Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,139)

Search Parameters:
Keywords = release kinetic modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 17775 KB  
Article
Structural, Swelling, and In Vitro Digestion Behavior of DEGDA-Crosslinked Semi-IPN Dextran/Inulin Hydrogels
by Tamara Erceg, Miloš Radosavljević, Ružica Tomičić, Vladimir Pavlović, Milorad Miljić, Aleksandra Cvetanović Kljakić and Aleksandra Torbica
Gels 2026, 12(2), 103; https://doi.org/10.3390/gels12020103 - 26 Jan 2026
Abstract
In this study, semi-interpenetrating polymer network (semi-IPN) hydrogels based on methacrylated dextran and native inulin were designed as biodegradable carriers for the colon-specific delivery of uracil as a model antitumor compound. The hydrogels were synthesized via free-radical polymerization, using diethylene glycol diacrylate (DEGDA) [...] Read more.
In this study, semi-interpenetrating polymer network (semi-IPN) hydrogels based on methacrylated dextran and native inulin were designed as biodegradable carriers for the colon-specific delivery of uracil as a model antitumor compound. The hydrogels were synthesized via free-radical polymerization, using diethylene glycol diacrylate (DEGDA) as a crosslinking agent at varying concentrations (5, 7.5, and 10 wt%), and their structural, thermal, and biological properties were systematically evaluated. Fourier transform infrared spectroscopy (FTIR) confirmed successful crosslinking and physical incorporation of uracil through hydrogen bonding. Concurrently, differential scanning calorimetry (DSC) revealed an increase in glass transition temperature (Tg) with increasing crosslinking density (149, 153, and 156 °C, respectively). Swelling studies demonstrated relaxation-controlled, first-order swelling kinetics under physiological conditions (pH 7.4, 37 °C) and high gel fraction values (84.75, 91.34, and 94.90%, respectively), indicating stable network formation. SEM analysis revealed that the hydrogel morphology strongly depended on crosslinking density and drug incorporation, with increasing crosslinker content leading to a more compact and wrinkled structure. Uracil loading further modified the microstructure, promoting the formation of discrete crystalline domains within the semi-IPN hydrogels, indicative of physical drug entrapment. All formulations exhibited high encapsulation efficiencies (>86%), which increased with increasing crosslinker content, consistent with the observed gel fraction values. Simulated in vitro gastrointestinal digestion showed negligible drug release under gastric conditions and controlled release in the intestinal phase, primarily governed by crosslinking density. Antimicrobial assessment against Escherichia coli and Staphylococcus epidermidis, used as an initial or indirect indicator of cytotoxic potential, revealed no inhibitory activity, suggesting low biological reactivity at the screening level. Overall, the results indicate that DEGDA-crosslinked dextran/inulin semi-interpenetrating (semi-IPN) hydrogels represent promising carriers for colon-targeted antitumor drug delivery. Full article
(This article belongs to the Special Issue Biopolymer Hydrogels: Synthesis, Properties and Applications)
16 pages, 918 KB  
Article
Valproic Acid Stimulates Release of Ca2+ from InsP3-Sensitive Ca2+ Stores
by Ana Ruiz-Nuño and María F. Cano-Abad
Int. J. Mol. Sci. 2026, 27(3), 1176; https://doi.org/10.3390/ijms27031176 - 23 Jan 2026
Viewed by 82
Abstract
Calcium (Ca2+)signaling dysfunction is a central contributor to neuronal hyperexcitability and seizure propagation in epilepsy, yet the intracellular mechanisms underlying the actions of valproic acid (VPA) remain incompletely understood. In this study, we investigated whether VPA modulates Ca2+ homeostasis at [...] Read more.
Calcium (Ca2+)signaling dysfunction is a central contributor to neuronal hyperexcitability and seizure propagation in epilepsy, yet the intracellular mechanisms underlying the actions of valproic acid (VPA) remain incompletely understood. In this study, we investigated whether VPA modulates Ca2+ homeostasis at the level of the endoplasmic reticulum (ER) and how this action influences cytosolic Ca2+ dynamics associated with epileptiform activity. ER Ca2+ levels were directly measured using ER-targeted aequorin in HeLa and PC12 cells, while cytosolic Ca2+ signals were monitored by fura-2 fluorescence imaging in bovine chromaffin cells exposed to veratridine, a model of sustained sodium channel activation and Ca2+ oscillations. VPA induced a concentration-dependent release of Ca2+ from the ER, with an IC50 of approximately 17 µM. This effect was preserved in permeabilized cells and exhibited activation kinetics comparable to those elicited by inositol 1,4,5-trisphosphate (InsP3). Pharmacological inhibition of InsP3 receptors (InsP3Rs), but not ryanodine receptors or SERCA, abolished VPA-induced ER Ca2+ release, supporting a selective InsP3R-mediated mechanism. Functionally, VPA suppressed the repetitive cytosolic Ca2+ oscillations induced by veratridine, while simultaneously producing a sustained elevation of cytosolic Ca2+ originating from ER stores and facilitating depolarization-evoked catecholamine secretion. Together, these results support the conclusion that VPA induces InsP3R-mediated Ca2+ mobilization from the endoplasmic reticulum and identify ER Ca2+ release as a previously unrecognized intracellular mechanism contributing to its modulatory effects on Ca2+ signaling and excitability in epilepsy. Full article
Show Figures

