Ferroptosis in Renal Cancer Therapy: A Narrative Review of Drug Candidates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mechanisms of Ferroptosis Regulation
2.1. Iron Metabolism Abnormalities
2.2. Abnormal Accumulation of Lipid Peroxides
2.3. Antioxidant Metabolism
3. Ferroptosis and Renal Cancer
4. Current Status of Drug Research Targeting Ferroptosis in Renal Cancer
4.1. Traditional Chinese Medicine and Natural Compounds in Treating Renal Cancer
4.1.1. Icariin II
4.1.2. Artesunate
4.1.3. Lycorine
4.1.4. Luteolin
4.1.5. Salinomycin
4.2. Drug Resistance and Ferroptosis in Classic Therapies
4.2.1. Sorafenib Resistance
4.2.2. Sunitinib Resistance
4.3. Combination Therapy with Ferroptosis Inducers
4.3.1. Everolimus Combined with Ferroptosis Inducers Can Overcome Sorafenib and Sunitinib Resistance
4.3.2. URB597
4.4. Novel Synthetic Materials
MIL-101(Fe)@RSL3
4.5. The Combination of Ferroptosis Therapy and Immunotherapy
iRGDbcc-USINP
5. Ferroptosis-Related Drugs and Clinical Trials
Agent | Effect on Ferroptosis | Proposed Mechanism | Disease Model | Refs. | Indication | NCT | Status |
---|---|---|---|---|---|---|---|
HIF-1α/SLC7A11 | Liver fibrosis | [83] | Metastatic Renal-Cell Carcinoma | NCT01982097 | Completed | ||
NCT00073307 | Completed | ||||||
ERK-TRIM54/FSP1; SLC7A11; HBXIP/SCD axis; GABARAPL1; QSOX1/NRF2 | HCC | [84,85,86,87,88] | Renal Cancer | NCT01557127 | Completed | ||
Sorafenib | Inducer | SLC7A11 | Nasopharyngeal carcinoma | [89] | Renal-Cell Carcinoma | NCT00661375 | Completed |
NCT00678288 | Terminated | ||||||
NCT00618982 | Completed | ||||||
NCT00586105 | Completed | ||||||
METTL14/m6A/FTH1 | Cervical cancer | [90] | Advanced Renal-Cell Carcinoma | NCT01508364 | Completed | ||
NCT00895674 | Completed | ||||||
NCT00771147 | Completed | ||||||
Elderly mRCC | NCT01728948 | Completed | |||||
Temozolomide | Inducer | iron metabolism; DMT1 | Glioblastoma | [91] | Hereditary Leiomyomatosis and Renal-Cell Cancer | NCT04603365 | Withdrawn |
Statins | Inducer | Target CoQ/FSP1 | Triple-negative breast cancer | [92] | Renal-Cell Carcinoma | NCT00490698 | Completed |
Dexamethasone | Inducer | DPEP1;GSH | HT1080 | [93] | Metastatic Renal-Cell Carcinoma | NCT00176280 | Withdrawn |
Deferoxamine | Inhibitor | Iron ions | traumatic spinal cord injury | [82] | Locally Advanced or Metastatic Renal-Cell Carcinoma | NCT04006522 | Recruiting |
Clear-Cell RCC | NCT06090331 | Available | |||||
Selenium | Inhibitor | TFAP2c, Sp1,GPX4 | Stroke | [94] | Clear-Cell RCC | NCT02535533 | Active, not recruiting |
NCT05363631 | Recruiting |
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cancer Today. Available online: http://gco.iarc.fr/today/home (accessed on 23 August 2024).
- Cirillo, L.; Innocenti, S.; Becherucci, F. Global Epidemiology of Kidney Cancer. Nephrol. Dial. Transpl. 2024, 39, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Survival Rates for Kidney Cancer. Available online: https://www.cancer.org/cancer/types/kidney-cancer/detection-diagnosis-staging/survival-rates.html (accessed on 28 August 2023).
