Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = relativistic quark model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 827 KB  
Article
Asymptotic Freedom and Vacuum Polarization Determine the Astrophysical End State of Relativistic Gravitational Collapse: Quark–Gluon Plasma Star Instead of Black Hole
by Herman J. Mosquera Cuesta, Fabián H. Zuluaga Giraldo, Wilmer D. Alfonso Pardo, Edgardo Marbello Santrich, Guillermo U. Avendaño Franco and Rafael Fragozo Larrazabal
Universe 2025, 11(11), 375; https://doi.org/10.3390/universe11110375 - 12 Nov 2025
Viewed by 1063
Abstract
A general relativistic model of an astrophysical hypermassive extremely magnetized ultra-compact self-bound quark–gluon plasma (QGP: ALICE/LHC) object that is supported against its ultimate gravitational implosion by the simultaneous action of the vacuum polarization driven by nonlinear electrodynamics (NLED: ATLAS/LHC: light-by-light scattering)—the vacuum “awakening”—and [...] Read more.
A general relativistic model of an astrophysical hypermassive extremely magnetized ultra-compact self-bound quark–gluon plasma (QGP: ALICE/LHC) object that is supported against its ultimate gravitational implosion by the simultaneous action of the vacuum polarization driven by nonlinear electrodynamics (NLED: ATLAS/LHC: light-by-light scattering)—the vacuum “awakening”—and the asymptotic freedom, a key feature of quantum chromodynamics (QCD), is presented. These QCD stars can be the final figures of the equilibrium of collapsing stellar cores permeated by magnetic fields with strengths well beyond the Schwinger threshold due to being self-bound, and for which post-supernova fallback material pushes the nascent remnant beyond its stability, forcing it to collapse into a hybrid hypermassive neutron star (HHMNS). Hypercritical accretion can drive its innermost core to spontaneously break away color confinement, powering a first-order hadron-to-quark phase transition to a sea of ever-freer quarks and gluons. This core is hydro-stabilized by the steady, endlessly compression-admitting asymptotic freedom state, possibly via gluon-mediated enduring exchange of color charge among bound states, e.g., the odderon: a glueball state of three gluons, or either quark-pairing (color superconductivity) or tetraquark/pentaquark states (LHCb Coll.). This fast—at the QGP speed of sound—but incremental quark–gluon deconfinement unbinds the HHMNS’s baryons so catastrophically that transforms it, turning it inside-out, into a neat self-bound QGP star. A solution to the nonlinear Tolman–Oppenheimer–Volkoff (TOV) equation is obtained—that clarifies the nonlinear effects of both NLED and QCD on the compact object’s structure—which clearly indicates the occurrence of hypermassive QGP/QCD stars with a wide mass spectrum (0MStarQGP 7 M and beyond), for star radii (0RStarQGP24 km and beyond) with B-fields (1014BStarQGP1016 G and beyond). This unexpected feature is described by a novel mass vs. radius relation derived within this scenario. Hence, endowed with these physical and astrophysical characteristics, such QCD stars can definitively emulate what the true (theoretical) black holes are supposed to gravitationally do in most astrophysical settings. This color quark star could be found through a search for its eternal “yo-yo” state gravitational-wave emission, or via lensing phenomena like a gravitational rainbow (quantum mechanics and gravity interaction), as in this scenario, it is expected that the light deflection angle—directly influenced by the larger effective mass/radius (MStarQGP(B), RStarQGP(B)) and magnetic field of the deflecting object—increases as the incidence angle decreases, in view of the lower values of the impact parameter. The gigantic—but not infinite—surface gravitational redshift, due to NLED photon acceleration, makes the object appear dark. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

22 pages, 666 KB  
Article
Transport and Response Coefficients in Second-Order Dissipative Relativistic Hydrodynamics with Quantum Corrections: Probing the Quark–Gluon Plasma
by Iberê Kuntz and Roldao da Rocha
Entropy 2025, 27(6), 580; https://doi.org/10.3390/e27060580 - 29 May 2025
Cited by 1 | Viewed by 1053
Abstract
A functional measure encompasses quantum corrections and is explored in the fluid/gravity correspondence. Corrections to the response and transport coefficients in the second-order dissipative relativistic hydrodynamics are proposed, including those to the pressure, relaxation time, and shear relaxation time. Their dependence on the [...] Read more.
A functional measure encompasses quantum corrections and is explored in the fluid/gravity correspondence. Corrections to the response and transport coefficients in the second-order dissipative relativistic hydrodynamics are proposed, including those to the pressure, relaxation time, and shear relaxation time. Their dependence on the quark–gluon plasma (QGP) temperature sets a temperature dependence on the running parameter encoding the one-loop quantum gravity correction, driven by a functional measure. The experimental range of the bulk-viscosity-to-entropy-density ratio of the QGP, obtained by five different analyses (JETSCAPE Bayesian model, Duke, Jyväskylä–Helsinki–Munich, MIT–Utrecht–Genève, and Shanghai) corroborates the existence of the functional measure. Our results suggest that high-temperature plasmas could be used to experimentally test quantum gravity. Full article
(This article belongs to the Special Issue Nonequilibrium Quantum Field Processes and Phenomena)
Show Figures

