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Abstract: Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and
air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential
metals, iron, zinc, and calcium (Fe, Zn, and Ca). Cd preferentially accumulates in the proximal
tubular epithelium of the kidney, and is excreted in urine when these cells die. Thus, excretion of
Cd reflects renal accumulation (body burden) and the current toxicity of Cd. The kidney is the only
organ other than liver that produces and releases glucose into the circulation. Also, the kidney is
responsible for filtration and the re-absorption of glucose. Cd is the least recognized diabetogenic
substance although research performed in the 1980s demonstrated the diabetogenic effects of chronic
oral Cd administration in neonatal rats. Approximately 10% of the global population are now living
with diabetes and over 80% of these are overweight or obese. This association has fueled an intense
search for any exogenous chemicals and lifestyle factors that could induce excessive weight gain.
However, whilst epidemiological studies have clearly linked diabetes to Cd exposure, this appears to
be independent of adiposity. This review highlights Cd exposure sources and levels associated with
diabetes type 2 and the mechanisms by which Cd disrupts glucose metabolism. Special emphasis is on
roles of the liver and kidney, and cellular stress responses and defenses, involving heme oxygenase-1
and -2 (HO-1 and HO-2). From heme degradation, both HO-1 and HO-2 release Fe, carbon monoxide,
and a precursor substrate for producing a potent antioxidant, bilirubin. HO-2 appears to have
also anti-diabetic and anti-obese actions. In old age, HO-2 deficient mice display a symptomatic
spectrum of human diabetes, including hyperglycemia, insulin resistance, increased fat deposition,
and hypertension.

Keywords: bilirubin; cadmium; diabetes type 2; glucose metabolism; heme oxygenase-1; heme
oxygenase-2; obesity

1. Introduction

Cadmium (Cd) is a redox inert metal, present in relatively low levels in the Earth’s
crust and most surface soils [1–3]. It is primary present as a sulphide, such as in greenockite
and the zinc ore, sphalerite [2]. Hence, mining, smelting, and refining of zinc ores yield
Cd as the main byproduct. It has been widely used in many industrial processes because
of its metallic and anti-corrosive properties [1,2]. Health threats posed by this metal have
been perceived because of the “itai-itai” disease found in the Jinzu river basin of Japan.
The disease was found to be due to excessive exposure to Cd through consumption of rice
grown on paddy soils contaminated with the discharge from zinc mining [4–6].

Because of its notoriously high toxicity, the worldwide production and industrial
applications of Cd have significantly declined [3]. However, the use of Cd-contaminated
phosphate fertilizers persists, and adds substantial amounts of Cd to the food chain in most
parts of the world [7–10]. Like all other metals, Cd is nonbiodegradable, and consequently,
it persists indefinitely in the environment, and it can accumulate in vegetation even the
levels of Cd in soils are very low [6,11].
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The kidney and bones were described as the organs severely affected in “itai-itai”
disease patients [4,5]. Current evidence, however, suggests that the effects of Cd exposure
extend beyond the kidney and bones. This is evident from epidemiological data that link
hypertension, diabetes type 2 (DM), chronic kidney disease (CKD), osteoporosis, non-
alcoholic fatty liver disease, infertility, and various types of cancer to environmental Cd
exposure in the general populations of many countries [12–14].

This present review focused on the impact of environmental Cd exposure on the preva-
lence of pre-diabetes and diabetes, which are defined as fasting plasma glucose ≥ 110 mg/dL
and 126 mg/dL, respectively [(https://www.cdc.gov/diabetes/basics/getting-tested.html)
(accessed on 28 November 2023)]. The global prevalence of diabetes has now reached
epidemic proportions, and the epidemic is most frequently attributed to the concurrently in-
creasing prevalence of obesity [(https://www.who.int/health-topics/diabetes#tab=tab_1)
(accessed on 25 December 2023). Environmental Cd exposure is unrecognized and ignored
contributing factor.

The diabetogenic action of chronic exposure to Cd was first noted in 1980 by Merali
and Singhal, using neonatal rats [15]. Prior to this landmark observation, experimental
data indicate that Cd had the ability to disrupt hepatic and renal glucose metabolism
that persisted one year after exposure was discontinued [16–19]. These findings under-
score the indispensable roles of the kidney and liver in the maintenance of blood glucose
levels [20–24].

This review has three major aims. Firstly, to define dietary sources of Cd from total
diet studies together with exposure levels, reflected by blood and urinary Cd levels that
may increase risks of prediabetes and diabetes in the environmentally exposed populations.
Secondly, to evaluate if current exposure guidelines and the Cd nephrotoxicity threshold
level are sufficiently low to provide health protection for at least 95% of the population.
Thirdly, to explore mechanisms underlying diabetogenic effects of Cd and the strategies to
mitigate the cytotoxicity of Cd through modulation of cellular stress response and defense
mechanisms, mediated by heme oxygenase-1 and -2 (HO-1 and HO-2).

2. Exposure Sources, Dosimetry and Health Risk Assessment
2.1. Dietary Exposure to Cadmium

Diet is the major environmental sources of Cd exposure in non-smokers and non-
non-occupationally exposed persons. This exposure source is indicated by the presence
of Cd in the human diet, reported in total diet study (TDS) [25,26]. TDS is a food safety
monitoring program, known also as the “market basket survey”, conducted by food
authority agencies [25,26]. Typically, samples of foodstuffs are collected from supermarkets
and retail stores for measurement of food additives, pesticide residues, contaminants, and
nutrients. The exposure level is calculated from the concentration of a given contaminant
and an amount of the food item consumed each day. To approximate the exposure levels
among average and high consumers, the median and the 90th percentile concentration
levels of a contaminant are used, respectively [27,28].

Levels of Cd in the human diet appeared to vary widely among populations, but the
major sources of dietary Cd are foods that are frequently consumed in large quantities,
such as rice, potatoes, wheat, and leafy salad vegetables [14]. Of concern, rice is a staple
food for over half of the world’s population, and in some regions, rice contributes to more
than 50% of the total Cd intake, detailed below.

In two Cd-polluted areas of Japan, dietary Cd exposure levels among women were
55.7 µg/d (1.03 µg/kg body weight) and 48.7 µg/d (0.86 µg/kg bw/d) [6]. Rice and its
products constituted 40–50% of these Cd exposures. Differences between the two groups
with respect to dietary Cd exposure were due mostly to Cd levels in rice consumed in the
two locations. Cd was found in all plant foods investigated, especially in spinach, Japanese
parsley, garland chrysanthemum, Japanese mustard spinach, belvedere fruit, shiitake
mushrooms, and seaweed. Shellfish, salted squid guts, scallops, oysters, and freshwater
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clams were substantial animal sources of Cd. Chocolate and tea leaves contained also
high-Cd levels. Cd was not found in brewed tea.

In the general Japanese population, the mean dietary Cd exposure was 0.35 µg/kg
bw/day, ranging between 0.25 and 0.45 µg/kg bw/day [29]. Respective contribution of
exposure to Cd in rice and its products, green vegetables, cereals, and seeds plus potatoes
were 38%, 17%, and 11%.

Dietary Cd exposure in China was 32.7 µg/day, with rice and vegetables being the
main sources [30]. Potatoes were the main dietary Cd source in Mongolia, and it contributed
to 24% of total Cd exposure [30]. Notably, high Cd levels were found in Nori, peanuts,
squid, cuttlefish, and mushrooms [31,32].