- Chen, V.J.; Hernandez-Meza, G.; Agrawal, P.; Zhang, C.A.; Xie, L.; Gong, C.L.; Hoerner, C.R.; Srinivas, S.; Oermann, E.K.; Fan, A.C. Time on Therapy for at Least Three Months Correlates with Overall Survival in Metastatic Renal Cell Carcinoma. Cancers 2019, 11, 1000. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, Y.; Ren, K.; Qiao, Y.; Sun, Z.; Pan, S.; Liu, F.; Liu, Y.; Huo, J.; Liu, D.; et al. Broadening Horizons: The Multifaceted Functions of Ferroptosis in Kidney Diseases. Int. J. Biol. Sci. 2023, 19, 3726–3743. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and Regulation. Autophagy 2020, 17, 2054–2081. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Ni, Z.-J.; Elam, E.; Zhang, F.; Thakur, K.; Wang, S.; Zhang, J.-G.; Wei, Z.-J. Juglone, a Novel Activator of Ferroptosis, Induces Cell Death in Endometrial Carcinoma Ishikawa Cells. Food Funct. 2021, 12, 4947–4959. [Google Scholar] [CrossRef] [PubMed]
- Basuli, D.; Tesfay, L.; Deng, Z.; Paul, B.; Yamamoto, Y.; Ning, G.; Xian, W.; McKeon, F.; Lynch, M.; Crum, C.P.; et al. Iron Addiction: A Novel Therapeutic Target in Ovarian Cancer. Oncogene 2017, 36, 4089–4099. [Google Scholar] [CrossRef]
- Eling, N.; Reuter, L.; Hazin, J.; Hamacher-Brady, A.; Brady, N.R. Identification of Artesunate as a Specific Activator of Ferroptosis in Pancreatic Cancer Cells. Oncoscience 2015, 2, 517–532. [Google Scholar] [CrossRef]
- Greenshields, A.L.; Shepherd, T.G.; Hoskin, D.W. Contribution of Reactive Oxygen Species to Ovarian Cancer Cell Growth Arrest and Killing by the Anti-Malarial Drug Artesunate: Impact of Artesunate on Ovarian Cancer. Mol. Carcinog. 2017, 56, 75–93. [Google Scholar] [CrossRef]
- Lei, G.; Zhuang, L.; Gan, B. Targeting Ferroptosis as a Vulnerability in Cancer. Nat. Rev. Cancer 2022, 22, 381–396. [Google Scholar] [CrossRef]
- Feng, H.; Schorpp, K.; Jin, J.; Yozwiak, C.E.; Hoffstrom, B.G.; Decker, A.M.; Rajbhandari, P.; Stokes, M.E.; Bender, H.G.; Csuka, J.M.; et al. Transferrin Receptor is a Specific Ferroptosis Marker. Cell Rep. 2020, 30, 3411–3423.e7. [Google Scholar] [CrossRef]
- Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the Intersection of Lipid Metabolism and Cellular Signaling. Mol. Cell 2022, 82, 2215–2227. [Google Scholar] [CrossRef] [PubMed]
- Pope, L.E.; Dixon, S.J. Regulation of Ferroptosis by Lipid Metabolism. Trends Cell Biol. 2023, 33, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wan, Y.; Jiang, Y.; Zhang, L.; Cheng, W. GPX4: The Hub of Lipid Oxidation, Ferroptosis, Disease and Treatment. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188890. [Google Scholar] [CrossRef] [PubMed]
- Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; Da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier Da Silva, T.N.; Panzilius, E.; Scheel, C.H.; et al. FSP1 is a Glutathione-Independent Ferroptosis Suppressor. Nature 2019, 575, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Liu, X.; Zhang, Y.; Lei, G.; Yan, Y.; Lee, H.; Koppula, P.; Wu, S.; Zhuang, L.; Fang, B.; et al. DHODH-Mediated Ferroptosis Defence is a Targetable Vulnerability in Cancer. Nature 2021, 593, 586–590. [Google Scholar] [CrossRef]
- Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent. Sci. 2020, 6, 41–53. [Google Scholar] [CrossRef]
- Zeitler, L.; Fiore, A.; Meyer, C.; Russier, M.; Zanella, G.; Suppmann, S.; Gargaro, M.; Sidhu, S.S.; Seshagiri, S.; Ohnmacht, C.; et al. Anti-Ferroptotic Mechanism of IL4i1-Mediated Amino Acid Metabolism. eLife 2021, 10, e64806. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef]
