 95.5%, 87.9%, and 97.6%, respectively. The results show that a stack of Restricted Boltzmann Machines is superior for categorizing skin cancer types using the proposed innovative SDP. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

19 pages, 964 KiB  
Article
Modified Conditional Restricted Boltzmann Machines for Query Recommendation in Digital Archives
by Jiayun Wang, Biligsaikhan Batjargal, Akira Maeda, Kyoji Kawagoe and Ryo Akama
Appl. Sci. 2023, 13(4), 2435; https://doi.org/10.3390/app13042435 - 14 Feb 2023
Cited by 1 | Viewed by 2311
Abstract
Digital archives (DAs) usually store diverse expert-level materials. Nowadays, access to DAs is increasing for non-expert users, However, they might have difficulties formulating appropriate search queries to find the necessary information. In response to this problem, we propose a query log-based query recommendation [...] Read more.
Digital archives (DAs) usually store diverse expert-level materials. Nowadays, access to DAs is increasing for non-expert users, However, they might have difficulties formulating appropriate search queries to find the necessary information. In response to this problem, we propose a query log-based query recommendation algorithm that provides expert knowledge to non-expert users, thus supporting their information seeking in DAs. The use case considered is one where after users enter some general queries, they will be recommended semantically similar expert-level queries in the query logs. The proposed modified conditional restricted Boltzmann machines (M-CRBMs) are capable of utilizing the rich metadata in DAs, thereby alleviating the sparsity problem that conventional restricted Boltzmann machines (RBMs) will face. Additionally, compared with other CRBM models, we drop a large number of model weights. In the experiments, the M-CRBMs outperform the conventional RBMs when using appropriate metadata, and we find that the recommendation results are relevant to the metadata fields that are used in M-CRBMs. Through experiments on the Europeana dataset, we also demonstrate the versatility and scalability of our proposed model. Full article
(This article belongs to the Special Issue Recommender Systems and Their Advanced Application)
Show Figures

Figure 1

20 pages, 3074 KiB  
Article
Prediction of Energy Production Level in Large PV Plants through AUTO-Encoder Based Neural-Network (AUTO-NN) with Restricted Boltzmann Feature Extraction
by Ganapathy Ramesh, Jaganathan Logeshwaran, Thangavel Kiruthiga and Jaime Lloret
Future Internet 2023, 15(2), 46; https://doi.org/10.3390/fi15020046 - 26 Jan 2023
Cited by 139 | Viewed by 3770
Abstract
In general, reliable PV generation prediction is required to increase complete control quality and avoid potential damage. Accurate forecasting of direct solar radiation trends in PV power production could limit the influence of uncertainties on photovoltaics, enhance organizational dependability, and maximize the utilization [...] Read more.
In general, reliable PV generation prediction is required to increase complete control quality and avoid potential damage. Accurate forecasting of direct solar radiation trends in PV power production could limit the influence of uncertainties on photovoltaics, enhance organizational dependability, and maximize the utilization factor of the PV systems for something such as an energy management system (EMS) of microgrids. This paper proposes an intelligent prediction of energy production level in large PV plants through AUTO-encoder-based Neural-Network (AUTO-NN) with Restricted Boltzmann feature extraction. Here, the solar energy output may be projected using prior sun illumination and meteorological data. The feature selection and prediction modules use an AUTO encoder-based Neural Network to improve the process of energy prediction (AUTO-NN). Restricted Boltzmann Machines (RBM) can be used during a set of regulations for development-based feature extraction. The proposed model’s result is evaluated using various constraints. As a result, the proposed AUTO-NN achieved 58.72% of RMSE (Root Mean Square Error), 62.72% of nRMSE (Normalized Root Mean Square Error), 48.04% of MaxAE (Maximum Absolute Error), 48.66% of (Mean Absolute Error), and 46.76% of (Mean Absolute Percentage Error). Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