Dietary Cd exposure in South Korea was 12.6 µg/day [33] with cereals and vegetables,
beverages, fruits and nuts, and dairy products (milk included) being the main sources.
Relatively high Cd concentrations were found in cereals, oil seeds and fruits, and vegetables.
Another Korean study estimated Cd exposure of 22 µg/day [34]. Average rice consumption
ranged between 587 and 611 g/day, and it was the major contributor to total Cd exposure
(40.3%), followed by squid (11.8%), eel (11.0%), crab (8.6%), shellfish (3.6%), kimchi (Korean
cabbage; 3.5%), and seaweed (3.5%).

2.2. The Intestinal Absorption of Cadmium

For most people, exposure to Cd is unavoidable because it is present in nearly all food
types. The living organism does not synthesize nor break down metals, and transporter
systems and pathways have evolved, consequently, to acquire from exogenous sources
all metals [35–39]. These multiple transporters systems, in turn, provide Cd entry routes
into most cells in the body. In all likelihoods, Cd in the gut gains an entry into the portal
blood system through transporters for calcium, zinc, manganese, iron, copper, and cobalt
(Ca, Zn, Mn, Fe, Cu, and Co) [40–42]. Examples of such metal transporters are members of
the Zrt- and Irt-related protein (ZIP) of the zinc transporter family and the Ca2+-selective
channel TRPV6 [43–47]. Furthermore, Cd complexed with the metal binding protein,
metallothionine (MT) and phytochelatin (PC) as CdMT and CdPC can be absorbed through
transcytosis, and endocytosis, mediated by the human neutrophil gelatinase-associated
lipocalin (hNGAL) [48–50].

Similarly, through the transporters for essential metals, Cd can enter most cells in the
body, including hepatocytes [51], kidney tubular epithelial cells [52–57], adipocytes [58],
insulin producing pancreatic β-cells [59], ovaries [60], testes [61], and erythrocytes [62–64].
However, no physiologic mechanism exists to eliminate Cd. Virtually all acquired metal
is consequently retained, and the cellular levels of Cd increased with age (duration
of exposure).

Only a miniscule amount of Cd (0.001–0.005% of the body burden) is excreted each day.
Consequently, the body burden of Cd is essentially determined by intestinal absorption
rate. In theory, the absorption rate of Cd will increase when the body content of essential
metals; Fe, Zn, Ca is low, and when diets are deficient in these nutritionally essential metals.

Table 1 provides Cd accumulation levels in various tissues, recorded in Australian
and Japanese autopsy studies.

Preferential Cd accumulation in the kidney cortex in the female gender were apparent
from both Australian and Japanese autopsy studies [51,52]. On average, the hepatic Cd level
in Australian women was 1.74-fold higher than men, and after adjustment for inhalation
exposure, women had a higher kidney cortical Cd content than men did [51]. In comparison,
the mean liver Cd in women living in a non-Cd contaminated location of Japan was 1.6-fold
higher than men [52].

Fractionally, the difference between men and women in kidney cortex content is
smaller than the difference in hepatic content. A plausible interpretation is that women
have lower iron stores, and adjustments to increase intestinal iron absorption lead to
increased absorption and liver uptake of Cd from dietary exposure. Redistribution of
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hepatic Cd to the kidney may be sufficient to cause a higher kidney content of Cd as well,
but not so great as to obscure the dietary origin of the increased Cd burden.

Table 1. Gender- and organ-differentiated cadmium accumulation in Australia and Japan citizens.

Tissues/Organs
Cd Content in µg/g Wet Tissue Weight

Country of Origin/Reference
Males Females

Lung 0.11 ± 0.19 0.17 ± 0.35 Australia, Satarug et al. [51] a

Liver 0.78 ± 0.71 1.36 ± 0.96
Kidney cortex 14.6 ± 12.4 18.1 ± 18.0

Liver 7.9 (1.3−33.3) 13.1 (3.1−106.4) Japan, Uetani et al. [52] b

Kidney cortex 72.1 (19.4−200) 83.9 (3.9−252.9)
Kidney medulla 18.3 (3.5−76.4) 24.5 (4−105)

Pancreas 7.4 (3.0−25.9) 10.5 (2.5−29.8)
Thyroid 10.6 (3.8−35) 11.9 (3.9−56.4)

Heart 0.3 (0.1−0.5) 0.4 (0.1−1.3)
Muscle 1.2 (0.3−3.2) 2.2 (0.8−12.4)
Aorta 1.0 (0.4−2.5) 1.1 (0.3−3)
Bone 0.4 (0.2−0.6) 0.6 (0.2−1.6)

a Values were arithmetic mean ± standard deviation from 43 males and 18 females, aged 2–89 years (mean
38.5). b Values were geometric mean (lowest−highest Cd levels) from 36 males and 36 females, aged 60–91 years
(mean 74).

2.3. Blood Cadmium

Cd enters erythrocytes through the chloride/bicarbonate anion exchanger ([Cl−/HCO3−],
AE1, SLC4A1) [61–63], and iron transporters that were responsible also for erythrocytic up-
take of lead (Pb) and Zn [65–67]. Cd may induce the erythrocyte membrane morphological
change [68], leading to premature hemolysis in the reticuloendothelial system, and thereby
shorten cellular lifespan [69]. Cd may induce eryptosis, erythrocytic suicidal cell death,
which is the mechanism to eliminate injured red blood cells [70,71].

Most of the circulating Cd is bound to hemoglobin in red blood cells [72–76]. Less
than 10% of Cd the circulation is in the plasma, where it is associated with histidine and
thiols (-SH) of peptides and proteins, such as pre-albumin, albumin, α2-macroglobulin,
and immunoglobulins G and A [74,77,78]. Examples of the non-protein plasma thiols that
interact with Cd are glutathione (GSH), cysteine, cysteinylglycine, homocysteine, and γ-
glutamylcysteine [79,80]. The total concentrations of these non-protein thiols are in the low
µM range (12–20 µM). In comparison, albumin thiol is more abundant (0.6 mM), implying
a significant role of albumin in the transport and delivery of Cd to cells throughout the
body [81].

The estimated half-life of blood Cd varied from 75 to 128 days [82]. Because the mean
life-span of erythrocytes is 120 days, blood Cd is used as an indicator of recent exposure
to the metal. In an epidemiologic investigation, a significant correlation was observed
between blood and urine Cd, which suggested that a blood Cd level may reflect partially
long-term exposure [83].

In theory, plasma Cd is more predictive of tissue toxic injury than erythrocytic Cd
because plasma Cd is readily exchangeable with other metals in target tissues. However,
use of plasma Cd in exposure assessment is limited because of the high cost involved in
its quantification as plasma Cd is in a nano molar (nM) range. Presently, the distribution
of Cd in whole blood and plasma remains to be determined. A more precise health risk
assessment could be made if the relationship between blood and plasma Cd at varying
exposure levels is known.