- Li, J.; Zheng, S.; Fan, Y.; Tan, K. Emerging Significance and Therapeutic Targets of Ferroptosis: A Potential Avenue for Human Kidney Diseases. Cell Death Dis. 2023, 14, 628. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, J.; Liu, X.; Feng, L.; Gong, Z.; Koppula, P.; Sirohi, K.; Li, X.; Wei, Y.; Lee, H.; et al. BAP1 Links Metabolic Regulation of Ferroptosis to Tumour Suppression. Nat. Cell Biol. 2018, 20, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Affar, E.B.; Carbone, M. BAP1 Regulates Different Mechanisms of Cell Death. Cell Death Dis. 2018, 9, 1151. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Kon, N.; Li, T.; Wang, S.-J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a P53-Mediated Activity during Tumour Suppression. Nature 2015, 520, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hobeika, C.S.; Khabibullin, D.; Yu, D.; Filippakis, H.; Alchoueiry, M.; Tang, Y.; Lam, H.C.; Tsvetkov, P.; Georgiou, G.; et al. Hypersensitivity to Ferroptosis in Chromophobe RCC is Mediated by a Glutathione Metabolic Dependency and Cystine Import via Solute Carrier Family 7 Member 11. Proc. Natl. Acad. Sci. USA 2022, 119, e2122840119. [Google Scholar] [CrossRef] [PubMed]
- Kerins, M.J.; Milligan, J.; Wohlschlegel, J.A.; Ooi, A. Fumarate Hydratase Inactivation in Hereditary Leiomyomatosis and Renal Cell Cancer is Synthetic Lethal with Ferroptosis Induction. Cancer Sci. 2018, 109, 2757–2766. [Google Scholar] [CrossRef]
- Yang, W.-H.; Ding, C.-K.C.; Sun, T.; Rupprecht, G.; Lin, C.-C.; Hsu, D.; Chi, J.-T. The Hippo Pathway Effector TAZ Regulates Ferroptosis in Renal Cell Carcinoma. Cell Rep. 2019, 28, 2501–2508.e4. [Google Scholar] [CrossRef]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal Cell Carcinoma. Nat. Rev. Dis. Primers 2017, 3, 17009. [Google Scholar] [CrossRef]
- Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening Horizons: The Role of Ferroptosis in Cancer. Nat. Rev. Dis. Prim. 2021, 18, 280–296. [Google Scholar] [CrossRef]
- Kang, L.; Wang, D.; Shen, T.; Liu, X.; Dai, B.; Zhou, D.; Shen, H.; Gong, J.; Li, G.; Hu, Y.; et al. PDIA4 Confers Resistance to Ferroptosis via Induction of ATF4/SLC7A11 in Renal Cell Carcinoma. Cell Death Dis. 2023, 14, 193. [Google Scholar] [CrossRef]
- Chang, K.; Chen, Y.; Zhang, X.; Zhang, W.; Xu, N.; Zeng, B.; Wang, Y.; Feng, T.; Dai, B.; Xu, F.; et al. DPP9 Stabilizes NRF2 to Suppress Ferroptosis and Induce Sorafenib Resistance in Clear Cell Renal Cell Carcinoma. Cancer Res. 2023, 83, 3940–3955. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Ren, Z.; Li, Y.; Zou, W.; Chen, J.; Wang, H. Overcoming Cancer Chemotherapy Resistance by the Induction of Ferroptosis. Drug Resist. Updates 2023, 66, 100916. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ma, H.; Liu, X.; Xing, W. CircSCN8A Suppresses Malignant Progression and Induces Ferroptosis in Non-Small Cell Lung Cancer by Regulating miR-1290/ACSL4 Axis. Cell Cycle 2023, 22, 758–776. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Huang, X.; Liang, C.; Zhang, P. Evodiamine Impairs HIF1A Histone Lactylation to Inhibit Sema3A-Mediated Angiogenesis and PD-L1 by Inducing Ferroptosis in Prostate Cancer. Eur. J. Pharmacol. 2023, 957, 176007. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, T.; Zhang, Y.; Deng, T.; Zhang, H.; Ba, Y.I. Gastric Cancer Secreted miR-214-3p Inhibits the Anti-Angiogenesis Effect of Apatinib by Suppressing Ferroptosis in Vascular Endothelial Cells. Oncol. Res. 2024, 32, 489–502. [Google Scholar] [CrossRef]
