Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = renal iron accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 18076 KiB  
Article
Oxidized Albumin Induces Renal Tubular Cell Death and Promotes the Progression of Renal Diseases Through Ferroptosis
by Yingyu Zhang, Rui Jiang, Zhuheng Shi, Yang Sui, Jie Cheng, Mika Suda, Manabu Niimi, Kun Gao, Jianglin Fan and Jian Yao
Int. J. Mol. Sci. 2025, 26(13), 5924; https://doi.org/10.3390/ijms26135924 - 20 Jun 2025
Viewed by 415
Abstract
Oxidative stress plays a crucial role in disease pathogenesis. While reactive oxygen species (ROS) directly cause cellular injury, emerging evidence suggests oxidatively modified proteins like albumin may also contribute significantly to tissue damage. Although oxidized albumin (ox-Alb) is linked to renal pathology, the [...] Read more.
Oxidative stress plays a crucial role in disease pathogenesis. While reactive oxygen species (ROS) directly cause cellular injury, emerging evidence suggests oxidatively modified proteins like albumin may also contribute significantly to tissue damage. Although oxidized albumin (ox-Alb) is linked to renal pathology, the direct effects and mechanisms of ox-Alb on renal cell injury remain unclear. This study was created to address these questions. In mouse models of renal injury initiated by vitamin C/copper or ischemia/reperfusion, levels of serum ox-Alb were significantly elevated. The treatment of albumin with copper/vitamin C increased Alb carbonylation and reduced the number of sulfhydryl groups, causing Alb oxidation. In cultured renal tubular epithelial NRK-52E cells, ox-Alb triggered cell death, associated with increased intracellular albumin accumulation—enhanced cellular protein carbonylation, and p38 MAPK activation. Notably, ox-Alb induced ferroptosis, evidenced by decreased GPX4 and xCT, increased ACSL4, elevated iron and lipid peroxidation, and suppression by deferoxamine and liproxstatin-1. In vivo, administration of ox-Alb exacerbated doxorubicin-induced nephropathy, as indicated by the elevated BUN, creatinine, and proteinuria, and intensified renal ferroptotic responses, including altered GPX4 and ACSL4. Our findings demonstrate that ox-Alb induces renal cell ferroptosis and promotes renal disease progression, suggesting its pivotal pathogenic role in oxidative stress-related kidney diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Kidney Disease)
Show Figures

Figure 1

23 pages, 1396 KiB  
Review
Gut Dysbiosis and Its Role in the Anemia of Chronic Kidney Disease
by Elisabet Coll, Secundino Cigarran, Jose Portolés and Aleix Cases
Toxins 2024, 16(11), 495; https://doi.org/10.3390/toxins16110495 - 17 Nov 2024
Cited by 1 | Viewed by 3037
Abstract
The gut dysbiosis present in chronic kidney disease (CKD) has been associated with anemia. Factors such as the accumulation of gut-derived uremic toxins, increased gut barrier permeability-induced inflammation, and a reduced intestinal production of short-chain fatty acids (SCFAs), all associated with changes in [...] Read more.
The gut dysbiosis present in chronic kidney disease (CKD) has been associated with anemia. Factors such as the accumulation of gut-derived uremic toxins, increased gut barrier permeability-induced inflammation, and a reduced intestinal production of short-chain fatty acids (SCFAs), all associated with changes in the intestinal microbiota composition in CKD, may lead to the development or worsening of anemia in renal patients. Understanding and addressing these mechanisms related to gut dysbiosis in CKD patients can help to delay the development of anemia and improve its control in this population. One approach is to avoid or reduce the use of drugs linked to gut dysbiosis in CKD, such as phosphate binders, oral iron supplementation, antibiotics, and others, unless they are indispensable. Another approach involves introducing dietary changes that promote a healthier microbiota and/or using prebiotics, probiotics, or symbiotics to improve gut dysbiosis in this setting. These measures can increase the presence of SCFA-producing saccharolytic bacteria and reduce proteolytic bacteria, thereby lowering the production of gut-derived uremic toxins and inflammation. By ameliorating CKD-related gut dysbiosis, these strategies can also improve the control of renal anemia and enhance the response to erythropoiesis-stimulating agents (ESAs) in ESA-resistant patients. In this review, we have explored the relationship between gut dysbiosis in CKD and renal anemia and propose feasible solutions, both those already known and potential future treatments. Full article
Show Figures