Figure 1

30 pages, 5064 KB  
Article
Antimicrobial Functionalized Mesoporous Silica FDU-12 Loaded with Bacitracin
by Dan Adrian Vasile, Ludmila Motelica, Luiza-Andreea Mîrț, Gabriel Vasilievici, Oana-Maria Memecică, Ovidiu Cristian Oprea, Adrian-Vasile Surdu, Roxana Doina Trușcă, Cristina Chircov, Bogdan Ștefan Vasile, Zeno Dorian Ghizdavet, Denisa Ficai, Ana-Maria Albu, Radu Pericleanu, Andreea Ștefania Dumbravă, Mara-Mădălina Mihai, Irina Gheorghe-Barbu and Anton Ficai
Molecules 2026, 31(2), 340; https://doi.org/10.3390/molecules31020340 - 19 Jan 2026
Viewed by 263
Abstract
The threats leading to the extinction of humanity accelerate the evolution and development of materials that are capable of providing conditions for preserving health and, implicitly, life. In our work, we developed drug delivery systems based on mesoporous silica which can deliver an [...] Read more.
The threats leading to the extinction of humanity accelerate the evolution and development of materials that are capable of providing conditions for preserving health and, implicitly, life. In our work, we developed drug delivery systems based on mesoporous silica which can deliver an antibiotic, bacitracin, in a more controlled manner. The synthesis of the FDU-12 was performed through a sol–gel method and alternatively functionalized with -NH2 groups or with poly(N-acryloylmorpholine) chains. The loading of bacitracin was performed using the vacuum-assisted method we successfully used to load these mesoporous materials preferentially within the pores as proved by the TGA-DSC results. The release was performed in two types of simulated body fluid (SBF) and this process was evaluated with chromatographic method using UV detection. The obtained data were fitted in three mathematical models of kinetic drug release (Weibull model, Korsmeyer–Peppas model, and nonlinear regression). The antimicrobial evaluation demonstrated that bacitracin-loaded FDU-12 formulations exhibited strong activity against both reference and clinical Staphylococcus strains. At sub-inhibitory concentrations, all formulations significantly reduced microbial adherence and biofilm formation, although certain strain-dependent stimulatory effects were observed. Furthermore, exposure to sub-MIC levels modulated the production of soluble virulence factors (hemolysins, lipase, and amylase), in a formulation- and strain-dependent manner, underscoring the ability of surface-functionalized FDU-12 carriers to influence bacterial pathogenicity while enhancing antimicrobial efficacy. Full article
Show Figures