20 pages, 1270 KiB  
Article
Thermodynamics of the Ising Model Encoded in Restricted Boltzmann Machines
by Jing Gu and Kai Zhang
Entropy 2022, 24(12), 1701; https://doi.org/10.3390/e24121701 - 22 Nov 2022
Cited by 4 | Viewed by 3416
Abstract
The restricted Boltzmann machine (RBM) is a two-layer energy-based model that uses its hidden–visible connections to learn the underlying distribution of visible units, whose interactions are often complicated by high-order correlations. Previous studies on the Ising model of small system sizes have shown [...] Read more.
The restricted Boltzmann machine (RBM) is a two-layer energy-based model that uses its hidden–visible connections to learn the underlying distribution of visible units, whose interactions are often complicated by high-order correlations. Previous studies on the Ising model of small system sizes have shown that RBMs are able to accurately learn the Boltzmann distribution and reconstruct thermal quantities at temperatures away from the critical point Tc. How the RBM encodes the Boltzmann distribution and captures the phase transition are, however, not well explained. In this work, we perform RBM learning of the 2d and 3d Ising model and carefully examine how the RBM extracts useful probabilistic and physical information from Ising configurations. We find several indicators derived from the weight matrix that could characterize the Ising phase transition. We verify that the hidden encoding of a visible state tends to have an equal number of positive and negative units, whose sequence is randomly assigned during training and can be inferred by analyzing the weight matrix. We also explore the physical meaning of the visible energy and loss function (pseudo-likelihood) of the RBM and show that they could be harnessed to predict the critical point or estimate physical quantities such as entropy. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

12 pages, 2764 KiB  
Article
A New Deep Learning Restricted Boltzmann Machine for Energy Consumption Forecasting
by Aoqi Xu, Man-Wen Tian, Behnam Firouzi, Khalid A. Alattas, Ardashir Mohammadzadeh and Ebrahim Ghaderpour
Sustainability 2022, 14(16), 10081; https://doi.org/10.3390/su141610081 - 15 Aug 2022
Cited by 33 | Viewed by 3716
Abstract
A key issue in the desired operation and development of power networks is the knowledge of load growth and electricity demand in the coming years. Mid-term load forecasting (MTLF) has an important rule in planning and optimal use of power systems. However, MTLF [...] Read more.
A key issue in the desired operation and development of power networks is the knowledge of load growth and electricity demand in the coming years. Mid-term load forecasting (MTLF) has an important rule in planning and optimal use of power systems. However, MTLF is a complicated problem, and a lot of uncertain factors and variables disturb the load consumption pattern. This paper presents a practical approach for MTLF. A new deep learning restricted Boltzmann machine (RBM) is proposed for modelling and forecasting energy consumption. The contrastive divergence algorithm is presented for tuning the parameters. All parameters of RBMs, the number of input variables, the type of inputs, and also the layer and neuron numbers are optimized. A statistical approach is suggested to determine the effective input variables. In addition to the climate variables, such as temperature and humidity, the effects of other variables such as economic factors are also investigated. Finally, using simulated and real-world data examples, it is shown that for one year ahead, the mean absolute percentage error (MAPE) for the load peak is less than 5%. Moreover, for the 24-h pattern forecasting, the mean of MAPE for all days is less than 5%. Full article
(This article belongs to the Special Issue Artificial Intelligence and Sustainability)
Show Figures

Figure 1

21 pages, 2616 KiB  
Article
Implementation of a Life Cycle Cost Deep Learning Prediction Model Based on Building Structure Alternatives for Industrial Buildings
by Ahmed Meshref, Karim El-Dash, Mohamed Basiouny and Omia El-Hadidi
Buildings 2022, 12(5), 502; https://doi.org/10.3390/buildings12050502 - 19 Apr 2022
Cited by 10 | Viewed by 4219
Abstract
Undoubtedly, most industrial buildings have a huge Life Cycle Cost (LCC) throughout their lifespan, and most of these costs occur in structural operation and maintenance costs, environmental impact costs, etc. Hence, it is necessary to think about a fast way to determine the [...] Read more.
Undoubtedly, most industrial buildings have a huge Life Cycle Cost (LCC) throughout their lifespan, and most of these costs occur in structural operation and maintenance costs, environmental impact costs, etc. Hence, it is necessary to think about a fast way to determine the LCC values. Therefore, this article presents an LCC deep learning prediction model to assess structural and envelope-type alternatives for industrial building, and to make a decision for the most suitable structure. The input and output criteria of the prediction model were collected from previous studies. The deep learning network model was developed using a Deep Belief Network (DBN) with Restricted Boltzmann Machine (RBM) hidden layers. Seven investigation cases were studied to validate the prediction model of a 312-item dataset over a period of 30 years, after the training phase of the network to take the suitable hidden layers of the RBM and hidden neurons in each hidden layer that achieved the minimal errors of the model. Another case was studied in the model to compare design structure alternatives, consisting of three main structure frames—a reinforced concrete frame, a precast/pre-stressed concrete frame, and a steel frame—over their life cycle, and make a decision. Precast/pre-stressed concrete frames were the best decision until the end of the life cycle cost, as it is possible to reuse the removed sections in a new industrial building. Full article
(This article belongs to the Topic Sustainable Building Structures)
Show Figures

Figure 1

Back to TopTop