Figure 1

16 pages, 1038 KiB  
Review
Ferroptosis in Renal Cancer Therapy: A Narrative Review of Drug Candidates
by Lingyan Yu, Yuyueyang Qiu and Xiangmin Tong
Cancers 2024, 16(18), 3131; https://doi.org/10.3390/cancers16183131 - 11 Sep 2024
Cited by 2 | Viewed by 2010
Abstract
Renal cancer is a common and serious malignant tumor of the urinary system. While surgery effectively treats early-stage renal cancer, advanced cases pose a significant challenge due to poor treatment outcomes and chemotherapy resistance. Therefore, there is an urgent need to develop alternative [...] Read more.
Renal cancer is a common and serious malignant tumor of the urinary system. While surgery effectively treats early-stage renal cancer, advanced cases pose a significant challenge due to poor treatment outcomes and chemotherapy resistance. Therefore, there is an urgent need to develop alternative therapeutic strategies. Ferroptosis is a newly defined form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which plays a critical role in tumor progression and drug resistance. Recent studies have shown that ferroptosis is involved in the occurrence and development of renal cancer, and ferroptosis-related genes can induce cell apoptosis and can be used as potential biomarkers for early diagnosis of renal cancer and participate in drug resistance of renal cancer chemotherapy. With the continuous improvement of the mechanism of ferroptosis, drugs targeting ferroptosis for the treatment of renal cancer are emerging in an endless stream. Based on the theoretical basis of the occurrence of ferroptosis, this paper reviewed drug-induced ferroptosis in renal cancer cells from the aspects of herbal medicine, natural compounds, drug resistance mechanisms, and nanomaterials, and delves into the clinical application potential of ferroptosis-related drugs in the treatment of renal cancer. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

21 pages, 23140 KiB  
Article
The Impairment of Endothelial Autophagy Accelerates Renal Senescence by Ferroptosis and NLRP3 Inflammasome Signaling Pathways with the Disruption of Endothelial Barrier
by Jin Won Kim, Sun Ah Nam, Eun-Sil Koh, Hyung Wook Kim, Sua Kim, Jin Ju Woo and Yong Kyun Kim
Antioxidants 2024, 13(8), 886; https://doi.org/10.3390/antiox13080886 - 23 Jul 2024
Cited by 3 | Viewed by 2131
Abstract
Autophagy is a cellular process that degrades damaged cytoplasmic components and regulates cell death. The homeostasis of endothelial cells (ECs) is crucial for the preservation of glomerular structure and function in aging. Here, we investigated the precise mechanisms of endothelial autophagy in renal [...] Read more.
Autophagy is a cellular process that degrades damaged cytoplasmic components and regulates cell death. The homeostasis of endothelial cells (ECs) is crucial for the preservation of glomerular structure and function in aging. Here, we investigated the precise mechanisms of endothelial autophagy in renal aging. The genetic deletion of Atg7 in the ECs of Atg7flox/flox;Tie2-Cre mice accelerated aging-related glomerulopathy and tubulointerstitial fibrosis. The EC-specific Atg7 deletion in aging mice induced the detachment of EC with the disruption of glomerular basement membrane (GBM) assembly and increased podocyte loss resulting in microalbuminuria. A Transwell co-culture system of ECs and kidney organoids showed that the iron and oxidative stress induce the disruption of the endothelial barrier and increase vascular permeability, which was accelerated by the inhibition of autophagy. This resulted in the leakage of iron through the endothelial barrier into kidney organoids and increased oxidative stress, which led to ferroptotic cell death. The ferritin accumulation was increased in the kidneys of the EC-specific Atg7-deficient aging mice and upregulated the NLRP3 inflammasome signaling pathway. The pharmacologic inhibition of ferroptosis with liproxstatin-1 recovered the disrupted endothelial barrier and reversed the decreased expression of GPX4, as well as NLRP3 and IL-1β, in endothelial autophagy-deficient aged mice, which attenuated aging-related renal injury including the apoptosis of renal cells, abnormal structures of GBM, and tubulointerstitial fibrosis. Our data showed that endothelial autophagy is essential for the maintenance of the endothelial barrier during renal aging and the impairment of endothelial autophagy accelerates renal senescence by ferroptosis and NLRP3 inflammasome signaling pathways. These processes may be attractive therapeutic targets to reduce cellular injury from renal aging. Full article
Show Figures