Graphical abstract

31 pages, 5373 KB  
Review
Emerging Gel Technologies for Atherosclerosis Research and Intervention
by Sen Tong, Jiaxin Chen, Yan Li and Wei Zhao
Gels 2026, 12(1), 80; https://doi.org/10.3390/gels12010080 - 16 Jan 2026
Viewed by 144
Abstract
Atherosclerosis remains a leading cause of cardiovascular mortality despite advances in pharmacological and interventional therapies. Current treatment approaches face limitations including systemic side effects, inadequate local drug delivery, and restenosis following vascular interventions. Gel-based technologies offer unique advantages through tunable mechanical properties, controlled [...] Read more.
Atherosclerosis remains a leading cause of cardiovascular mortality despite advances in pharmacological and interventional therapies. Current treatment approaches face limitations including systemic side effects, inadequate local drug delivery, and restenosis following vascular interventions. Gel-based technologies offer unique advantages through tunable mechanical properties, controlled degradation kinetics, high drug-loading capacity, and potential for stimuli-responsive therapeutic release. This review examines gel platforms across multiple scales and applications in atherosclerosis research and intervention. First, gel-based in vitro models are discussed. These include hydrogel matrices simulating plaque microenvironments, three-dimensional cellular culture platforms, and microfluidic organ-on-chip devices. These devices incorporate physiological flow to investigate disease mechanisms under controlled conditions. Second, therapeutic strategies are addressed through macroscopic gels for localized treatment. These encompass natural polymer-based, synthetic polymer-based, and composite formulations. Applications include stent coatings, adventitial injections, and catheter-delivered depots. Natural polymers often possess intrinsic biological activities including anti-inflammatory and immunomodulatory properties that may contribute to therapeutic effects. Third, nano- and microgels for systemic delivery are examined. These include polymer-based nanogels with stimuli-responsive drug release responding to oxidative stress, pH changes, and enzymatic activity characteristic of atherosclerotic lesions. Inorganic–organic composite nanogels incorporating paramagnetic contrast agents enable theranostic applications by combining therapy with imaging-guided treatment monitoring. Current challenges include manufacturing consistency, mechanical stability under physiological flow, long-term safety assessment, and regulatory pathway definition. Future opportunities are discussed in multi-functional integration, artificial intelligence-guided design, personalized formulations, and biomimetic approaches. Gel technologies demonstrate substantial potential to advance atherosclerosis management through improved spatial and temporal control over therapeutic interventions. Full article
Show Figures

Figure 1

24 pages, 6799 KB  
Review
Review on Gas Production Patterns, Flammability, and Detection Methods of Hydrogen-Containing Flammable Gases During Thermal Runaway Process in Lithium-Ion Batteries
by Chenglong Wei, Yuwu Cai, Jingjing Xu, Xinyi Zhao, Qiang Liao, Yuming Chen, Yong Cao and Bin Li
Energies 2026, 19(2), 398; https://doi.org/10.3390/en19020398 - 14 Jan 2026
Viewed by 186
Abstract
As the core technology of the new energy revolution, lithium-ion batteries have broad development prospects and significant strategic importance. With continuous improvements in energy density, enhanced safety, and breakthroughs in fast-charging technology, lithium-ion batteries will play a more substantial role in fields such [...] Read more.
As the core technology of the new energy revolution, lithium-ion batteries have broad development prospects and significant strategic importance. With continuous improvements in energy density, enhanced safety, and breakthroughs in fast-charging technology, lithium-ion batteries will play a more substantial role in fields such as new energy vehicles and energy storage. Nevertheless, the development of the lithium-ion battery industry still faces safety issues related to thermal runaway risks. The intense exothermic reactions during thermal runaway can release flammable gases, potentially leading to uncontrolled combustion or explosions, thereby posing major safety threats. This paper reviews the analysis of gas composition and patterns during lithium-ion battery thermal runaway under different conditions, as well as research on gas explosion characteristics. It introduces advanced methods for gas detection and suppression during thermal runaway and summarizes studies on the chemical kinetic mechanisms and predictive models of gas generation during thermal runaway. These studies provide a scientific basis for improving the reliability of renewable energy storage systems and formulating and refining battery safety standards. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen Energy Production)
Show Figures

Figure 1

20 pages, 5704 KB  
Article
Magnetic Nanocarriers with ICPTES- and GPTMS-Functionalized Quaternary Chitosan for pH-Responsive Doxorubicin Release
by Sofia F. Soares, Ana L. M. Machado, Beatriz S. Cardoso, Diogo Marinheiro, Nelson Andrade, Fátima Martel and Ana L. Daniel-da-Silva
Biomolecules 2026, 16(1), 137; https://doi.org/10.3390/biom16010137 - 13 Jan 2026
Viewed by 215
Abstract
Smart nanocarriers are being increasingly explored to improve the performance selectivity of cancer chemotherapy. Here, two pH-responsive magnetic nanocarriers were developed using quaternary chitosan (HTCC) functionalized with 3-(triethoxysilyl)propyl isocyanate- ICPTES (MNP-HTCC1) or 3-(glycidyloxypropyl)trimethoxysilane-GPTMS (MNP-HTCC2) to form hybrid silica shells on Fe3O [...] Read more.
Smart nanocarriers are being increasingly explored to improve the performance selectivity of cancer chemotherapy. Here, two pH-responsive magnetic nanocarriers were developed using quaternary chitosan (HTCC) functionalized with 3-(triethoxysilyl)propyl isocyanate- ICPTES (MNP-HTCC1) or 3-(glycidyloxypropyl)trimethoxysilane-GPTMS (MNP-HTCC2) to form hybrid silica shells on Fe3O4 cores. The resulting core–shell nanoparticles (14.5 and 12.5 nm) displayed highly positive zeta potentials (+45.4 to +27.1 mV, pH 4.2–9.5), confirming successful HTCC incorporation and strong colloidal stability. Both nanocarriers achieved high doxorubicin (DOX) loading at pH 9.5, reaching 90% efficiency and a capacity of 154 µg DOX per mg. DOX release was pH-dependent, with faster release under acidic conditions relevant to tumor and endo-lysosomal environments. At pH 4.2, MNP-HTCC1 released 90% of DOX over 72 h, while MNP-HTCC2 released 79%. Release at pH 5.0 was intermediate (67–72%), and moderate at physiological pH (43–55%). All formulations showed an initial burst followed by sustained release. Kinetic modelling (Weibull) indicated a diffusion-controlled mechanism consistent with Fickian transport through the HTCC–silica matrix. Cytotoxicity assays using MCF-7 breast cancer cells revealed greater cytotoxicity for DOX-loaded nanocarriers compared with free DOX, with MNP-HTCC1 showing the strongest effect. Overall, these HTCC-based magnetic nanocarriers offer efficient loading, controlled pH-triggered DOX release, and enhanced therapeutic performance. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Figure 1