- Ren, Y.; Mao, X.; Xu, H.; Dang, Q.; Weng, S.; Zhang, Y.; Chen, S.; Liu, S.; Ba, Y.; Zhou, Z.; et al. Ferroptosis and EMT: Key Targets for Combating Cancer Progression and Therapy Resistance. Cell. Mol. Life Sci. 2023, 80, 263. [Google Scholar] [CrossRef]
- Jin, X.; Tang, J.; Qiu, X.; Nie, X.; Ou, S.; Wu, G.; Zhang, R.; Zhu, J. Ferroptosis: Emerging Mechanisms, Biological Function, and Therapeutic Potential in Cancer and Inflammation. Cell Death Discov. 2024, 10, 45. [Google Scholar] [CrossRef]
- Lai, Y.; Zeng, T.; Liang, X.; Wu, W.; Zhong, F.; Wu, W. Cell Death-Related Molecules and Biomarkers for Renal Cell Carcinoma Targeted Therapy. Cancer Cell Int. 2019, 19, 221. [Google Scholar] [CrossRef]
- Green, Y.S.; Ferreira Dos Santos, M.C.; Fuja, D.G.; Reichert, E.C.; Campos, A.R.; Cowman, S.J.; Acuña Pilarte, K.; Kohan, J.; Tripp, S.R.; Leibold, E.A.; et al. ISCA2 Inhibition Decreases HIF and Induces Ferroptosis in Clear Cell Renal Carcinoma. Oncogene 2022, 41, 4709–4723. [Google Scholar] [CrossRef]
- Yu, R.; Zhou, Y.; Shi, S.; Wang, X.; Huang, S.; Ren, Y. Icariside II Induces Ferroptosis in Renal Cell Carcinoma Cells by Regulating the miR-324-3p/GPX4 Axis. Phytomedicine 2022, 102, 154182. [Google Scholar] [CrossRef]
- Efferth, T. From Ancient Herb to Modern Drug: Artemisia Annua and Artemisinin for Cancer Therapy. Semin. Cancer Biol. 2017, 46, 65–83. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, H.-C.; Zhu, H.-C.; Jin, Y.; Wang, L. Ferroptosis is Involved in the Anti-Tumor Effect of Lycorine in Renal Cell Carcinoma Cells. Oncol. Lett. 2021, 22, 781. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Lin, F.; Qi, Y.; Liu, C.; Zhou, L.; Xia, Y.; Chen, K.; Xing, J.; Liu, Z.; Yu, W.; et al. HO-1 Contributes to Luteolin-Triggered Ferroptosis in Clear Cell Renal Cell Carcinoma via Increasing the Labile Iron Pool and Promoting Lipid Peroxidation. Oxidative Med. Cell. Longev. 2022, 2022, 3846217. [Google Scholar] [CrossRef] [PubMed]
- Yangyun, W.; Guowei, S.; Shufen, S.; Jie, Y.; Rui, Y.; Yu, R. Everolimus Accelerates Erastin and RSL3-Induced Ferroptosis in Renal Cell Carcinoma. Gene 2022, 809, 145992. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Chen, Q.; Feng, Y.; Jiang, Q.; Sun, H.; Deng, B.; Huang, X.; Guan, J.; Chen, Q.; Liu, X.; et al. Combination Treatment with FAAH Inhibitors/URB597 and Ferroptosis Inducers Significantly Decreases the Growth and Metastasis of Renal Cell Carcinoma Cells via the PI3K-AKT Signaling Pathway. Cell Death Dis. 2023, 14, 247. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Li, Y.; Liang, L.; Yang, S.; Zhan, M.; Lu, C.; Lu, L.; Wen, L. Tumor Microenvironment-Responsive Nanodrug for Clear-Cell Renal Cell Carcinoma Therapy via Triggering Waterfall-like Cascade Ferroptosis. J. Biomed. Nanotechnol. 2022, 18, 327–342. [Google Scholar] [CrossRef]
- Huang, Z.; Gan, S.; Zhuang, X.; Chen, Y.; Lu, L.; Wang, Y.; Qi, X.; Feng, Q.; Huang, Q.; Du, B.; et al. Artesunate Inhibits the Cell Growth in Colorectal Cancer by Promoting ROS-Dependent Cell Senescence and Autophagy. Cells 2022, 11, 2472. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, W.; Liu, Y.; Yu, L.; Mao, X.; Guo, X.; Jiang, F.; Guo, Q.; Lin, N.; Zhang, Y. Artesunate Sensitizes Human Hepatocellular Carcinoma to Sorafenib via Exacerbating AFAP1L2-SRC-FUNDC1 Axis-Dependent Mitophagy. Autophagy 2024, 20, 541–556. [Google Scholar] [CrossRef]