Figure 1

17 pages, 1024 KiB  
Review
The Effect of L-Carnitine on Critical Illnesses Such as Traumatic Brain Injury (TBI), Acute Kidney Injury (AKI), and Hyperammonemia (HA)
by Bharti Sharma, Lee Schmidt, Cecilia Nguyen, Samantha Kiernan, Jacob Dexter-Meldrum, Zachary Kuschner, Scott Ellis, Navin D. Bhatia, George Agriantonis, Jennifer Whittington and Kate Twelker
Metabolites 2024, 14(7), 363; https://doi.org/10.3390/metabo14070363 - 27 Jun 2024
Cited by 7 | Viewed by 4511
Abstract
L-carnitine (LC) through diet is highly beneficial for critical patients. Studies have found that acetyl-L-carnitine (ALC) can reduce cerebral edema and neurological complications in TBI patients. It significantly improves their neurobehavioral and neurocognitive functions. ALC has also been shown to have a neuroprotective [...] Read more.
L-carnitine (LC) through diet is highly beneficial for critical patients. Studies have found that acetyl-L-carnitine (ALC) can reduce cerebral edema and neurological complications in TBI patients. It significantly improves their neurobehavioral and neurocognitive functions. ALC has also been shown to have a neuroprotective effect in cases of global and focal cerebral ischemia. Moreover, it is an effective agent in reducing nephrotoxicity by suppressing downstream mitochondrial fragmentation. LC can reduce the severity of renal ischemia-reperfusion injury, renal cast formation, tubular necrosis, iron accumulation in the tubular epithelium, CK activity, urea levels, Cr levels, and MDA levels and restore the function of enzymes such as SOD, catalase, and GPx. LC can also be administered to patients with hyperammonemia (HA), as it can suppress ammonia levels. It is important to note, however, that LC levels are dysregulated in various conditions such as aging, cirrhosis, cardiomyopathy, malnutrition, sepsis, endocrine disorders, diabetes, trauma, starvation, obesity, and medication interactions. There is limited research on the effects of LC supplementation in critical illnesses such as TBI, AKI, and HA. This scarcity of studies highlights the need for further research in this area. Full article
(This article belongs to the Special Issue Impact of Food and Bioactive Compounds on Metabolic Diseases)
Show Figures

Figure 1

32 pages, 1592 KiB  
Review
Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases
by Tiancheng Xie, Li Yao and Xiaogang Li
Antioxidants 2024, 13(6), 659; https://doi.org/10.3390/antiox13060659 - 27 May 2024
Cited by 10 | Viewed by 2671
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated [...] Read more.
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases. Full article
Show Figures