12 pages, 267 KB  
Review
Mathematical Modeling of Local Drug Delivery in the Oral Cavity: From Release Kinetics to Mini-PBPK and Local PK/PD with Applications to Periodontal Therapies
by Rafał Rakoczy, Monika Machoy-Rakoczy and Izabela Gutowska
Pharmaceutics 2026, 18(1), 101; https://doi.org/10.3390/pharmaceutics18010101 - 12 Jan 2026
Viewed by 291
Abstract
Background/Objectives: Mathematical modelling provides a quantitative way to describe the fate and action of drugs in the oral cavity, where transport processes are shaped by salivary flow, pellicle formation, biofilm structure and the wash-out effect of gingival crevicular fluid (GCF). Local pharmacokinetics in [...] Read more.
Background/Objectives: Mathematical modelling provides a quantitative way to describe the fate and action of drugs in the oral cavity, where transport processes are shaped by salivary flow, pellicle formation, biofilm structure and the wash-out effect of gingival crevicular fluid (GCF). Local pharmacokinetics in the mouth differ substantially from systemic models, and therefore a dedicated framework is required. The aim of this work was to present a structured, physiologically based concept that links in vitro release testing with local pharmacokinetics and pharmacodynamics. Methods: A narrative review with elements of systematic search was conducted in PubMed, Scopus and Web of Science (1980–2025) for publications describing drug release, local PBPK, and PK/PD modelling in the oral cavity. Mathematical formulations were grouped into release kinetics, mini-PBPK transport and local PK/PD relations. Classical models (Higuchi, Korsmeyer–Peppas, Peppas–Sahlin) were integrated with a mini-PBPK structure describing saliva–mucosa–biofilm–pocket interactions. Results: The combined model captures adsorption to pellicle, diffusion within biofilm and wash-out by GCF. It allows simulation of variable clinical conditions, such as inflammation-related changes in QGCF, and links local exposure to pharmacodynamic outcomes. Case studies with PerioChip®, Arestin®, and Atridox® demonstrate how mechanistic models explain observed therapeutic duration and low-systemic exposure. Conclusions: The proposed mini-PBPK framework bridges empirical release data and physiological transport in the oral cavity. It supports rational formulation design, optimisation of local dosage, and personalised prediction of drug retention in gingival pockets. This modelling approach can become a practical tool for the development of dental biomaterials and subgingival therapies. Full article
Show Figures