2.4. Excretion of Cadmium Siginfies Kidney Tubular Cell Injury and Death

The kidney is an organ where the most Cd accumulates because kidney tubular
epithelial cells are responsible for the reabsorption of virtually all proteins in the ultra-
filtrate [84–87]. In addition, there are various metal transporters expressed in the apical
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and basolateral membranes of tubular cells [14]. These metal transporters and protein re-
absorptive pathways provide Cd several entry routes into tubular cells along with proteins
to which it is bound such as albumin, transferrin (Tsf) [87].

Experimental studies in rats using microinjection technique found that 70–90% of Cd
was taken up in the S1-segment of the proximal tubule [88,89], where the megalin/cubillin
receptor-mediated endocytosis is involved. The neutrophil gelatinase-associated lipocalin
(NGAL)/lipocalin-2 receptor system has also been implicated in reabsorption of Cd-protein
complexes in the distal tubule and the collecting duct [56,90,91].

There are multiple entry routes of Cd but there is no exit route, which means that
most acquired Cd is retained in kidneys and is released to tubular lumen when cells die
due to the toxicity of Cd accumulation [14,92]. Thus, the excretion of Cd signifies tubular
cell injury and death induced by a cumulative burden of Cd [14,92]. Figure 1 shows the
mitochondrion as the toxicity target of Cd.

Cells 2024, 13, x FOR PEER REVIEW 5 of 25 
 

 

between blood and urine Cd, which suggested that a blood Cd level may reflect partially 
long-term exposure [83].  

In theory, plasma Cd is more predictive of tissue toxic injury than erythrocytic Cd 
because plasma Cd is readily exchangeable with other metals in target tissues. However, 
use of plasma Cd in exposure assessment is limited because of the high cost involved in 
its quantification as plasma Cd is in a nano molar (nM) range. Presently, the distribution 
of Cd in whole blood and plasma remains to be determined. A more precise health risk 
assessment could be made if the relationship between blood and plasma Cd at varying 
exposure levels is known. 

2.4. Excretion of Cadmium Siginfies Kidney Tubular Cell Injury and Death  
The kidney is an organ where the most Cd accumulates because kidney tubular epi-

thelial cells are responsible for the reabsorption of virtually all proteins in the ultrafiltrate 
[84–87]. In addition, there are various metal transporters expressed in the apical and ba-
solateral membranes of tubular cells [14]. These metal transporters and protein re-absorp-
tive pathways provide Cd several entry routes into tubular cells along with proteins to 
which it is bound such as albumin, transferrin (Tsf) [87].  

Experimental studies in rats using microinjection technique found that 70–90% of Cd 
was taken up in the S1-segment of the proximal tubule [88,89], where the megalin/cubillin 
receptor-mediated endocytosis is involved. The neutrophil gelatinase-associated lipocalin 
(NGAL)/lipocalin-2 receptor system has also been implicated in reabsorption of Cd-pro-
tein complexes in the distal tubule and the collecting duct [56,90,91].  

There are multiple entry routes of Cd but there is no exit route, which means that 
most acquired Cd is retained in kidneys and is released to tubular lumen when cells die 
due to the toxicity of Cd accumulation [14,92]. Thus, the excretion of Cd signifies tubular 
cell injury and death induced by a cumulative burden of Cd [14,92]. Figure 1 shows the 
mitochondrion as the toxicity target of Cd. 

 
Figure 1. Kidney tubular cell injury and death after exposure to cadmium. Cd reaches the inner 
membrane of mitochondria through the metallothionein (MT) and transporters of Ca and Fe, metal 
coupling unit (MCU) and the divalent metal transporter1 (DMT1) [14]. There, Cd induces dysregu-
lation of Ca, Fe and Zn, reduces synthesis of ATP (↓), promotes (↑) formation of reactive oxygen 
species (ROS), and mitochondrial injury. Consequently, mitochondrial DNA (mtDNA) is released, 

Figure 1. Kidney tubular cell injury and death after exposure to cadmium. Cd reaches the inner
membrane of mitochondria through the metallothionein (MT) and transporters of Ca and Fe, metal
coupling unit (MCU) and the divalent metal transporter1 (DMT1) [14]. There, Cd induces dysregula-
tion of Ca, Fe and Zn, reduces synthesis of ATP (↓), promotes (↑) formation of reactive oxygen species
(ROS), and mitochondrial injury. Consequently, mitochondrial DNA (mtDNA) is released, leading
to activation of the DNA-sensing mechanism (cGAS-STING) and nuclear factor-kappaB (NF-κB)
signaling pathways, a release of proinflammatory cytokinesand cell death.

Through various metal transporters, Cd reaches the inner membrane of the mitochon-
dria, where it affects the synthesis of adenosine triphosphate (ATP), inhibits the electron
transport chain, and promotes the formation of reactive oxygen species (ROS) with resultant
oxidative stress conditions [57,93–95].

The organs with high metabolic activities and high energy demands, like the kidneys,
ovaries, and testes are particularly sensitive to Cd-induced mitochondrial dysfunction, a
central mechanism by which Cd affects most cells in the body [14].

2.5. Is Urinary β2M Indicative of Tubulopathy?

β2M protein with a molecular weight of 11,800 Da, is synthesized and shed by all
nucleated cells [96]. β2M undergoes filtration and all filtered β2M is reabsorbed by proximal
tubular cells [97]. Increased β2M excretion has been used as indicator of tubulopathy [98,99]
and was described as a dominant feature of Cd nephropathy. However, some attributes
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of β2M excretion compromise its utility for such purposes. First, β2M production rises in
response to many inflammatory and neoplastic conditions [100]. Second, if reabsorption
rates of β2M per nephron remain constant as its production rates change, excretion will
vary directly with its production. Third, if the production and reabsorption per nephron
remain constant as nephrons are lost, the excretion of β2M will rise.

The increased β2M excretion due to Cd-induced nephron loss has been revealed in
a dose–response analysis, where β2M excretion of 100–299, 300–999, and ≥1000 µg/g
creatinine were associated with 4.7-fold, 6.2-fold and 10.5-fold increases in the likelihood of
eGFR ≤ 60 mL/min/1.73 m2, indicative of substantial nephron loss [101].

A threshold of toxicity is defined as the highest dose that does not produce an adverse
effect in the most sensitive organ (endpoint) [102]. A rise of β2M excretion above 300 µg/g
creatinine (tubular proteinuria) is the manifestation of severe toxicity of Cd in kidneys, and
its use as an endpoint to determine an exposure guideline is inappropriate.

Persistent toxicity from existing renal stores may eventuate in progression of
CKD [103–106]. Current evidence suggests that Cd may impair tubular protein reab-
sorption by the receptor-mediated endocytosis (RME) as depicted in Figure 2 [76].
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Figure 2. Protein re-absorption by the kidney proximal tubular cells (PTCs). (a) Reabsorption of
albumin and β2-microglobulin (β2M) in lumen through transcytosis and receptor-mediated endocy-
tosis (RME). (b) Cd-induced RME dysfunction compromises reabsorption, and increases excretion of
albumin and β2M. In Cd-intoxicated PTCs, unbound Cd may impair the function of RME (↓).

2.6. Health Risk Assessment of Cadmium Exposure
2.6.1. Exposure Guideline

The Joint FAO/WHO Expert Committee on Food Additives and Contaminants (JECFA)
used tubular proteinuria, defined as a rise of urinary excretion of β2-microglobulin (β2M)
above 300 µg/g creatinine, to indicate the nephrotoxicity of dietary Cd exposure [107].
Based solely on this endpoint, a tolerable monthly intake (TMI) of Cd was found to be 25 µg
per kg body weight per month, equivalent to 0.83 µg per kg body weight per day [107].
A Cd excretion of 5.24 µg/g creatinine was suggested to be a nephrotoxicity threshold
value [107].