Figure 1

35 pages, 770 KiB  
Review
Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update
by Rolf Teschke and Axel Eickhoff
Int. J. Mol. Sci. 2024, 25(9), 4753; https://doi.org/10.3390/ijms25094753 - 26 Apr 2024
Cited by 36 | Viewed by 7029
Abstract
Wilson disease is a genetic disorder of the liver characterized by excess accumulation of copper, which is found ubiquitously on earth and normally enters the human body in small amounts via the food chain. Many interesting disease details were published on the mechanistic [...] Read more.
Wilson disease is a genetic disorder of the liver characterized by excess accumulation of copper, which is found ubiquitously on earth and normally enters the human body in small amounts via the food chain. Many interesting disease details were published on the mechanistic steps, such as the generation of reactive oxygen species (ROS) and cuproptosis causing a copper dependent cell death. In the liver of patients with Wilson disease, also, increased iron deposits were found that may lead to iron-related ferroptosis responsible for phospholipid peroxidation within membranes of subcellular organelles. All topics are covered in this review article, in addition to the diagnostic and therapeutic issues of Wilson disease. Excess Cu2+ primarily leads to the generation of reactive oxygen species (ROS), as evidenced by early experimental studies exemplified with the detection of hydroxyl radical formation using the electron spin resonance (ESR) spin-trapping method. The generation of ROS products follows the principles of the Haber–Weiss reaction and the subsequent Fenton reaction leading to copper-related cuproptosis, and is thereby closely connected with ROS. Copper accumulation in the liver is due to impaired biliary excretion of copper caused by the inheritable malfunctioning or missing ATP7B protein. As a result, disturbed cellular homeostasis of copper prevails within the liver. Released from the liver cells due to limited storage capacity, the toxic copper enters the circulation and arrives at other organs, causing local accumulation and cell injury. This explains why copper injures not only the liver, but also the brain, kidneys, eyes, heart, muscles, and bones, explaining the multifaceted clinical features of Wilson disease. Among these are depression, psychosis, dysarthria, ataxia, writing problems, dysphagia, renal tubular dysfunction, Kayser–Fleischer corneal rings, cardiomyopathy, cardiac arrhythmias, rhabdomyolysis, osteoporosis, osteomalacia, arthritis, and arthralgia. In addition, Coombs-negative hemolytic anemia is a key feature of Wilson disease with undetectable serum haptoglobin. The modified Leipzig Scoring System helps diagnose Wilson disease. Patients with Wilson disease are well-treated first-line with copper chelators like D-penicillamine that facilitate the removal of circulating copper bound to albumin and increase in urinary copper excretion. Early chelation therapy improves prognosis. Liver transplantation is an option viewed as ultima ratio in end-stage liver disease with untreatable complications or acute liver failure. Liver transplantation finally may thus be a life-saving approach and curative treatment of the disease by replacing the hepatic gene mutation. In conclusion, Wilson disease is a multifaceted genetic disease representing a molecular and clinical challenge. Full article
Show Figures

Figure 1

21 pages, 1502 KiB  
Review
Iron Metabolism and Inflammatory Mediators in Patients with Renal Dysfunction
by Tomomi Matsuoka, Masanori Abe and Hiroki Kobayashi
Int. J. Mol. Sci. 2024, 25(7), 3745; https://doi.org/10.3390/ijms25073745 - 27 Mar 2024
Cited by 12 | Viewed by 4703
Abstract
Chronic kidney disease (CKD) affects around 850 million people worldwide, posing significant challenges in healthcare due to complications like renal anemia, end-stage kidney disease, and cardiovascular diseases. This review focuses on the intricate interplay between iron metabolism, inflammation, and renal dysfunction in CKD. [...] Read more.
Chronic kidney disease (CKD) affects around 850 million people worldwide, posing significant challenges in healthcare due to complications like renal anemia, end-stage kidney disease, and cardiovascular diseases. This review focuses on the intricate interplay between iron metabolism, inflammation, and renal dysfunction in CKD. Renal anemia, prevalent in CKD, arises primarily from diminished erythropoietin (EPO) production and iron dysregulation, which worsens with disease progression. Functional and absolute iron deficiencies due to impaired absorption and chronic inflammation are key factors exacerbating erythropoiesis. A notable aspect of CKD is the accumulation of uremic toxins, such as indoxyl sulfate (IS), which hinder iron metabolism and worsen anemia. These toxins directly affect renal EPO synthesis and contribute to renal hypoxia, thus playing a critical role in the pathophysiology of renal anemia. Inflammatory cytokines, especially TNF-α and IL-6, further exacerbate CKD progression and disrupt iron homeostasis, thereby influencing anemia severity. Treatment approaches have evolved to address both iron and EPO deficiencies, with emerging therapies targeting hepcidin and employing hypoxia-inducible factor (HIF) stabilizers showing potential. This review underscores the importance of integrated treatment strategies in CKD, focusing on the complex relationship between iron metabolism, inflammation, and renal dysfunction to improve patient outcomes. Full article
(This article belongs to the Special Issue Renal Dysfunction, Uremic Compounds, and Other Factors 2.0)
Show Figures