Figure 1

23 pages, 10902 KB  
Article
Bayesian Analysis of Hybrid Neutron Star EOS Constraints Within an Instantaneous Nonlocal Chiral Quark Matter Model
by Alexander Ayriyan, David Blaschke, Juan Pablo Carlomagno, Gustavo A. Contrera and Ana Gabriela Grunfeld
Universe 2025, 11(5), 141; https://doi.org/10.3390/universe11050141 - 29 Apr 2025
Cited by 12 | Viewed by 1615
Abstract
We present a physics-informed Bayesian analysis of equation of state constraints using observational data for masses, radii and tidal deformability of pulsars and a generic class of hybrid neutron star equation of state with color superconducting quark matter on the basis of a [...] Read more.
We present a physics-informed Bayesian analysis of equation of state constraints using observational data for masses, radii and tidal deformability of pulsars and a generic class of hybrid neutron star equation of state with color superconducting quark matter on the basis of a recently developed nonlocal chiral quark model. The nuclear matter phase is described within a relativistic density functional model of the DD2 class and the phase transition is obtained by a Maxwell construction. We find the region in the two-dimensional parameter space spanned by the vector meson coupling and the scalar diquark coupling, where three conditions are fulfilled: (1) the Maxwell construction can be performed, (2) the maximum mass of the hybrid neutron star is not smaller than 2.0 M and (3) the onset density of the phase transition is not below the nuclear saturation density n0=0.15 fm−3. The result of this study shows that the favorable neutron star equation of state has low onset masses for the occurrence of a color superconducting quark matter core between 0.5–0.7 M and maximum masses in the range 2.15–2.22 M. In the typical mass range of 1.2–2.0 M, the radii of these stars are between 11.9 and 12.4 km, almost independent of the mass. In principle, hybrid stars would allow for larger maximum masses than provided by the hadronic reference equation of state. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

22 pages, 771 KB  
Article
Effects of Quark Core Sizes of Baryons in Neutron Star Matter
by Wolfgang Bentz and Ian C. Cloët
Symmetry 2025, 17(4), 505; https://doi.org/10.3390/sym17040505 - 26 Mar 2025
Cited by 1 | Viewed by 882
Abstract
We describe the quark substructure of hadrons and the equation of state of high-density neutron star matter by using the Nambu–Jona-Lasinio (NJL) model, which is an effective quark theory based on QCD. The interaction between quarks fully respects the chiral and flavor symmetries. [...] Read more.
We describe the quark substructure of hadrons and the equation of state of high-density neutron star matter by using the Nambu–Jona-Lasinio (NJL) model, which is an effective quark theory based on QCD. The interaction between quarks fully respects the chiral and flavor symmetries. Guided by the success of various low-energy theorems, we assume that the explicit breaking of these symmetries occurs only via the current quark masses, and all other symmetry breakings are of dynamical nature. In order to take into account the effects of the finite quark core sizes of the baryons on the equation of state, we make use of an excluded volume framework that respects thermodynamic consistency. The effects generated by the swelling quark cores generally act repulsively and lead to an increase in the pressure with increasing baryon density. On the other hand, in neutron star matter, these effects also lead to a decrease in the density window where hyperons appear because it becomes energetically more favorable to convert the faster moving nucleons into hyperons. Our quantitative analysis shows that the net effect of the excluded volume is too small to solve the long-standing “hyperon puzzle”, which is posed by the large observed masses of neutron stars. Thus, the puzzle persists in a relativistic effective quark theory which takes into account the short-range repulsion between baryons caused by their finite and swelling quark core sizes in a phenomenological way. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