Graphical abstract

18 pages, 1909 KB  
Article
Designing Antioxidant-Enriched Extracts from Erica carnea L.: Optimization, Kinetics, and Thermodynamic Insights
by Violeta Jevtovic, Khulood Fahad Saud Alabbosh, Buthainah Ameen Al Shankiti, Tarfah Abdulrahman M. Alaskar, Reem Ali Alyami, Walaa I. El-Sofany, Vesna Stankov Jovanović, Jelena Nikolić, Vesna Veličković, Odeh A. O. Alshammari and Milan Mitić
Molecules 2026, 31(2), 245; https://doi.org/10.3390/molecules31020245 - 11 Jan 2026
Viewed by 174
Abstract
Erica carnea L. has recently gained attention as a promising natural source of antioxidants suitable for food and beverage applications. This study aimed to obtain an antioxidant-enriched extract by optimizing the key extraction variables. A full factorial design was used to evaluate the [...] Read more.
Erica carnea L. has recently gained attention as a promising natural source of antioxidants suitable for food and beverage applications. This study aimed to obtain an antioxidant-enriched extract by optimizing the key extraction variables. A full factorial design was used to evaluate the effects of ethanol concentration, extraction time, and temperature, followed by validation through multiple antioxidant assays, including DPPH, ABTS, hydroxyl radical scavenging, lipid peroxidation inhibition, and metal chelation. The most efficient extraction was achieved at 30% ethanol, 120 min, and 50 °C, yielding IC50 values of 18.42 μg/mL (LP), 15.04 μg/mL (DPPH), 5.14 μg/mL (MC), 11.28 μg/mL (OH), and 10.06 μg/mL (ABTS), in agreement with the model predictions. Extraction kinetics were described using an unsteady-state diffusion model, supported by low root mean square (RMS) values and high coefficients of determination. Thermodynamic analysis indicated an irreversible, endothermic process, highlighting the energetic requirements for phenolic release from plant tissue. The combined statistical and kinetic approach provides a clearer understanding of how process variables influence antioxidant recovery. In addition to strong antioxidant activity, the optimized extract showed measurable cytotoxic and antibacterial effects. Overall, these findings highlight E. carnea as a valuable material for developing antioxidant-rich formulations, with extraction efficiency governed by predictable kinetic and thermodynamic behavior. Full article
Show Figures

Figure 1

18 pages, 2420 KB  
Article
Lithium Recovery from a Clay-Type Ore by Pressure Leaching Oxidation: A Kinetic Study
by Guadalupe Lizeth Leyva-Soriano, Jesús Leobardo Valenzuela-García, María Mercedes Salazar-Campoy, Diana María Meza-Figueroa, Martín Andrés Valencia-Moreno, Guillermo Tiburcio-Munive, Martín Antonio Encinas-Romero and Juan Carlos Soto-Uribe
Processes 2026, 14(2), 238; https://doi.org/10.3390/pr14020238 - 9 Jan 2026
Viewed by 325
Abstract
The increasing demand for lithium in energy storage technologies has renewed interest in clay-type deposits as alternative resources to brines and hard rock ores. This study investigates the leaching behavior of a Mexican clay-type lithium ore through conventional, hot, and pressure leaching using [...] Read more.
The increasing demand for lithium in energy storage technologies has renewed interest in clay-type deposits as alternative resources to brines and hard rock ores. This study investigates the leaching behavior of a Mexican clay-type lithium ore through conventional, hot, and pressure leaching using sulfuric acid. Mineralogical characterization (XRD and SEM–EDS) revealed that montmorillonite (~56 wt.%) is the primary lithium-bearing phase. Conventional leaching with 1–8 M H2SO4 resulted in limited lithium dissolution (<30% after 24 h), whereas hot leaching at 80 °C increased extraction to ~39%. Pressure leaching with oxygen overpressure significantly enhanced lithium dissolution, achieving ~64% within 180 min under 8 M H2SO4 and 80 °C. Kinetic modeling using a pseudo-first-order model accurately reproduced the extraction profiles, yielding increasing rate constants and equilibrium conversions with temperature. The low activation energy (~12 kJ·mol−1) indicates that lithium dissolution proceeds through weakly activated reaction–solution interactions rather than diffusion through a product layer. These findings provide a mechanistic basis for understanding lithium release from clay-hosted ores and highlight the importance of optimizing acid concentration, temperature, and oxygen availability to improve hydrometallurgical processing of clay-type lithium deposits. Full article
(This article belongs to the Special Issue Recent Trends in Extractive Metallurgy)
Show Figures