The European Food Safety Authority (EFSA) employed the same endpoint, but a Cd
excretion of 1 µg/g creatinine was designated as the toxicity threshold after inclusion of
an uncertainty factor (safety margin) [108]. A dietary exposure of Cd at 0.36 µg/kg body
weight per day for 50 years was viewed as an acceptable Cd ingestion level or reference
dose (RfD) [108,109].
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2.6.2. Population Data

In a risk analysis of Chinese population data, a dietary exposure level of 16.8 µg/day
for a 60 kg person (0.28 µg/kg body weight per day) was suggested to be a tolerable intake
level, when tubular proteinuria (β2M) was an endpoint [110]. A corresponding threshold
level of Cd excretion was 3.07 µg/g creatinine.

In a risk analysis of Thai population data, nephron loss was used as an endpoint, and
Cd excretion level that is likely to produce a negligible adverse effect, termed benchmark
dose limit or the NOAEL equivalent was 0.01 µg/g creatinine [111].

The benchmark dose limit (NOAEL equivalent) values have been calculated from
different endpoints, including, albuminuria [112,113], enzyme-uria [114], diabetes [115],
infertility [13], and bone loss [116–118]. These values all indicated that the toxicity of Cd
occurs at very low body burden.

In summary, a dietary exposure guideline of 0.83 µg per kg body weight per day
(58 µg/day for a 70 kg person), and a nephrotoxicity threshold level of 5.24 µg/g
creatinine [35,36] were established by the WHO to provide a safeguard against exces-
sive exposure. These values were based solely on the excretion rate of β2M above 300 µg/g
creatinine. However, population data, summarized in Table 2 (Section 3) show an asso-
ciation between an increase in risk of diabetes, and urinary Cd excretion five-to ten-fold
below that the established Cd toxicity threshold level. This raises a serious concern that the
current health guidelines do not afford health protection.

3. Cadmium, Obesity, and Diseases with High Prevalence

Numerous population studies have linked diseases with high prevalence, such as
DM and CKD, to lifelong exposure to environmental Cd. In the present review, however,
data from the U.S. general population, recorded in the National Health and Nutrition
Examination Survey (NHANES) are highlighted. The U.S. NHANES provides data on
levels of exposure to more than 200 chemicals, experienced by the representative of U.S.
general population [119]. Urinary and blood Cd levels were quantified using standardized
methodology that enables the comparison of data across NHANES cycles [119].

Table 2 provides evidence that Cd exposure, even at low levels, may increase the
prevalence of pre-diabetes, diabetes, CKD and liver disease in the representative U.S.
population [120–130].

Table 2. Urinary and blood cadmium levels associated with increased risks of liver and kidney
diseases in the United States.

NHANES Exposure and Risk Estimates References

1988–1994
n 8722, ≥40 years

Urinary Cd levels 1–2 µg/g creatinine were associated with
prediabetes (OR 1.48) and diabetes (OR 1.24).

Urine Cd levels > 2 µg/g creatinine were associated with 2.5-fold and
1.45-fold increases in risk of prediabetes and diabetes, respectively.

Schwartz et al., 2003 [120]

2005–2010
n 2398, ≥40 years

Urinary Cd > 1.4 µg/g creatinine in non-smokers were associated
with pre-diabetes. Wallia et al., 2014 [121]

2007–2012
n 3552, ≥20 years

Urinary Cd quartile 4 was associated with prediabetes among men
(OR 1.95).

OR for prediabetes rose 3.4-fold in men with obesity and a high Cd
exposure, compared to those with a normal weight and low

Cd exposure.

Jiang et al., 2018 [122]

1988–1994
n 12,732, ≥20 years

Urinary Cd levels ≥ 0.83 µg/g creatinine in women were associated
with liver inflammation (OR 1.26).

Urinary Cd ≥ 0.65 µg/g creatinine in men were associated with liver
inflammation (OR 2.21), NAFLD (OR 1.30), and NASH (OR 1.95).

Hyder et al., 2013 [123]

1999–2015
n 11, 838, ≥20 years

A 10-fold increment of urinary Cd was associated with elevated plasma
levels of ALT (OR 1.36), and AST (OR 1.31). Hong et al., 2021 [124]
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Table 2. Cont.

NHANES Exposure and Risk Estimates References

1999–2016
n 4411 adolescents

Urinary Cd quartile 4 was associated with elevated plasma ALT
(OR 1.40) and AST (OR 1.64).

The effect was larger in boys than girls.

Xu et al., 2022
[125]

1999–2006
n 5426, aged ≥20 years,

Urinary Cd levels ≥ 1 µg/L were associated with increased risk of
albuminuria a (OR 1.41) and low GFR b (OR 1.48). Ferraro et al., 2010 [126]

2009–2012,
n 2926, aged ≥20 years

Urinary Cd levels > 0.220 µg/L were associated with increased
albumin excretion,

compared with urinary Cd < 0.126 µg/L.
Blood Cd levels > 0.349 µg/L associated with increased albumin

excretion, compared with blood Cd < 0.243 µg/L.

Zhu et al., 2019 [127]

2011–2012
n 1545, aged ≥20 years

Blood Cd levels > 0.53 µg/L were associated with albuminuria
(OR 2.04) and low GFR (OR 2.21).

OR for albuminuria was increased to 3.38 in those with similar Cd
exposure levels and serum Zn < 74 µg/dL.

Lin et al., 2014 [128]

2007–2012
n 12,577, aged ≥20 years

Blood Cd levels > 0.61 µg/L were associated with low GFR (OR 1.80)
and albuminuria (OR 1.60).

GFR reduction associated with Cd was more pronounced in those with
diabetes, hypertension, or both.

Madrigal et al., 2019 [129]

1999–2016,
n 46,748, aged ≥20 years

Of 262 chemicals tested, blood Cd was associated with all three kidney
outcomes; low GFR, albuminuria, and low GFR plus albuminuria. Lee et al., 2020 [130]

NHANES, National Health and Nutrition Examination Survey; n, sample size; OR, odds ratio; NAFLD, non-
alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; a Albuminuria was defined as urinary albumin-to-creatinine ratio ≥ 30 mg/g creatinine
in women and ≥20 mg/g creatinine in men; b Low GFR was defined as the estimated glomerular filtration
rate < 60 mL/min/1.73 m2.

As data in Table 2 indicate, low environmental Cd exposure in the U.S. has been linked
to CKD and liver disease in additional to prediabetes and diabetes.

Increases in the risks of prediabetes and diabetes among NHANES 1988–1994 par-
ticipants were associated with urinary Cd levels of 1–2 µg/g creatinine [120]. An in-
creased risk of prediabetes among NHANES 2005–2010 was associated with urinary Cd
levels ≥ 0.7 µg/g creatinine after adjustment for covariates [121]. Obesity was associ-
ated with prediabetes in both men and women, and there was evidence that obesity may
potentiate diabetogenic effects of Cd among men [122].