26 pages, 596 KB  
Review
Axial-Vector and Tensor Spin Polarization and Chiral Restoration in Quark Matter
by Tomoyuki Maruyama and Toshitaka Tatsumi
Symmetry 2024, 16(12), 1642; https://doi.org/10.3390/sym16121642 - 11 Dec 2024
Viewed by 1238
Abstract
We study spontaneous the spin polarization of quark matter with flavor SU(2) symmetry at zero temperature in the NJL model. In a relativistic framework, there are two types of spin–spin interactions: axial vector (AV) and tensor (T), which accordingly [...] Read more.
We study spontaneous the spin polarization of quark matter with flavor SU(2) symmetry at zero temperature in the NJL model. In a relativistic framework, there are two types of spin–spin interactions: axial vector (AV) and tensor (T), which accordingly give rise to different types of spin-polarized materials. When the spin–spin interaction is sufficiently strong, the spin-polarized phase emerges within a specific density region. As the spin–spin interaction becomes stronger, this phase extends over a higher-density region beyond the critical density of chiral restoration in normal quark matter. We show that the spin-polarized phase leads to another kind of spontaneous chiral symmetry breaking phase. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

22 pages, 2653 KB  
Review
Review of Deep Learning in High-Energy Heavy-Ion Collisions
by Shiqi Zheng and Jiamin Liu
Symmetry 2024, 16(11), 1426; https://doi.org/10.3390/sym16111426 - 26 Oct 2024
Viewed by 2997
Abstract
The hot deconfined matter called quark–gluon plasma (QGP) can be generated in relativistic heavy-ion collisions (HICs). Its properties under high temperatures have been widely studied. Since the short-lived QGP is not directly observable, data-driven methods, including deep learning, are often used to infer [...] Read more.
The hot deconfined matter called quark–gluon plasma (QGP) can be generated in relativistic heavy-ion collisions (HICs). Its properties under high temperatures have been widely studied. Since the short-lived QGP is not directly observable, data-driven methods, including deep learning, are often used to infer the initial-state properties from the final distributions of hadrons. This paper reviews various applications of machine learning in relativistic heavy-ion collisions, explains the fundamental concepts of deep learning, and discusses how the properties of HIC data can be interpreted using efficient machine learning models. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Quantum Mechanics)
Show Figures

Figure 1

16 pages, 2282 KB  
Article
Hybrid Isentropic Twin Stars
by Juan Pablo Carlomagno, Gustavo A. Contrera, Ana Gabriela Grunfeld and David Blaschke
Universe 2024, 10(9), 336; https://doi.org/10.3390/universe10090336 - 23 Aug 2024
Cited by 7 | Viewed by 1287
Abstract
We present a study of hybrid neutron stars with color superconducting quark matter cores at a finite temperature that results in sequences of stars with constant entropy per baryon, s/nB=const. For the quark matter equation of state, [...] Read more.
We present a study of hybrid neutron stars with color superconducting quark matter cores at a finite temperature that results in sequences of stars with constant entropy per baryon, s/nB=const. For the quark matter equation of state, we employ a recently developed nonlocal chiral quark model, while nuclear matter is described with a relativistic density functional model of the DD2 class. The phase transition is obtained through a Maxwell construction under isothermal conditions. We find that traversing the mixed phase on a trajectory at low s/nB2 in the phase diagram shows a heating effect, while at larger s/nB the temperature drops. This behavior may be attributed to the presence of a color superconducting quark matter phase at low temperatures and the melting of the diquark condensate which restores the normal quark matter phase at higher temperatures. While the isentropic hybrid star branch at low s/nB2 is connected to the neutron star branch, it becomes disconnected at higher entropy per baryon so that the “thermal twin” phenomenon is observed. We find that the transition from connected to disconnected hybrid star sequences may be estimated with the Seidov criterion for the difference in energy densities. The radii and masses at the onset of deconfinement exhibit a linear relationship and thus define a critical compactness of the isentropic star configuration for which the transition occurs and which, for large enough s/nB2 values, is accompanied by instability. The results of this study may be of relevance for uncovering the conditions for the supernova explodability of massive blue supergiant stars using the quark deconfinement mechanism. The accretion-induced deconfinement transition with thermal twin formation may contribute to explaining the origin of eccentric orbits in some binary systems and the origin of isolated millisecond pulsars. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