- Lee, H.M.; Moon, A. Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells. Biomol. Ther. 2016, 24, 62–66. [Google Scholar] [CrossRef]
- Markowitsch, S.D.; Schupp, P.; Lauckner, J.; Vakhrusheva, O.; Slade, K.S.; Mager, R.; Efferth, T.; Haferkamp, A.; Juengel, E. Artesunate Inhibits Growth of Sunitinib-Resistant Renal Cell Carcinoma Cells through Cell Cycle Arrest and Induction of Ferroptosis. Cancers 2020, 12, 3150. [Google Scholar] [CrossRef]
- Kang, R.; Kroemer, G.; Tang, D. The Tumor Suppressor Protein P53 and the Ferroptosis Network. Free Radic. Biol. Med. 2019, 133, 162–168. [Google Scholar] [CrossRef]
- Xiao, H.; Xu, X.; Du, L.; Li, X.; Zhao, H.; Wang, Z.; Zhao, L.; Yang, Z.; Zhang, S.; Yang, Y.; et al. Lycorine and Organ Protection: Review of Its Potential Effects and Molecular Mechanisms. Phytomedicine 2022, 104, 154266. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Meng, M.; Liu, J.; Song, X.; Chen, Y.; Liu, Y.; Li, X.; Zhou, Z.; Huang, X.; Wang, X.; et al. Lycorine Inhibits Pancreatic Cancer Cell Growth and Neovascularization by Inducing Notch1 Degradation and Downregulating Key Vasculogenic Genes. Biochem. Pharmacol. 2023, 217, 115833. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, Q.; Liu, X.; Li, Y.; Fan, X.; Liu, G. Lycorine Upregulates the Expression of RMB10, Promotes Apoptosis and Inhibits the Proliferation and Migration of Cervical Cancer Cells. Int. J. Mol. Med. 2022, 50, 145. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Wu, J.-X.; Yang, S.-F.; Hsiao, Y.-H. Synergistic Combination of Luteolin and Asiatic Acid on Cervical Cancer In Vitro and In Vivo. Cancers 2023, 15, 548. [Google Scholar] [CrossRef]
- Juengel, E.; Thomas, A.; Rutz, J.; Makarevic, J.; Tsaur, I.; Nelson, K.; Haferkamp, A.; Blaheta, R.A. Amygdalin Inhibits the Growth of Renal Cell Carcinoma Cells in Vitro. Int. J. Mol. Med. 2016, 37, 526–532. [Google Scholar] [CrossRef]
- Rutz, J.; Maxeiner, S.; Juengel, E.; Bernd, A.; Kippenberger, S.; Zöller, N.; Chun, F.K.-H.; Blaheta, R.A. Growth and Proliferation of Renal Cell Carcinoma Cells is Blocked by Low Curcumin Concentrations Combined with Visible Light Irradiation. Int. J. Mol. Sci. 2019, 20, 1464. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening. Cell 2009, 138, 645–659. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, S.; Wang, Y.; Dai, W.; Zou, H.; Wang, S.; Zhang, J.; Pan, J. Salinomycin Effectively Eliminates Cancer Stem-like Cells and Obviates Hepatic Metastasis in Uveal Melanoma. Mol. Cancer 2019, 18, 159. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Cheng, Q. PDIA4: The Basic Characteristics, Functions and Its Potential Connection with Cancer. Biomed. Pharmacother. 2020, 122, 109688. [Google Scholar] [CrossRef]