Of concern, evidence for hepatic effects of Cd has been found in both adolescents [125]
and adults [123,124]. A study in rats provided evidence that diabetes may have an adverse
effect on the liver [131].

3.1. Dietary Exposure: The U.S. Experience

TDS data indicate average dietary Cd exposure in the U.S. was 4.63 µg/d [132]. This
figure was computed from levels of Cd found in 260 food items in the 2006–2013 market
basket survey together with 24 h dietary recall data from 12,523 participants in NHANES
2007–2012, aged 2 years and older. A dietary assessment of U.S. women (n = 1002, mean
age 63.4) reported mean dietary Cd exposure of 10.4 µg/day, and mean Cd excretion of
0.62 µg/g creatinine [133].

Cereals and bread, leafy vegetables, potatoes, legumes and nuts, stem/root vegetables,
and fruits contributed to 34%, 20%, 11%, 7%, and 6% of total intake, respectively. Foods
that contain relatively high Cd levels are spaghetti, bread, potatoes, and potato chips which
contributed the most to total Cd intake, followed by lettuce, spinach, tomatoes, and beer.
Lettuce was a main Cd source for White people and Black people. Tortillas and rice were
the main Cd sources for Hispanic Americans and Asians plus other ethnicities [132].
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3.2. Cadmium and Its Inverse Relationship with Obesity

Studies from the U.S. and other countries consistently observed inverse relationships
of urinary and blood Cd levels with various measurements of adiposity, including increases
in BMI, hip girth, and waist circumference. The reason for this phenomenon has never been
investigated and largely ignored. However, it at least indicates that the diabetogenicity
of Cd is unrelated to obesity, and Cd exposure at least accounts for diabetes among lean
subjects. In a study from Uganda, 3 in 4 adults with diabetes were lean [134].

3.2.1. Children and Adolescents

Urinary Cd was associated with a reduction in risk of obesity in children and ado-
lescents enrolled in NHANES 1999–2011 by 54%; an inverse association between obe-
sity and urinary Cd was stronger in a younger (6–12 years) than the older age group
(13–19 years) [135]. Both height and body mass index (BMI) in Flemish children, aged
14–15 years showed an inverse association with Cd excretion [136].

3.2.2. Adults

Central obesity among participants of NHANES 1999–2002 inversely associated with
Cd excretion [137]. Among NHANES 2003–2010 participants, their blood Cd levels in-
versely associated with BMI [138]. In another analysis of data from NHANES 2001–2014
participants aged 20–80 years (n = 3982), Cd excretion levels were not associated with the
risk of metabolic syndrome, but they were associated with a reduced risk of abdominal
obesity [139]. A meta-analysis of data from 11 cross-sectional studies indicated that Cd
exposure was not associated with an increased risk of metabolic syndrome, but it was
associated with dyslipidemia, especially in Asian population [140].

Similarly, an inverse association between BMI and blood Cd was seen in non-smokers
in the Canadian Health Survey 2007–2011 [141]. In a study of the indigenous population
of Northern Québec, Canada, where obesity was highly prevalent, an inverse relationship
between Cd exposure and obesity was seen in both men and women [142].

An inverse association between blood Cd and BMI was noted in Korean men,
40–70 years of age [143]. This Korean population study observed also an inverse correlation
between fasting blood glucose and Cd excretion levels, and urinary Cd levels > 2 µg/g
creatinine were associated with a 1.81-fold increase in risk of diabetes.

In a Thai population study, increases in risk of diabetes in men and women were
not associated with obesity/overweight, but were associated with blood Cd and lead (Pb)
levels above median values of 0.3 µg/L and 2.12 µg/dL for Cd and Pb, respectively [144].

In a Chinese study, Cd excretion levels ≥ 2.95 µg/g creatinine were associated with
reduced risk of weight gain and obesity [145]. In a study of non-occupationally exposed
residents of Shanghai, the median urinary Cd excretion was 0.77 µg/g creatinine and higher
urinary Cd levels were associated with lower BMI values [146].

3.3. The U.S. Population Risk Analysis of Cd-Associated Diabetes

The geometric mean, the 50th, 75th, 90th, and 95th percentile values for urinary Cd
levels in the representative U.S. general population were 0.210, 0.208, 0.412, 0.678, and
0.949 µg/g creatinine, and the corresponding values for blood Cd were 0.304, 0.300, 0.500,
1.10, and 1.60 µg/L, respectively [147]. Although the U.S. population mean Cd excretion
was less than 0.5 µg/g creatinine, 2.5%, 7.1%, and 16% of non-smoking women (aged
≥20 years) were found to have Cd excretion levels > 1, >0.7, and >0.5 µg/g creatinine,
respectively [148]. Given that Cd excretion > 0.5 µg/g creatinine were found in 16% of
non-smoking U.S. women [148], the proportion of people, especially women, who were at
risk of Cd-associated adverse effects is not negligible

Risk analysis of data from 4530 adults enrolled in NHANES 1999–2006 showed that
mean Cd excretion levels of 0.198 and 0.365 µg/g creatinine were associated with the
likelihood that the prevalence of diabetes to be less than 5% and 10%, respectively [115].



Cells 2024, 13, 83 10 of 26

These Cd excretion levels were 3.78% and 6.97% of the nephrotoxicity threshold level
determined from the β2M endpoint [107].

The Cd excretion of 0.198 and 0.365 µg/g creatinine associated with 5% and 10% preva-
lence of diabetes were in ranges with the 50th and 75th percentiles of Cd excretion. Thus,
the proportion of the U.S. adults at risk of Cd-associated diabetes was substantial. Similarly,
Cd excretion was inversely associated with bone mineral density, and low environmental
Cd exposure in the U.S. accounted for 16% of osteoporosis cases, aged 50–79 years [118].

4. Cadmium, the Liver, Kidney, and Diabetes Type 2

The kidney is the only organ other than the liver that produces and releases glucose
into the circulation [20–23]. The liver and kidney are directly involved in blood glucose
control. The kidney contributes to 20–25% of plasma glucose after an overnight fast, and
it releases into the circulation 60% of plasma glucose in the postprandial period [22]. In
diabetes type 1, there is an impairment in renal release of glucose [22].

The kidney is also responsible for filtration, and reabsorption of glucose. In normal
health, an approximate of 160 to 180 g of glucose is retrieved each day [20–23]. The
sodium glucose co-transporter 2 (SGLT2) and SGLT1 mediate 90% and 10% of the tubular
reabsorption of glucose, respectively [23]. Increased renal expression of these glucose
transporters has been implicated in an elevation of renal threshold for glucose excretion in
diabetes type 2 patients [21].

Loss of tubular gluconeogenesis and a switch to glycolysis are known pathologic
features of CKD [23]. In clinical trials, SGLT2 inhibitors were effective to attenuate the
deterioration of kidney function in CKD patients [24].

Cd-associated GFR reductions, albuminuria, and hypertension were more severe in
those who had diabetes [129,145,149–151]. These results are replicated in experimental
studies [152,153]. In cross-sectional and prospective cohort studies of 231 diabetic patients
in the Netherlands, both Cd and active smoking were associated with a progressive decline
in eGFR [154,155]. Collectively, these findings support the premise that exposure to even
low levels of environmental Cd promote the development and progression of DKD.