Figure 1

16 pages, 6507 KiB  
Article
Liproxstatin-1 Alleviated Ischemia/Reperfusion-Induced Acute Kidney Injury via Inhibiting Ferroptosis
by Zhiyuan Shi, Yifan Du, Jianzhong Zheng, Wenbin Tang, Qing Liang, Zeyuan Zheng, Bin Liu, Huimin Sun, Kejia Wang and Chen Shao
Antioxidants 2024, 13(2), 182; https://doi.org/10.3390/antiox13020182 - 31 Jan 2024
Cited by 9 | Viewed by 3593
Abstract
Ferroptosis, as a novel regulable cell death, is characterized by iron overload, glutathione depletion, and an accumulation of lipid peroxides. Recently, it has been discovered that ferroptosis is involved in ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) and plays a crucial role in renal [...] Read more.
Ferroptosis, as a novel regulable cell death, is characterized by iron overload, glutathione depletion, and an accumulation of lipid peroxides. Recently, it has been discovered that ferroptosis is involved in ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) and plays a crucial role in renal tubular cell death. In this study, we tried to investigate the effect and mechanism of liproxstatin-1 (Lip-1) in I/R-induced AKI and seek the key regulator of ferroptosis in I/R-induced AKI. Mice were administrated with clamping bilateral renal pedicles for 30 min. We found that early growth response 1 (EGR1) might be a key regulator of ferroptosis, and Lip-1 could suppress ferroptosis via EGR1. Meanwhile, Lip-1 could reduce macrophage recruitment and the release of inflammatory cytokines. These findings indicated that Lip-1 alleviated I/R-induced AKI via regulating EGR1, and it might pave the theoretical basis of a new therapeutic strategy for I/R-induced AKI. Full article
(This article belongs to the Special Issue Antioxidant System Efficiency in Kidney Diseases)
Show Figures

Figure 1

26 pages, 1271 KiB  
Review
Is Environmental Cadmium Exposure Causally Related to Diabetes and Obesity?
by Soisungwan Satarug
Cells 2024, 13(1), 83; https://doi.org/10.3390/cells13010083 - 30 Dec 2023
Cited by 9 | Viewed by 4175
Abstract
Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential metals, iron, zinc, and calcium (Fe, Zn, and [...] Read more.
Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential metals, iron, zinc, and calcium (Fe, Zn, and Ca). Cd preferentially accumulates in the proximal tubular epithelium of the kidney, and is excreted in urine when these cells die. Thus, excretion of Cd reflects renal accumulation (body burden) and the current toxicity of Cd. The kidney is the only organ other than liver that produces and releases glucose into the circulation. Also, the kidney is responsible for filtration and the re-absorption of glucose. Cd is the least recognized diabetogenic substance although research performed in the 1980s demonstrated the diabetogenic effects of chronic oral Cd administration in neonatal rats. Approximately 10% of the global population are now living with diabetes and over 80% of these are overweight or obese. This association has fueled an intense search for any exogenous chemicals and lifestyle factors that could induce excessive weight gain. However, whilst epidemiological studies have clearly linked diabetes to Cd exposure, this appears to be independent of adiposity. This review highlights Cd exposure sources and levels associated with diabetes type 2 and the mechanisms by which Cd disrupts glucose metabolism. Special emphasis is on roles of the liver and kidney, and cellular stress responses and defenses, involving heme oxygenase-1 and -2 (HO-1 and HO-2). From heme degradation, both HO-1 and HO-2 release Fe, carbon monoxide, and a precursor substrate for producing a potent antioxidant, bilirubin. HO-2 appears to have also anti-diabetic and anti-obese actions. In old age, HO-2 deficient mice display a symptomatic spectrum of human diabetes, including hyperglycemia, insulin resistance, increased fat deposition, and hypertension. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