- Zou, Y.; Palte, M.J.; Deik, A.A.; Li, H.; Eaton, J.K.; Wang, W.; Tseng, Y.-Y.; Deasy, R.; Kost-Alimova, M.; Dančík, V.; et al. A GPX4-Dependent Cancer Cell State Underlies the Clear-Cell Morphology and Confers Sensitivity to Ferroptosis. Nat. Commun. 2019, 10, 1617. [Google Scholar] [CrossRef]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in Advanced Clear-Cell Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; et al. Pharmacological Inhibition of Cystine-Glutamate Exchange Induces Endoplasmic Reticulum Stress and Ferroptosis. eLife 2014, 3, e02523. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Li, J.; Shen, Q.; Feng, J.; Liu, H.; Wang, W.; Xu, L.; Shi, G.; Ye, X.; Ge, M.; et al. Contribution of Upregulated Dipeptidyl Peptidase 9 (DPP9) in Promoting Tumoregenicity, Metastasis and the Prediction of Poor Prognosis in Non-Small Cell Lung Cancer (NSCLC). Int. J. Cancer 2017, 140, 1620–1632. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Kalathur, R.K.R.; Coto-Llerena, M.; Ercan, C.; Buechel, D.; Shuang, S.; Piscuoglio, S.; Dill, M.T.; Camargo, F.D.; Christofori, G.; et al. YAP/TAZ and ATF4 Drive Resistance to Sorafenib in Hepatocellular Carcinoma by Preventing Ferroptosis. EMBO Mol. Med. 2021, 13, e14351. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Koo, K.C.; Chung, D.Y.; Kim, S.I.; Kim, J.; Oh, C.K.; Kim, T.N.; Kang, S.K.; Park, J.W.; Yoon, Y.E.; et al. Visceral Adiposity as a Significant Predictor of Sunitinib-Induced Dose-Limiting Toxicities and Survival in Patients with Metastatic Clear Cell Renal Cell Carcinoma. Cancers 2020, 12, 3602. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, S.; Shou, Y.; Jia, Y.; Wei, Z.; Liu, Y.; Shi, J.; Miao, D.; Miao, Q.; Zhao, C.; et al. AIM2 Promotes Renal Cell Carcinoma Progression and Sunitinib Resistance through FOXO3a-ACSL4 Axis-Regulated Ferroptosis. Int. J. Biol. Sci. 2023, 19, 1266–1283. [Google Scholar] [CrossRef]
- Gan, B. ACSL4, PUFA, and Ferroptosis: New Arsenal in Anti-Tumor Immunity. Signal Transduct. Target. Ther. 2022, 7, 128. [Google Scholar] [CrossRef]
- Dai, E.; Han, L.; Liu, J.; Xie, Y.; Zeh, H.J.; Kang, R.; Bai, L.; Tang, D. Ferroptotic Damage Promotes Pancreatic Tumorigenesis through a TMEM173/STING-Dependent DNA Sensor Pathway. Nat. Commun. 2020, 11, 6339. [Google Scholar] [CrossRef]
- Jaiswal, S.; Ayyannan, S.R. Anticancer Potential of Small-Molecule Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase. ChemMedChem 2021, 16, 2172–2187. [Google Scholar] [CrossRef]
- Fiore, D.; Proto, M.C.; Pisanti, S.; Picardi, P.; Zottola, A.C.P.; Butini, S.; Gemma, S.; Casagni, A.; Laezza, C.; Vitale, M.; et al. Antitumor Effect of Pyrrolo-1,5-Benzoxazepine-15 and Its Synergistic Effect with Oxaliplatin and 5-FU in Colorectal Cancer Cells. Cancer Biol. Ther. 2016, 17, 849–858. [Google Scholar] [CrossRef]
- van Egmond, N.; Straub, V.M.; van der Stelt, M. Targeting Endocannabinoid Signaling: FAAH and MAG Lipase Inhibitors. Annu. Rev. Pharmacol. Toxicol. 2021, 6, 441–463. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lu, J.; Kong, X.; Hyeon, T.; Ling, D. Dynamic Nanoparticle Assemblies for Biomedical Applications. Adv. Mater. 2017, 29, 1605897. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Hu, F.; Zhang, J.; Wang, C.; Li, L. A Biomimetic Coordination Nanoplatform for Controlled Encapsulation and Delivery of Drug-Gene Combinations. Angew. Chem. Int. Ed. Engl. 2019, 58, 8804–8808. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, M.; Pan, Y.; Duan, Y.; Dong, Z.; Chao, Y.; Liu, Z.; Liu, B. Biodegradable Nanoscale Coordination Polymers for Targeted Tumor Combination Therapy with Oxidative Stress Amplification. Adv. Funct. Mater. 2020, 30, 1908865. [Google Scholar] [CrossRef]