Figure 3 depicts air and foods as sources of environmental Cd that gains access to the
systemic circulation through lungs and the gastrointestinal tract.

As detailed in Section 2.4, the proximal tubule accumulates most Cd acquired, and Cd
amount in kidney cortex, as µg/g wet tissue weight, is the highest (Table 1). For instance,
respective mean Cd levels in lung, liver and kidney cortex of Australians, aged 2–70 years
(mean 39.9) were 0.12, 0.99, and 20.5 µg/g wet tissue weight, while the mean urinary Cd
was 0.62 µg/L, range; 0.05–2.88 µg/L [51].

In a study of kidney transplant donors, a Cd excretion of 0.42 µg/g creatinine cor-
responded to kidney cortical Cd of 25 µg/g wet kidney weight [156]. In female kidney
transplant donors, the mean values for Cd excretion, blood Cd and kidney cortical Cd were
0.34 µg/g creatinine, 0.54 µg/L and 17.1 µg/g kidney wet weight, respectively [157]. The
corresponding figures in men were 0.23 µg/g creatinine, 0.46 µg/L and 12.5 µg/g, all of
which were lower than in women [157].

The rates of Cd accumulation found in Australian autopsy study were 3–5 µg/g wet
tissue weight for each 10-year increase in age, reaching 25.9 µg/g wet tissue weight in
50 years [51]. After adjustment for age and inhalational exposure, the rate of Cd accumula-
tion in kidneys was higher in females than males [51].

Similarly, the rate of Cd accumulation found in non-smoking Swedish kidney trans-
plant donors was 3.9 µg/g kidney wet weight for every 10-year increase in age. Non-
smoking women with low body iron stores had a Cd accumulation rate of 4.5 µg/g kidney
wet weight in 10 years [53].
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Figure 3. Sources, entry routes and systemic transport of cadmium. Inhaled Cd enters the systemic
circulation through lungs. Cd absorbed from foods is transported to liver via the portal blood system,
and is taken up by hepatocytes. The absorbed Cd not taken up by hepatocytes in the first pass
enters the systemic circulation and reaches tissues and organs throughout the body, including the
heart, kidney, bone, thyroid gland, fat cells and pancreas. The kidney and the liver are the only
two organs that produces and releases glucose into the circulation. Due to toxic Cd accumulation,
kidney tubular cells die, and Cd complexed with metallothionein (CdMT) are released into tubular
lumen and excreted. Thus, excreted Cd signifies the toxicity of Cd in tubular cells. Abbreviations:
Cd = cadmium; GSH = glutathione; Tsf = transferrin.

5. Cadmium and Diabetes: Experimental Studies

This section provides a summary of findings from experimental studies attempted to
shed light on how Cd causes diabetes. However, most experimental studies examined Cd-
induced diabetes along with the impacts of high-fat diet in the belief that obesity is a major
contributing factor. Also, many studies examined other suspected diabetogenic substances;
polyfluoroalkyl substances [158,159], and polychlorinated biphenyls [160]. Because these
chemicals are ubiquitous in the environment, co-exposure of Cd with these chemicals is a
likely scenario.

Apparently, Cd induced diabetes by multiple mechanisms. As depicted in Figure 1, Cd
is a mitochondrial toxicant that induces oxidative stress, inflammation [160–162], disrupt
ATP and intermediary metabolism, and insulin resistance in many tissues, including
insulin-dependent and non-dependent types [163–165].

Furthermore, Cd may have an indirect effect on diabetes through induction of hyper-
uricemia. An association between prevalence of hyperuricemia and Cd exposure has been
noted in Chinese [166], U.S. [167], and Korean [168,169] population studies. Pancreatic β-
cell death and a reduction in glucose-stimulated insulin secretion have been demonstrated
in mice with hyperuricemia due to uricase deficiency [170,171].

5.1. Cadmium-Induced Hyperglycemia: Landmark Observation

The ability of Cd to induce hyperglycemia was first demonstrated in neonatal rats [15]
and then in adult rats [16,17]. The liver of Cd-exposed neonatal rats had a reduced glycogen,
and an enhanced gluconeogenesis, evident from activity of enzymes in gluconeogenesis;
pyruvate carboxylase, phosphoenolpyruvate carboxy kinase, fructose-1,6-biphosphatase,
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and glucose-6-phosphatase [15]. Hyperglycemia in Cd-exposed rats developed long before
the onset of kidney toxicity [172].

In rats exposed to Cd via intraperitoneal injection for 45 days, depletion of hepatic
and renal glycogen was noted along with enhanced activity of the rate-limiting enzymes in
gluconeogenesis [18]. These changes remained 4 weeks after exposure cessation.

In another study using rats, the effects of Cd on hepatic glucose metabolism remained
one year after Cd treatment was discontinued [19]. The persistent Cd effects can be expected
because most Cd is retained by cells, which provide ample of opportunity for Cd to exert
toxicity. A study in rats showed Cd was excreted only when cell die [173].

Cd exposure in utero has been investigated in rats, where dams were exposed to
Cd for a period of 21 days before mating, 21 days during gestation, and 21 days during
lactation [174]. The effects of maternal Cd exposure on the metabolism of glucose and
lipids in offsprings were examined at 21, 26, and 60 days of age. Collective data indicated
changes in glucose homeostasis in pubs born from Cd-exposed dams that may increase
susceptibility to development of diabetes [174]. Effects of early life exposure to Cd on the
development of diabetes later in life have been reviewed by Saedi et al. [175].

5.2. Female Preponderance Effects of Cadmium

An effect of gender on Cd toxicity outcomes, indicated by deranged glucose metabolism
has been investigated in rats exposed to Cd in drinking water for 3 months. An increment
of plasma insulin levels in response to fasting and glucose stimulation due to impaired
hepatic extraction of insulin was found in female rats only [176].

In previous studies, the gender differences in Cd toxicity have been attributed to role
of female sex hormones such as progesterone and β-estradiol [177–180]. The hepatoxicity
of Cd was increased in male Fischer 344 (F344) rats treated with progesterone [177–179].
Subsequent studies implicated the role of progesterone in an enhanced cellular Cd accu-
mulation [180], possibly through suppression of the ZnT1 metal transporter that mediated
efflux of Cd [181].

5.3. The Molecular Basis for Deranged Cellular Glucose Metabolism after Cd Exposure

Intracellular levels of the natural cyclic AMP antagonist prostaglandyl-inositol cyclic
phosphate (cyclic PIP) and cyclic adenosine monophosphate (cAMP) have been postulated
as the key players in the development of insulin resistance [182,183]. Metformin, an anti-
diabetic medication, has been found to have the ability to stimulate synthesis of cyclic
PIP [183]. The increment of cyclic PIP by metformin appeared to account for its therapeutic
actions, including the lowering of blood glucose levels, the inhibiting cAMP synthesis
and gluconeogenesis, and increasing sensitivity to insulin [183]. Accordingly, it has been
postulated that insulin resistance is a result of an imbalance action of cyclic PIP and
cAMP [182].

Effects of metformin were investigated, using male Wistar rats, treated with Cd in
drinking water at 32.5 ppm concentration only or Cd plus metformin (200 mg/kg/day) [184].
Cd was found to induce hyperinsulinemia, insulin resistance, adipocyte dysfunction, and
loss of hepatic insulin sensitivity. Increased lipid accumulation was also seen in various tis-
sues, while glycogen in the liver, heart, and renal cortex was diminished, but was increased
in the muscle. Metformin showed a limited therapeutic efficiency on Cd-induced glucose
tolerance and lipid accumulation.