Graphical abstract

28 pages, 4312 KB  
Review
From Biomass to Adsorbent: A Comprehensive Review on Bio-Derived Carbons for Dye Removal
by Buvaneswari Kuppusamy, Fathima Rigana Mohamed Ismail, Preethi Balakrishnan, Seong-Cheol Kim, Shakila Parveen Asrafali and Thirukumaran Periyasamy
Polymers 2026, 18(2), 180; https://doi.org/10.3390/polym18020180 - 9 Jan 2026
Viewed by 440
Abstract
The escalating release of synthetic dyes from textile and allied industries has become a pressing global environmental issue due to their toxicity, persistence, and resistance to biodegradation. Among the various treatment strategies, adsorption has emerged as one of the most efficient, economical, and [...] Read more.
The escalating release of synthetic dyes from textile and allied industries has become a pressing global environmental issue due to their toxicity, persistence, and resistance to biodegradation. Among the various treatment strategies, adsorption has emerged as one of the most efficient, economical, and sustainable techniques for dye removal from aqueous environments. This review highlights recent advances in bio-derived adsorbents—particularly raw biomass powders, biochars, and activated carbons—developed from renewable waste sources such as agricultural residues, fruit peels, shells, and plant fibers. It systematically discusses adsorption mechanisms, the influence of process parameters, kinetic and thermodynamic models, and regeneration performance. Furthermore, the review emphasizes the superior adsorption efficiency and cost-effectiveness of biomass-derived carbons compared to conventional adsorbents. The integration of surface modification, magnetization, and nanocomposite formation has further enhanced dye uptake and reusability. Overall, this study underscores the potential of biomass-derived materials as sustainable alternatives for wastewater treatment and environmental remediation. Full article
(This article belongs to the Topic Advances in Carbon-Based Materials)
Show Figures

Figure 1

14 pages, 1038 KB  
Article
Designing Poly(vinyl formal) Membranes for Controlled Diclofenac Delivery: Integrating Classical Kinetics with GRNN Modeling
by Igor Garcia-Atutxa and Francisca Villanueva-Flores
Appl. Sci. 2026, 16(2), 562; https://doi.org/10.3390/app16020562 - 6 Jan 2026
Viewed by 155
Abstract
Controlled-release systems must translate material design choices into predictable pharmacokinetic (PK) profiles, yet purely mechanistic or purely data-driven models often underperform when tuning complex polymer networks. Here, we develop tunable poly(vinyl formal) membranes (PVFMs) for diclofenac delivery and integrate classical kinetic analysis with [...] Read more.
Controlled-release systems must translate material design choices into predictable pharmacokinetic (PK) profiles, yet purely mechanistic or purely data-driven models often underperform when tuning complex polymer networks. Here, we develop tunable poly(vinyl formal) membranes (PVFMs) for diclofenac delivery and integrate classical kinetic analysis with a Generalized Regression Neural Network (GRNN) to connect formulation variables to release behavior and PK-relevant targets. PVFMs were synthesized across a gradient of crosslink densities by varying HCl content; diclofenac release was quantified under standardized conditions with geometry and dosing rigorously controlled (thickness, effective area, surface-area-to-volume ratio, and areal drug loading are reported to ensure reproducibility). Release profiles were fitted to Korsmeyer–Peppas, zero-order, first-order, Higuchi, and hyperbolic tangent models, while a GRNN was trained on material descriptors and time to predict cumulative release and flux, including out-of-sample conditions. Increasing crosslink density monotonically reduced swelling, areal release rate, and overall release efficiency (strong linear trends; r ≈ 0.99) and shifted transport from anomalous to Super Case II at the highest crosslinking. Classical models captured regime transitions but did not sustain high accuracy across the full design space; in contrast, the GRNN delivered superior predictive performance and generalized to conditions absent from training, enabling accurate interpolation/extrapolation of release trajectories. Beyond prior work, we provide a material-to-PK design map in which crosslinking, porosity/tortuosity, and hydrophobicity act as explicit “knobs” to shape burst, flux, and near-zero-order behavior, and we introduce a hybrid framework where mechanistic models guide interpretation while GRNN supplies robust, data-driven prediction for formulation selection. This integrated PVFM–GRNN approach supports rational design and quality control of controlled-release devices for diclofenac and is extendable to other therapeutics given appropriate descriptors and training data. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

12 pages, 1043 KB  
Article
On-Site Detection of Crude Oil Bioavailability and Genotoxicity at Crude Oil-Contaminated Sites Using a Whole-Cell Bioreporter Assay
by Xinzi Wang and Dayi Zhang
Water 2026, 18(2), 142; https://doi.org/10.3390/w18020142 - 6 Jan 2026
Viewed by 230
Abstract
Crude oil contamination occurs frequently in soil; thus, on-site measurement of oil content is critical for controlling petroleum contamination, but it is challenging. Conventional chemical analysis requires complicated sample pretreatment and high-cost facilities, requiring on-site and cost-effective approaches. This study innovated a whole-cell [...] Read more.
Crude oil contamination occurs frequently in soil; thus, on-site measurement of oil content is critical for controlling petroleum contamination, but it is challenging. Conventional chemical analysis requires complicated sample pretreatment and high-cost facilities, requiring on-site and cost-effective approaches. This study innovated a whole-cell bioreporter assay by combining Acinetobacter-hosted n-alkane and genotoxicity bioreporters to directly and simultaneously evaluate the contamination level and genotoxicities of crude oil in contaminated soils. Ultrasound pretreatment was employed to accelerate the measurement process, and the first-order release kinetic model was used to calculate crude oil content in an easy operation. The detection limit of the bioreporters was satisfactory at 0.1 mg/L, and the quantification range was 0.1–10 mg/L. The developed bioreporter assay effectively assessed the bioavailability and toxicity of crude oil in real contaminated soils and recognized distinct toxicities after soil weathering. Our findings highlight the feasibility of using the whole-cell bioreporter assay to evaluate the bioavailability and toxicity of crude oil, offering supporting data for the selection of remediation strategies. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment, 3rd Edition)
Show Figures