- Liu, Z.; Li, T.; Han, F.; Wang, Y.; Gan, Y.; Shi, J.; Wang, T.; Akhtar, M.L.; Li, Y. A Cascade-Reaction Enabled Synergistic Cancer Starvation/ROS-Mediated/Chemo-Therapy with an Enzyme Modified Fe-Based MOF. Biomater. Sci. 2019, 7, 3683–3692. [Google Scholar] [CrossRef]
- Huang, Y.; Hsu, J.C.; Koo, H.; Cormode, D.P. Repurposing Ferumoxytol: Diagnostic and Therapeutic Applications of an FDA-Approved Nanoparticle. Theranostics 2022, 12, 796–816. [Google Scholar] [CrossRef]
- Liang, H.; Wu, X.; Zhao, G.; Feng, K.; Ni, K.; Sun, X. Renal Clearable Ultrasmall Single-Crystal Fe Nanoparticles for Highly Selective and Effective Ferroptosis Therapy and Immunotherapy. J. Am. Chem. Soc. 2021, 143, 15812–15823. [Google Scholar] [CrossRef]
- Yang, C.; Lu, T.; Liu, M.; Yuan, X.; Li, D.; Zhang, J.; Zhou, L.; Xu, M. Tiliroside Targets TBK1 to Induce Ferroptosis and Sensitize Hepatocellular Carcinoma to Sorafenib. Phytomedicine 2023, 111, 154668. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Zheng, Y.; Dai, W.; Ji, J.; Wu, L.; Cheng, Z.; Zhang, J.; Li, J.; Xu, X.; et al. Targeting Fatty Acid Synthase Modulates Sensitivity of Hepatocellular Carcinoma to Sorafenib via Ferroptosis. J. Exp. Clin. Cancer Res. 2023, 42, 6. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Hao, J.; Duan, H.-Q.; Zhao, C.-X.; Sun, C.; Li, B.; Fan, B.-Y.; Wang, X.; Li, W.-X.; et al. Deferoxamine Promotes Recovery of Traumatic Spinal Cord Injury by Inhibiting Ferroptosis. Neural Regen. Res. 2019, 14, 532–541. [Google Scholar]
- Yuan, S.; Wei, C.; Liu, G.; Zhang, L.; Li, J.; Li, L.; Cai, S.; Fang, L. Sorafenib Attenuates Liver Fibrosis by Triggering Hepatic Stellate Cell Ferroptosis via HIF-1α/SLC7A11 Pathway. Cell Prolif. 2022, 55, e13158. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-R.; Shi, C.; Song, Q.-Y.; Kang, M.-J.; Jiang, X.; Liu, H.; Pei, D.-S. Sorafenib Induces Ferroptosis by Promoting TRIM54-Mediated FSP1 Ubiquitination and Degradation in Hepatocellular Carcinoma. Hepatol. Commun. 2023, 7, e0246. [Google Scholar] [CrossRef]
- Huang, W.; Chen, K.; Lu, Y.; Zhang, D.; Cheng, Y.; Li, L.; Huang, W.; He, G.; Liao, H.; Cai, L.; et al. ABCC5 Facilitates the Acquired Resistance of Sorafenib through the Inhibition of SLC7A11-Induced Ferroptosis in Hepatocellular Carcinoma. Neoplasia 2021, 23, 1227–1239. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.-M.; Shi, X.-H.; Ye, K.; Fu, X.-L.; Wang, X.; Guo, S.-M.; Ma, J.-Q.; Xu, F.-F.; Sun, H.-M.; et al. Sorafenib Triggers Ferroptosis via Inhibition of HBXIP/SCD Axis in Hepatocellular Carcinoma. Acta Pharmacol. Sin. 2023, 44, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Qi, Z.; Xu, J.; Guo, M.; Zhang, X.; Yu, Z.; Cao, X.; Xia, J. Loss of GABARAPL1 Confers Ferroptosis Resistance to Cancer Stem-like Cells in Hepatocellular Carcinoma. Mol. Oncol. 2022, 16, 3703–3719. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, C.; Zhao, Y.; Zhang, X.; Chen, W.; Zhou, Q.; Hu, B.; Gao, D.; Raatz, L.; Wang, Z.; et al. Quiescin Sulfhydryl Oxidase 1 Promotes Sorafenib-Induced Ferroptosis in Hepatocellular Carcinoma by Driving EGFR Endosomal Trafficking and Inhibiting NRF2 Activation. Redox Biol. 2021, 41, 101942. [Google Scholar] [CrossRef]
- Wang, H.-H.; Fan, S.-Q.; Zhan, Y.-T.; Peng, S.-P.; Wang, W.-Y. Suppression of the SLC7A11/Glutathione Axis Causes Ferroptosis and Apoptosis and Alters the Mitogen-Activated Protein Kinase Pathway in Nasopharyngeal Carcinoma. Int. J. Biol. Macromol. 2024, 254, 127976. [Google Scholar] [CrossRef]