12 pages, 722 KiB  
Article
The Effect of Exogenous Cadmium and Zinc Applications on Cadmium, Zinc and Essential Mineral Bioaccessibility in Three Lines of Rice That Differ in Grain Cadmium Accumulation
by Michael Tavarez, Michael A. Grusak and Renuka P. Sankaran
Foods 2023, 12(21), 4026; https://doi.org/10.3390/foods12214026 - 4 Nov 2023
Cited by 3 | Viewed by 2081
Abstract
Millions of people around the world rely on rice (Oryza sativa) for a significant portion of daily calories, but rice is a relatively poor source of essential micronutrients like iron and zinc. Rice has been shown to accumulate alarmingly high concentrations [...] Read more.
Millions of people around the world rely on rice (Oryza sativa) for a significant portion of daily calories, but rice is a relatively poor source of essential micronutrients like iron and zinc. Rice has been shown to accumulate alarmingly high concentrations of toxic elements, such as cadmium. Cadmium in foods can lead to renal failure, bone mineral density loss, cancer, and significant neurotoxicological effects. Several strategies to limit cadmium and increase micronutrient density in staple food crops like rice have been explored, but even when cadmium concentrations are reduced by a management strategy, total cadmium levels in rice grain are an unreliable means of estimating human health risk because only a fraction of the minerals in grains are bioaccessible. The goal of this work was to assess the influence of cadmium and zinc supplied to plant roots on the bioaccessibility of cadmium and essential minerals from grains of three rice lines (GSOR 310546/low grain Cd, GSOR 311667/medium grain Cd, and GSOR 310428/high grain Cd) that differed in grain cadmium accumulation. Treatments consisted of 0 μM Cd + 2 μM Zn (c0z2), 1 μM Cd + 2 μM Zn (c1z2), or 1 μM Cd + 10 μM Zn (c1z10). Our results revealed that an increased grain cadmium concentration does not always correlate with increased cadmium bioaccessibility. Among the three rice lines tested, Cd bioaccessibility increased from 2.5% in grains from the c1z2 treatment to 17.7% in grains from the c1z10 treatment. Furthermore, Cd bioccessibility in the low-Cd-accumulating line was significantly higher than the high line in c1z10 treatment. Zinc bioaccessibility increased in the high-cadmium-accumulating line when cadmium was elevated in grains, and in the low-cadmium line when both cadmium and zinc were increased in the rice grains. Our results showed that both exogenous cadmium and elevated zinc treatments increased the bioaccessibility of other minerals from grains of the low- or high-grain cadmium lines of rice. Differences in mineral bioaccessibility were dependent on rice line. Calculations also showed that increased cadmium bioaccessibility correlated with increased risk of dietary exposure to consumers. Furthermore, our results suggest that zinc fertilization increased dietary exposure to cadmium in both high and low lines. This information can inform future experiments to analyze genotypic effects of mineral bioavailability from rice, with the goal of reducing cadmium absorption while simultaneously increasing zinc absorption from rice grains. Full article
(This article belongs to the Special Issue Elements in Food: Detection, Bioaccessibility and Food Fortification)
Show Figures