Because changes in hepatic glucose metabolism in Cd-exposed rats coincided with
a marked increase in synthesis of cAMP [18], the inefficacy of metformin reported by
Sarmiento-Ortega et al. [184] may be due to the Cd stimulatory effects on cAMP formation
and gluconeogenesis exceeded the inhibitory actions of metformin.
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5.4. Cadmium and Pancreatic β Cells

In cell culture, pancreatic β cells progressively accumulated Cd from medium contain-
ing Cd in nanomolar concentrations similar to human plasma Cd levels. An effect of Cd on
insulin secretion occurred at the onset of cell death [185].

In another study using the human β cell line (the INS-1), Cd concentration ten-fold
below the level causing cell death produced no effects on mitochondrial function, assessed
with the energy charge and ATP synthesis [186]. This Cd concentration, however, induced
mitochondrial morphological change toward circularity, indicative of fission. The increased
circularity suggested mitochondrial adaptive response to low-level Cd.

Thus, a sublethal Cd dose caused mitochondria to undergo morphological adaptative
change as the mechanism to offset an effect of Cd on energy output and insulin secre-
tion [186]. If cellular Cd influx continues, impairment of this organelle may contribute to
cellular dysfunction and decreased viability of β-cells.

Through mathematical modeling of oral glucose tolerance test data, an effect of Cd
on the sensitivity of pancreatic β cells to glucose has also been demonstrated. Perinatal
exposure to low-level Cd in mother’s milk reduced pancreatic β-cell sensitivity to glucose
stimulation [187].

In rats, fasting plasma glucose was increased 12 weeks after Cd treatment, at which
time pancreatic islets from the Cd-treated group showed less glucose-stimulated insulin
release than islets from saline-treated control animals [188]. At this stage, Cd accumulation
in isolated islets was 5 times higher than in pancreatic parenchyma but 30% lower than in
renal cortex [188]. These relative pancreatic and renal Cd accumulation levels paralleled
human data (Table 1).

5.5. Cadmium and “Metal Stressed” Fat Cells

In a Swiss autopsy study, Cd was fund to accumulate in omentum visceral and
abdominal subcutaneous fat tissues [189]. The adipose-derived human mesenchymal stem
cells exposed to the same Cd levels found in those postmortem fat tissue caused a disruption
in cellular zinc homeostasis and an increase in expression of various pro-inflammatory
cytokines [189].

In a Spanish cohort study, Cd levels in fat tissues were higher in those with lower BMI
values [190]. This observation is in addition to insulin resistance and higher plasma insulin
levels in smokers with adipose tissue Cd levels in the middle tertile, compared to those
with adipose tissue Cd levels in the bottom tertile [58].

In Cd-treated mice, abnormal differentiation of the adipocyte was evident from its
small size, and a reduced secretion of adiponectin [191,192]. In Cd-treated rats, subcuta-
neous fat tissue accumulated more Cd than did abdominal and retroperitoneal adipose
tissues, and all three fat tissue types had reduced adiponectin and leptin transcript lev-
els [193].

The above human and experimental animal data clearly indicate the impact of Cd on
function of fat cells.

6. Heme Oxygenase, Cadmium, Cellular Stress Response and Defense

This section focuses on HO-1 and HO-2 and their role in heme degradation, the
maintenance of blood glucose, and cellular defense against oxidative stress. The induction
of HO-1 by Cd and its consequential effects on glucose metabolism and manifestation of
the cytotoxicity of Cd are highlighted.

6.1. Indispensable Role of Heme Oxygenase

HO-1 and HO-2 are proteins with a molecular weight of 32 kDa; HO-1 is known
also as the heat shock protein 32 (HSP32) [194–197]. In concert with NADPH-cytochrome
P450 reductase, HO-1 and HO-2 break down heme with the resultant release of Fe, CO,
and biliverdin IXα [196–199]. Biliverdin IXα is converted to bilirubin almost instantly by
biliverdin reductase. The bulk of Fe release by HO-1 and HO-2 is reutilized in the synthesis
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of hemoproteins, including nitric oxide synthase, various enzymes of the mitochondrial
respiratory chain and the cytochrome P450 super family [198,199]. Two other products of
heme degradation, namely CO and bilirubin, are known for their anti-inflammatory and
antioxidant properties [199–202].

Bilirubin is lipophilic, as such it acts as a lipid peroxidation chain breaker that protects
lipids from oxidation more effectively than the water-soluble antioxidants, such as glu-
tathione [201–204]. Bilirubin contributes mostly to the total antioxidant capacity of blood
plasma [204]. Apparently, heme degradation by HO-1 and HO-2 is indispensable.

6.2. Heme Oxygenase Activity and Blood Glucose Levels

Because CO is produced exclusively by HO-1 and HO-2, an exhaled CO can serve as
a biomarker for heme degradation. In healthy individuals, levels of exhaled CO increase
with increasing blood glucose and both exhaled CO and blood glucose levels return to their
respective baseline values 40 min after glucose administration. These data suggest that
levels of HO activity may influence blood glucose levels [205]. The relationship between
exhaled CO and blood glucose has been observed as well in diabetics. As expected, the
levels of exhaled CO are greater in diabetic subjects, compared to non-diabetic controls [205].
The elevated CO exhaled in diabetic subjects is attributable to HO-1 induction in response
to high-glucose stress. The exhaled CO-blood glucose correlation implies that exhaled CO
can be used in monitoring disease progression in diabetes patients [205].

In the Goto-Kakizaki rats, a model for hyperglycemia and insulin resistance without
obesity [206], induction of HO-1 causes a reduction in fasting blood glucose levels and
prevents a rise in blood glucose in post absorptive state [207]. In an obese mouse model of
diabetes, induction of HO-1 prevents weight gain, decreases visceral and subcutaneous fat
content, and improves both insulin sensitivity and glucose tolerance [208].

6.3. Similarities versus Differences between HO-1 and HO-2

The catalytic domains of HO-1 and HO-2 are highly homologous, sharing 93% of
their amino acid sequences. HO-2, however, contains an additional domain, which has
Cys-Pro dipeptide motifs that allows binding of heme and interacting with other pro-
teins that include Rev-erbα, a heme sensor that coordinates metabolic and circadian
pathways [209–211] and PFKFB4, the key regulator of glycolysis. This HO-2 domain
accounts for the its biologic roles that are distinct from those of HO-1, such as protection
against ischemic acute kidney injury [212] and anti-diabetic properties, detailed below.

HO-1 and HO-2 are products of two different genes; the promoter of the human
HO-1 gene is unique because it contains the GT repeats, not found in rodent or murine
species [194,195]. The genetic polymorphisms, such as long GT repeats, are associated with
an elevated risk for various diseases, type 2 diabetes included [213,214].

Expression of the HO-1 gene is regulated by a cascade of transcription factors such
as CLOCK, Bmal, and Per, that generate day-night cyclical expression of the genes in-
volved in energy metabolism [215–220]. Disruption of the diurnal cycle caused obesity in
mice [218]. Expression of the HO-1 gene is regulated also by heme (its own substrate), the
levels of glucose, oxygen, and shear stress [200] and it is a component of innate immune
responses [221].