- Li, L.; Zeng, J.; He, S.; Yang, Y.; Wang, C. METTL14 Decreases FTH1 mRNA Stability via m6A Methylation to Promote Sorafenib-Induced Ferroptosis of Cervical Cancer. Cancer Biol. Ther. 2024, 25, 2349429. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Peng, S.; Sun, Z.; Heng, X.; Zhu, X. Temozolomide Drives Ferroptosis via a DMT1-Dependent Pathway in Glioblastoma Cells. Yonsei Med. J. 2021, 62, 843–849. [Google Scholar] [CrossRef]
- Yang, J.; Jia, Z.; Zhang, J.; Pan, X.; Wei, Y.; Ma, S.; Yang, N.; Liu, Z.; Shen, Q. Metabolic Intervention Nanoparticles for Triple-Negative Breast Cancer Therapy via Overcoming FSP1-Mediated Ferroptosis Resistance. Adv. Healthc. Mater. 2022, 11, e2102799. [Google Scholar] [CrossRef]
- von Mässenhausen, A.; Zamora Gonzalez, N.; Maremonti, F.; Belavgeni, A.; Tonnus, W.; Meyer, C.; Beer, K.; Hannani, M.T.; Lau, A.; Peitzsch, M.; et al. Dexamethasone Sensitizes to Ferroptosis by Glucocorticoid Receptor-Induced Dipeptidase-1 Expression and Glutathione Depletion. Sci. Adv. 2022, 8, eabl8920. [Google Scholar] [CrossRef] [PubMed]
- Alim, I.; Caulfield, J.T.; Chen, Y.; Swarup, V.; Geschwind, D.H.; Ivanova, E.; Seravalli, J.; Ai, Y.; Sansing, L.H.; Ste Marie, E.J.; et al. Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell 2019, 177, 1262–1279.e25. [Google Scholar] [CrossRef] [PubMed]
Type of Drugs | Drugs | Function | Experimental Object | Targeting | Refs. |
---|---|---|---|---|---|
Extract of Traditional Chinese Medicine | Icariin II | Promote ferroptosis | Human RCC (ACHN, A498, 786-O, Caki-1) male BALB/c nude mice | miR-324-3p, GPX4 | [41] |
Artesunate | Promote ferroptosis | Parental and sunitinib-resistant KTCTL-26 | ROS, GPX4, p53 | [42] | |
Lycorine | Promote ferroptosis | Human RCC (786-O, A498 and Caki-1); HK-2 | GPX4, ACSL4 | [43] | |
Luteolin | Promote ferroptosis | Human ccRCC (786-O and OS-RC-2); HK-2; OS-RC-2 cells injected BALB/c nude mice | HO-1, LIP | [44] | |
Natural Compound | Salinomycin | Promote ferroptosis | HK-2; 786-O, 769-P, ACHN, CAKi-1; 786-O cells injected BALB/c nude mice; Human ccRCC specimens | PDIA4-ATF4-SLC7A11-GPX4 axis | [31] |
Drugs Combined with Ferroptosis Inducers | Everolimus | Promote ferroptosis | RCC cell line (ACHN, Caki-1), HEK-293 | mTOR-4EBP1 axis | [45] |
URB597 | Promote ferroptosis | Kidney 293T cells RCC cell line (Caki-1, 786-O, OS-RC-2, SW839, GRC-1 G-401 c A498) Patient tumor tissue samples | PI3K-AKT signaling pathway, ROS, GPX4 | [46] | |
Novel Synthetic Materials | MIL-101(Fe)@RSL3 | Promote ferroptosis | 786-O, HK-2, LO2, injected female BALB/C nude mice with 4 × 106 786-O cells | GPX4, Fenton reaction | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Qiu, Y.; Tong, X. Ferroptosis in Renal Cancer Therapy: A Narrative Review of Drug Candidates. Cancers 2024, 16, 3131. https://doi.org/10.3390/cancers16183131
Yu L, Qiu Y, Tong X. Ferroptosis in Renal Cancer Therapy: A Narrative Review of Drug Candidates. Cancers. 2024; 16(18):3131. https://doi.org/10.3390/cancers16183131
Chicago/Turabian StyleYu, Lingyan, Yuyueyang Qiu, and Xiangmin Tong. 2024. "Ferroptosis in Renal Cancer Therapy: A Narrative Review of Drug Candidates" Cancers 16, no. 18: 3131. https://doi.org/10.3390/cancers16183131
APA StyleYu, L., Qiu, Y., & Tong, X. (2024). Ferroptosis in Renal Cancer Therapy: A Narrative Review of Drug Candidates. Cancers, 16(18), 3131. https://doi.org/10.3390/cancers16183131