Figure 1

21 pages, 4216 KiB  
Article
Inhibition of Indoxyl Sulfate-Induced Reactive Oxygen Species-Related Ferroptosis Alleviates Renal Cell Injury In Vitro and Chronic Kidney Disease Progression In Vivo
by Li-Ting Tsai, Te-I Weng, Ting-Yu Chang, Kuo-Cheng Lan, Chih-Kang Chiang and Shing-Hwa Liu
Antioxidants 2023, 12(11), 1931; https://doi.org/10.3390/antiox12111931 - 30 Oct 2023
Cited by 7 | Viewed by 3083
Abstract
The accumulation of the uremic toxin indoxyl sulfate (IS) is a key pathological feature of chronic kidney disease (CKD). The effect of IS on ferroptosis and the role of IS-related ferroptosis in CKD are not well understood. We used a renal tubular cell [...] Read more.
The accumulation of the uremic toxin indoxyl sulfate (IS) is a key pathological feature of chronic kidney disease (CKD). The effect of IS on ferroptosis and the role of IS-related ferroptosis in CKD are not well understood. We used a renal tubular cell model and an adenine-induced CKD mouse model to explore whether IS induces ferroptosis and injury and affects iron metabolism in the renal cells and the kidneys. Our results showed that exposure to IS induced several characteristics for ferroptosis, including iron accumulation, an impaired antioxidant system, elevated reactive oxygen species (ROS) levels, and lipid peroxidation. Exposure to IS triggered intracellular iron accumulation by upregulating transferrin and transferrin receptors, which are involved in cellular iron uptake. We also observed increased levels of the iron storage protein ferritin. The effects of IS-induced ROS generation, lipid peroxidation, ferroptosis, senescence, ER stress, and injury/fibrosis were effectively alleviated by treatments with an iron chelator deferoxamine (DFO) in vitro and the adsorbent charcoal AST-120 (scavenging the IS precursor) in vivo. Our findings suggest that IS triggers intracellular iron accumulation and ROS generation, leading to the induction of ferroptosis, senescence, ER stress, and injury/fibrosis in CKD kidneys. AST-120 administration may serve as a potential therapeutic strategy. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 4366 KiB  
Article
Vitamin E and Silymarin Reduce Oxidative Tissue Damage during Gentamycin-Induced Nephrotoxicity
by Tsvetelin Georgiev, Galina Nikolova, Viktoriya Dyakova, Yanka Karamalakova, Ekaterina Georgieva, Julian Ananiev, Veselin Ivanov and Petya Hadzhibozheva
Pharmaceuticals 2023, 16(10), 1365; https://doi.org/10.3390/ph16101365 - 27 Sep 2023
Cited by 10 | Viewed by 2119
Abstract
Aminoglycoside antibiotics and gentamicin (GN), in particular, are still widely used in clinical practice. It is a well-known fact that GN causes nephrotoxicity, and redox disturbances are discussed as a factor in its side effects. Recently, a new type of cell oxidative death, [...] Read more.
Aminoglycoside antibiotics and gentamicin (GN), in particular, are still widely used in clinical practice. It is a well-known fact that GN causes nephrotoxicity, and redox disturbances are discussed as a factor in its side effects. Recently, a new type of cell oxidative death, named ferroptosis, was discovered; it is associated with iron accumulation in the cell, glutathione (GSH) depletion and inactivation of glutathione peroxidase-4 (GPX4), reactive oxygen species (ROS) increment with concomitant lipid peroxidation. In this regard, a possible connection between GN-induced renal damage, ferroptosis and the overall antioxidant status of the organism could be investigated. Moreover, due to its beneficial effects, GN is still one of the main choices as a therapeutic agent for several diseases, and the possible reduction of its side effects with the application of certain antioxidants will be of important clinical significance. The study was conducted with adult male white mice divided into several groups (n = 6). GN nephrotoxicity was induced by the administration of GN 100–200 mg/kg i.p. for 10 days. The control group received only saline. The other groups received either Vitamin E (400 mg/kg p.o.) or Silymarin (200 mg/kg p.o.) applied alone or together with GN for the same period. After the end of the study, the animals were sacrificed, and blood and tissue samples were taken for the assessment of biochemical parameters and antioxidant status, as well as routine and specific for GPX4 histochemistry examination. The experimental results indicate that GN-induced nephrotoxicity negatively modulates GPX4 activity and is associated with increased production of ROS and lipid peroxidation. The groups treated with antioxidants demonstrated preserved antioxidant status and better GPX4 activity. In conclusion, the inhibition of ROS production and especially the suppression of ferroptosis, could be of clinical potential and can be applied as a means of reducing the toxic effects of GN application. Full article
Show Figures