Figure 1

25 pages, 1902 KB  
Article
Biosorption Potential of Ganoderma lucidum Biomass for Cd(II) Remediation: Adsorption Kinetics and Isotherm Studies
by Tia Kralj, Andrej Gregori, Miha Lukšič and Gregor Marolt
Sustainability 2026, 18(1), 448; https://doi.org/10.3390/su18010448 - 2 Jan 2026
Viewed by 748
Abstract
Heavy metals release in the environment represents a growing threat to human health and nature, particularly due to industrial activities contributing to soil and water contamination. In this study, Ganoderma lucidum heteropolysaccharides (GLHP) were evaluated as a biosorbent for cadmium removal. The biomass [...] Read more.
Heavy metals release in the environment represents a growing threat to human health and nature, particularly due to industrial activities contributing to soil and water contamination. In this study, Ganoderma lucidum heteropolysaccharides (GLHP) were evaluated as a biosorbent for cadmium removal. The biomass was acquired following the production of Ganoderma lucidum fruiting bodies and consisted of remnants from the fungus and cultivation substrate. Cd(II) and elemental analysis were carried out by atomic adsorption spectrometry (AAS) and inductively coupled plasma mass spectroscopy (ICP-MS), respectively. The biosorption efficiency was critically evaluated, optimizing physical adsorption parameters for batch, column, and percolation configuration, as well as application in real environmental water. Utilizing a simple pre-rinsing step, completely omitting any chemical pretreatment, the Cd(II) removal efficiency was improved from 41.2% to 78.4% in a batch system and up to 98.4% in a fixed-bed column, making it suitable not only for wastewater treatment but also for drinking water purification. The adsorption kinetics were described by a pseudo-second-order (PSO) model and further analyzed using a revised PSO (rPSO) model, which explicitly accounts for adsorbate and adsorbent concentrations. A global fit to the PSO model demonstrated that the rate constant was independent of the adsorbent concentration, supporting its application as a robust descriptor of the adsorption process. GLHP showed good adsorption performance, following the Sips adsorption isotherm and Thomas model for batch and column setup, respectively, demonstrating the potential as a scalable, low-cost biosorbent for fast and efficient Cd(II) removal from contaminated waters. Full article
(This article belongs to the Special Issue Sustainable Research Progress on Treatment of Wastewater)
Show Figures