18 pages, 1023 KB  
Review
Nuclear Symmetry Energy in Strongly Interacting Matter: Past, Present and Future
by Jirina R. Stone
Symmetry 2024, 16(8), 1038; https://doi.org/10.3390/sym16081038 - 13 Aug 2024
Cited by 3 | Viewed by 2917
Abstract
The concept of symmetry under various transformations of quantities describing basic natural phenomena is one of the fundamental principles in the mathematical formulation of physical laws. Starting with Noether’s theorems, we highlight some well–known examples of global symmetries and symmetry breaking on the [...] Read more.
The concept of symmetry under various transformations of quantities describing basic natural phenomena is one of the fundamental principles in the mathematical formulation of physical laws. Starting with Noether’s theorems, we highlight some well–known examples of global symmetries and symmetry breaking on the particle level, such as the separation of strong and electroweak interactions and the Higgs mechanism, which gives mass to leptons and quarks. The relation between symmetry energy and charge symmetry breaking at both the nuclear level (under the interchange of protons and neutrons) and the particle level (under the interchange of u and d quarks) forms the main subject of this work. We trace the concept of symmetry energy from its introduction in the simple semi-empirical mass formula and liquid drop models to the most sophisticated non-relativistic, relativistic, and ab initio models. Methods used to extract symmetry energy attributes, utilizing the most significant combined terrestrial and astrophysical data and theoretical predictions, are reviewed. This includes properties of finite nuclei, heavy-ion collisions, neutron stars, gravitational waves, and parity–violating electron scattering experiments such as CREX and PREX, for which selected examples are provided. Finally, future approaches to investigation of the symmetry energy and its properties are discussed. Full article
Show Figures

Figure 1

9 pages, 2185 KB  
Communication
Heavy Flavor Physics at the sPHENIX Experiment
by Zhaozhong Shi
Universe 2024, 10(3), 126; https://doi.org/10.3390/universe10030126 - 6 Mar 2024
Cited by 2 | Viewed by 2331
Abstract
The sPHENIX experiment is a state-of-the-art jet and heavy flavor physics detector, which successfully recorded its first Au + Au collision data at 200 GeV at the Relativistic Heavy Ion Collider (RHIC). sPHENIX will provide heavy flavor physics measurements at RHIC, covering an [...] Read more.
The sPHENIX experiment is a state-of-the-art jet and heavy flavor physics detector, which successfully recorded its first Au + Au collision data at 200 GeV at the Relativistic Heavy Ion Collider (RHIC). sPHENIX will provide heavy flavor physics measurements at RHIC, covering an unexplored kinematic region and unprecedented precision, to probe the parton energy loss mechanism, parton transport coefficients in quark–gluon plasma, and the hadronization process under various medium conditions. At the center of sPHENIX, the monolithic active pixel sensor (MAPS)-based VerTeX detector (MVTX) is a high-precision silicon pixel detector. The MVTX provides excellent position resolution and the capability of operating in continuous streaming readout mode, allowing precise vertex determination and recording a large data sample, both of which are particularly crucial for heavy flavor physics measurements. In this work, we will show the general performance of heavy-flavor hadron reconstruction. In addition, we will discuss the commissioning experience with sPHENIX. Finally, we will provide the projection of b-hadron and jet observables and discuss the estimated constraints on theoretical models. Full article
(This article belongs to the Special Issue Multiparticle Dynamics)
Show Figures