HO-2 deficiency causes neither lethality nor infertility. The HO-2 knockout mice
reproduce offsprings that undergo normal development to adulthood, but develops the
symptomatic spectrum of human type-2 diabetes; hyperglycemia, increased fat deposition,
insulin resistance and hypertension with aging [208,222–224]. Normal fertility and normal
development of HO-2 knockout mice suggests that HO-1 could compensate for heme
degradation function of HO-2. However, HO-1 could not compensate for anti-diabetogenic
function of HO-2, thereby suggesting such function is unique to HO-2.
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6.4. Cellular Stress Response and Defense against Cadmium Toxicity

Activation and repression of the HO-1 gene are universal cellular stress responses and
defenses that are required for cell survival under the influence of environmental stressors
of various forms. Every nucleated cell in the body must synthesize heme, and the de novo
heme biosynthesis supplies heme that can rapidly be catabolized to a precursor substrate
(biliverdin IXα) to produce bilirubin [198–203].

However, unlike endogenous (physiologic) HO-1 activators, the HO-1 induction by
Cd is not coupled with bilirubin synthesis [225]. The rapid and massive HO-1 expression
in response to Cd, leads to a transient increase in the intracellular heme concentration. This
results in the stimulation of gluconeogenesis, and a shift to dominant glycolysis, a known
pathologic feature of CKD [23].

The finding that Cd induces HO-1 expression without a concomitant bilirubin for-
mation is of significance in Cd research. It explains the pervasiveness of Cd toxicity as
it increases cellular oxidative stress and lowers cellular antioxidant capacity at the same
time. This knowledge comes from a methodology breakthrough in measuring bilirubin
as it is produced in cells [225,226]. Using the eel fluorescent protein UnaG, which binds
unconjugated bilirubin [226], Takeda et al. (2015) demonstrated, for the first time, that all
cell types that they examined synthesized heme, from which bilirubin was continuously
generated and released [225]. This de novo synthesis of heme was mandatory for cellular
homeostasis, and defense against stress. Takeda et al. (2015) reported also that stressors
like Cd2+ and inorganic arsenic as As3+ increased HO-1 expression, but there was only a
small change in the production of bilirubin.

6.5. How Does Cd Activate HO-1 Expression?

The expression of HO-1 can be increased by various chemicals of endogenous and
exogenous origin. Although induction of Cd by exogenous chemicals were extensively
investigated, there was little knowledge on the mechanism underlying activation of the
HO-1 gene by endogenous chemicals, notably prostaglandin (PGD2) [227–229].

PGD2 is a major cyclooxygenase mediator, synthesized by activated mast cells and
other immune cells, and is implicated in allergic disorders [229]. In a study using a cell
culture model of human retinal epithelial cells and the reporter gene assay, Satarug et al.
(2008) found, for the first time, that PGD2 activated the HO-1 gene, in an enhancer man-
ner, through D-prostanoid 2 (DP2) receptor [227]. The DP2 receptor is also known as a
chemoattractant receptor-homologous molecule expressed on Th2 cells.

In comparison, Cd was found to activate HO-1 promoter via the Cd response element
(CdRE), and Maf recognition antioxidant response element (MARE), also known as a stress
response element (StRE) [230]. Cd also suppresses lysosomal degradation of Nrf2 [231]
and causes nuclear export of the HO-1 gene repressor Bach1, which allows transactivation
of the HO-1 gene by the Nrf2/small Maf complex [232].

6.6. Maintenance of Blood Glucose: Integrative Role of HO-1, HO-2 and PFKFB4

Based on protein microarray data, Li et al. (2012) observed HO-2 interaction with
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), thereby linking HO-2
to glylcolysis [224]. In liver, PFKFB4 is the key regulator of glycolysis [233] and HO-2
deficiency causes persistent hyperglycemia due to an impaired ability to suppress glu-
cose production.

PFKFB4 expression is regulated by the hepatocyte nuclear factor-6 (Hnf-6) [234] and
diabetes developed in Hnf6-knockout mice [235]. PFKFB4 protein phosphorylation, medi-
ated by the cAMP dependent protein kinase A (PKA) reduced F-2,6-P2 level in the liver,
thereby increasing gluconeogenesis with concomitantly reducing glycolysis [236]. Figure 4
depicts the regulation of blood glucose in fasting and post absorptive states.
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Figure 4. Regulation of blood glucose by hepatic HO-1, HO-2 and PFKFB4 (a) Expression of HO-1
and PFKFB4 in the fasting state.; (b) Expression of HO-1, HO-2 and PFKFB4 in the post absorptive
period. Abbreviations: PFKFB4, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4; F-2,6-P2,
fructose 2,6-biphosphate.

Both HO-1 and HO-2 are required to prevent a fall or a rise in blood glucose levels dur-
ing fasting and post absorptive periods, respectively. In fasting state, HO-1 up-regulation
concurrent with PFKFB4 down-regulation results in enhanced glucose production with
minimal use of glucose. In the post-absorptive state, HO-1 down regulation concurrent with
HO-2 plus PFKFB4 up-regulation results in suppressed glucose production and increased
use of glucose.

HO-2 is required for the up-regulation of PFKFB4. Failure in any of these (HO-1, HO-2
or PFKFB4) can result in hyperglycemia due to over production of glucose in fasting state
in combination with an impaired ability to suppress its production.

HO-1 protein expression in the liver of HO-2 deficient mice was lower than the wild
type by 35–45% [223,235]. This markedly low HO-1 expression level could render the
hepatocyte to oxidative damage. However, the repression of the HO-1 gene expression
is a necessary metabolic adaptation to safeguard the cellular redox state. This could be
achieved by utilizing NADPH (H+) for regenerating GSH from GSSG, an oxidized form of
GSH, rather than for heme catabolism. GSH recycling is a mechanism for maintenance of
cell redox state. It is central to cell function integrity.

7. Conclusions

Even a small increase in the risk of diabetes by Cd exposure yields a large number of
cases that are preventable by early minimization of exposure. Current dietary exposure
guidelines and a nephrotoxicity threshold of Cd do not afford health protection. Cd is
a mitochondrial toxicant that induces, in multiple tissues and organs, oxidative stress,
chronic systemic inflammation, and insulin resistance independently of adiposity. Cd has
a high toxicity potential because it induces oxidative stress and reduces cellular defense
and antioxidant capacity, simultaneously. These effects of Cd may be intensified in obese
persons. Thus, the risk of diabetes is higher in the obese, compared to the non-obese with
the same overall Cd burden.

Cd induces HO-1 expression without a concomitant increase in bilirubin synthesis, but
stimulates gluconeogenesis, leading to hyperglycemia. Metformin is ineffective to prevent
the expression of diabetic symptoms induced by Cd.

Minimization of Cd exposure from all sources are essentially preventive measures.
Adequate Zn and Fe intake and maintaining optimal body Fe stores are additional interven-
tions. An increase in endogenous bilirubin production may be a complementary measure
to mitigate harmful effects of inevitable exposure to Cd.
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Further research dissecting the molecular basis for a renoprotection of HO-2 and its
anti-obese and anti-diabetogenic properties are imperative.
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