Figure 1

13 pages, 2106 KiB  
Article
Changes in Iron Status Biomarkers with Advancing Age According to Sex and Menopause: A Population-Based Study
by Francesco Merlo, Dion Groothof, Farnaz Khatami, Noushin Sadat Ahanchi, Faina Wehrli, Stephan J. L. Bakker, Michele F. Eisenga and Taulant Muka
J. Clin. Med. 2023, 12(16), 5338; https://doi.org/10.3390/jcm12165338 - 16 Aug 2023
Cited by 11 | Viewed by 2864
Abstract
Background: The risk of chronic diseases increases markedly with age and after menopause. An increase in bodily iron following menopause could contribute to this phenomenon of increased risk of chronic diseases. We aimed to investigate how various iron biomarkers change with advancing age, [...] Read more.
Background: The risk of chronic diseases increases markedly with age and after menopause. An increase in bodily iron following menopause could contribute to this phenomenon of increased risk of chronic diseases. We aimed to investigate how various iron biomarkers change with advancing age, according to sex and menopausal status. Methods: We enrolled community-dwelling individuals with available information on ferritin, transferrin, iron, hepcidin, and soluble transferrin receptor levels from the Prevention of Renal and Vascular Endstage Disease study. The association of the iron biomarkers with age, sex, and menopausal status was investigated with linear regression models. Results: Mean (SD) age of the 5222 individuals (2680 women [51.3%], among whom 907 [33.8%] were premenopausal, 529 [19.7%] perimenopausal, and 785 [29.3%] postmenopausal), was 53.4 (12.0) years. Iron biomarkers showed a constant increase in women throughout their life course, in some cases at older ages surpassing values in men who, in turn, showed consistently higher levels of iron status compared to women in most age categories. Ferritin, hepcidin, and transferrin saturation levels were 3.03, 2.92, and 1.08-fold (all p < 0.001) higher in postmenopausal women compared to premenopausal. Conclusions: We found that iron accumulates differently depending on sex, age, and menopausal status. An increased iron status was identified in women, especially during and after menopause. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

19 pages, 2762 KiB  
Article
Induction of Hepcidin Expression in the Renal Cortex of Sickle Cell Disease Mice
by Asrar Ahmad, Namita Kumari, Nowah Afangbedji, Sergei Nekhai and Marina Jerebtsova
Int. J. Mol. Sci. 2023, 24(13), 10806; https://doi.org/10.3390/ijms241310806 - 28 Jun 2023
Cited by 3 | Viewed by 2073
Abstract
In patients with sickle cell disease (SCD), chronic hemolysis and frequent blood transfusions cause iron overload and accumulation in the kidneys. The iron deposition is found in the renal cortex and correlates with the severity of hemolysis. In this study, we observed a [...] Read more.
In patients with sickle cell disease (SCD), chronic hemolysis and frequent blood transfusions cause iron overload and accumulation in the kidneys. The iron deposition is found in the renal cortex and correlates with the severity of hemolysis. In this study, we observed a significant accumulation of iron in the renal cortex of a mouse model of SCD, and assessed the expression of the proteins involved in maintaining renal iron homeostasis. Despite the intracellular iron accumulation, the levels of the transferrin receptor in the kidneys were increased, but the levels of the iron exporter ferroportin were not altered in SCD mice. Ferroportin is regulated by hepcidin, which binds to it and promotes its degradation. We found reduced serum hepcidin levels but increased renal hepcidin production in SCD mice. Furthermore, we observed significant macrophage infiltration and increased expression of intercellular adhesion molecule 1 in the endothelial cells of the kidneys in SCD mice. These observations correlated with elevated levels of proinflammatory cytokines IL-1β and IL-6, which can potentially stimulate hepcidin expression. Taken together, our results demonstrate that in individuals with SCD, a renal inflammation state induces renal hepcidin production that blocks the upregulation of ferroportin levels, resulting in dysregulation of iron homeostasis in the kidney and iron deposition in the renal cortex. Full article
(This article belongs to the Special Issue Recent Advance on Iron Metabolism, Ferritin and Hepcidin Research)
Show Figures

Figure 1

Back to TopTop