Figure 1

22 pages, 4387 KB  
Article
The Optimal Amount of PAMAM G3 Dendrimer in Polyurethane Matrices Makes Them a Promising Tool for Controlled Drug Release
by Magdalena Zaręba, Magdalena Zuzanna Twardowska, Paweł Błoniarz, Jaromir B. Lechowicz, Jakub Czechowicz, Dawid Łysik, Magdalena Rzepna and Łukasz Stanisław Uram
Polymers 2026, 18(1), 135; https://doi.org/10.3390/polym18010135 - 1 Jan 2026
Viewed by 525
Abstract
Systemic anticancer therapy causes a number of side effects; therefore, local drug release devices may play an important role in this area. In this study, we developed polyurethane-dendrimer foams containing different amounts of third-generation poly (amidoamine) dendrimers (PAMAM G3) to evaluate their ability [...] Read more.
Systemic anticancer therapy causes a number of side effects; therefore, local drug release devices may play an important role in this area. In this study, we developed polyurethane-dendrimer foams containing different amounts of third-generation poly (amidoamine) dendrimers (PAMAM G3) to evaluate their ability to encapsulate and release the model anticancer drug doxorubicin (DOX), as well as their biocompatibility and effectiveness against normal and cancer cells in vitro. PU–PAMAM foams containing 10–50 wt% PAMAM G3 were prepared using glycerin-based polyether polyol and castor oil as co-components. Structural and rheological analyses revealed that foams containing up to 20 wt% PAMAM G3 exhibited a well-developed porous structure, while higher dendrimer loadings (≥30 wt%) led to irregular cell shapes, pore coalescence, and thinning of cell walls, and indicated a gradual loss of structural integrity. Rheological creep–recovery measurements confirmed the structural findings: moderate PAMAM G3 incorporation (≤20 wt%) increased both the instantaneous and delayed elastic modulus (E1 ≈ 130–140 kPa; E2 ≈ 80 kPa) and enhanced elastic recovery, reflecting improved cross-link density and foam stability. Higher dendrimer contents (30–50 wt%) caused a decline in these parameters and higher viscoelastic compliance, indicating a softer, less stable structure. The DOX loading capacity and encapsulation efficiency increased with PAMAM G3 content, reaching maximum values of 35% and 51% for 30–40 wt% PAMAM G3, respectively. However, the most sustained DOX release profiles were observed for matrices containing 20 wt% PAMAM G3. Analysis of cumulative release and kinetic modeling revealed a transition from diffusion-controlled release at low PAMAM contents to burst-dominated release at higher dendrimer loadings. Importantly, matrices containing 10–20 wt% PAMAM G3 also indicated selective anticancer action against squamous cell carcinoma (SCC-15) compared to non-cancerous human keratinocytes (HaCaT). Moreover, the DOX they released effectively destroyed cancer cells. Overall, PU–PAMAM foams containing 10–20 wt% PAMAM G3 provide the most balanced combination of structural stability, controlled drug release, and cytocompatibility. These materials therefore represent a promising platform as passive carriers in drug delivery systems (DDSs), such as local implants, anticancer patches, or bioactive wound dressings. Full article
Show Figures

Figure 1

29 pages, 3472 KB  
Article
Emulsome-Based Nanocarrier System for Controlled 4-Phenylbutyric Acid Delivery and Mechanistic Mitigation of Arsenical-Induced Skin Injury via Foam Application
by Nethra Viswaroopan, Meheli Ghosh, Sharvari M. Kshirsagar, Jasim Khan, Jennifer Toral-Orduno, Ritesh K. Srivastava, Mohammad Athar and Ajay K. Banga
Pharmaceutics 2026, 18(1), 53; https://doi.org/10.3390/pharmaceutics18010053 - 30 Dec 2025
Viewed by 338
Abstract
Background: Lewisite, a potent chemical warfare agent, induces rapid and progressive cutaneous damage, necessitating treatment strategies that offer both immediate decontamination and prolonged therapeutic action. This study aimed to develop and evaluate a composite topical formulation comprising 4-phenylbutyric acid (4-PBA)-loaded emulsomes embedded [...] Read more.
Background: Lewisite, a potent chemical warfare agent, induces rapid and progressive cutaneous damage, necessitating treatment strategies that offer both immediate decontamination and prolonged therapeutic action. This study aimed to develop and evaluate a composite topical formulation comprising 4-phenylbutyric acid (4-PBA)-loaded emulsomes embedded within a foam vehicle to address both aspects of vesicant-induced skin injury intervention. Methods: Emulsomes composed of a stearic acid–cholesterol solid lipid core stabilized by a lecithin shell were prepared via thin film hydration and optimized by varying lipid ratios and drug loading parameters. Formulations were characterized for drug loading, particle size, and zeta potential. Physicochemical compatibility was assessed using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses. Stability was evaluated under accelerated refrigerated (25 °C/60% RH) and room temperature (40 °C/75% RH) conditions. The optimized formulation was incorporated into a foam base and evaluated for decontamination efficiency, drug release kinetics, in vitro permeation, and in vivo efficacy. Results: The selected formulation (E2) exhibited high drug loading (17.01 ± 0.00%), monodisperse particle size (PDI = 0.3 ± 0.07), and stable zeta potential (−40 ± 1.24 mV). FTIR and DSC confirmed successful encapsulation with amorphous drug dispersion. The emulsome-foam demonstrated dual functionality: enhanced decontamination (66.84 ± 1.27%) and sustained release (~30% over 24 h), fitting a Korsmeyer–Peppas model. In vitro permeation showed significantly lower 4-PBA delivery from E2 versus free drug, confirming sustained release, while in vivo studies demonstrated therapeutic efficacy. Conclusions: This emulsome-foam system offers a promising platform for topical treatment of vesicant-induced skin injury by enabling both immediate detoxification and prolonged anti-inflammatory drug delivery. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

Back to TopTop