Figure 1

27 pages, 389 KB  
Article
Theoretically Motivated Dark Electromagnetism as the Origin of Relativistic Modified Newtonian Dynamics
by Felix Finster, José M. Isidro, Claudio F. Paganini and Tejinder P. Singh
Universe 2024, 10(3), 123; https://doi.org/10.3390/universe10030123 - 4 Mar 2024
Cited by 5 | Viewed by 2398
Abstract
The present paper is a modest attempt to initiate the research program outlined in this abstract. We propose that general relativity and relativistic MOND (RelMOND) are analogues of broken electroweak symmetry. That is, [...] Read more.
The present paper is a modest attempt to initiate the research program outlined in this abstract. We propose that general relativity and relativistic MOND (RelMOND) are analogues of broken electroweak symmetry. That is, SU(2)R×U(1)YDEMU(1)DEM (DEM stands for dark electromagnetism), and GR is assumed to arise from the broken SU(2)R symmetry and is analogous to the weak force. RelMOND is identified with dark electromagnetism U(1)DEM, which is the remaining unbroken symmetry after the spontaneous symmetry breaking of the dark electro-grav sector SU(2)R×U(1)YDEM. This sector, as well as the electroweak sector, arises from the breaking of an E8×E8 symmetry in a recently proposed model of unification of the standard model with pre-gravitation, with the latter based on an SU(2)R gauge theory. The source charge for the dark electromagnetic force is the square root of mass, motivated by the experimental fact that the ratio of the square roots of the masses of the electron, up-quark, and down-quark is 1:2:3, which is the opposite of the ratio of their electric charges at 3:2:1. The introduction of the dark electromagnetic force helps us understand the peculiar mass ratios of the second and third generations of charged fermions. We also note that in the deep MOND regime, acceleration is proportional to the square root of mass, which motivates us to propose the relativistic U(1)DEM gauge symmetry as the origin of MOND. We explain why the dark electromagnetic force falls inversely with distance, as in MOND, rather than following the inverse square of distance. We conclude that dark electromagnetism effectively mimics cold dark matter, and the two are essentially indistinguishable in cosmological situations where CDM successfully explains observations, such as CMB anisotropies and gravitational lensing. Full article
(This article belongs to the Special Issue The Large-Scale Structure of the Universe: Theory and Observation)
31 pages, 1269 KB  
Review
Recent Findings from Heavy-Flavor Angular Correlation Measurements in Hadronic Collisions
by Deepa Thomas and Fabio Colamaria
Universe 2024, 10(3), 109; https://doi.org/10.3390/universe10030109 - 27 Feb 2024
Cited by 1 | Viewed by 1805
Abstract
The study of angular correlations of heavy-flavor particles in hadronic collisions can provide crucial insight into the heavy quark production, showering, and hadronization processes. The comparison with model predictions allows us to discriminate among different approaches for heavy quark production and hadronization, as [...] Read more.
The study of angular correlations of heavy-flavor particles in hadronic collisions can provide crucial insight into the heavy quark production, showering, and hadronization processes. The comparison with model predictions allows us to discriminate among different approaches for heavy quark production and hadronization, as well as different treatments of the underlying event employed by the models to reproduce correlation observables. In ultra-relativistic heavy-ion collisions, where a deconfined state of matter, the quark–gluon plasma (QGP), is created, heavy-flavor correlations can shed light on the modification of the heavy quark fragmentation due to the interaction between charm and beauty quarks with the QGP constituents, as well as characterize their energy loss processes while traversing the medium. Insight into the possible emergence of collective-like mechanisms in smaller systems, resembling those observed in heavy-ion collisions, can also be obtained by performing correlation studies in high-multiplicity proton–proton and proton–nucleus collisions. In this review, the most recent and relevant measurements of heavy-flavor correlations performed in all collision systems at the LHC and RHIC will be presented, and the new understandings that they provide will be discussed. Full article
(This article belongs to the Special Issue Jet and Heavy Flavor Production)
Show Figures

Figure 1

19 pages, 1097 KB  
Article
Quantum Chromodynamics of the Nucleon in Terms of Complex Probabilistic Processes
by Ashot S. Gevorkyan and Aleksander V. Bogdanov
Symmetry 2024, 16(3), 256; https://doi.org/10.3390/sym16030256 - 20 Feb 2024
Cited by 2 | Viewed by 2569
Abstract
Despite the obvious progress made by the Feynman, Ravndal, and Kislinger relativistic model in describing the internal motion of a system with confinement of quarks in a nucleon, it turned out to be insufficiently realistic for a number of reasons. In particular, the [...] Read more.
Despite the obvious progress made by the Feynman, Ravndal, and Kislinger relativistic model in describing the internal motion of a system with confinement of quarks in a nucleon, it turned out to be insufficiently realistic for a number of reasons. In particular, the model does not take into account some cornerstone properties of QCD, namely, gluon exchange between quarks, the influence of the resulting quark sea on valence quarks, and the self-interaction of colored gluons. It is these phenomena that spontaneously break the chiral symmetry of the quark system and form the bulk of the nucleon. To eliminate the above shortcomings of the model, the problem of self-organization of a three-quark dynamical system immersed in a colored quark–antiquark sea is considered within the framework of complex probabilistic processes that satisfy the stochastic differential equation of the Langevin–Kline–Gordon–Fock type. Taking into account the hidden symmetry of the internal motion of a dynamical system, a mathematically closed nonperturbative approach was developed, which makes it possible to construct the mathematical expectation of the wave function and other parameters of the nucleon in the form of multiple integral representations. It is shown that additional subspaces arising in a representation characterized by a noncommutative geometry with topological features participate in the formation of an effective interaction between valence quarks against the background of harmonic interaction between them. Full article
(This article belongs to the Special Issue Symmetry in Hadron Physics)
Show Figures

Figure 1

12 pages, 2228 KB  
Article
Machine Learning Approach to Analyze the Heavy Quark Diffusion Coefficient in Relativistic Heavy Ion Collisions
by Rui Guo, Yonghui Li and Baoyi Chen
Entropy 2023, 25(11), 1563; https://doi.org/10.3390/e25111563 - 20 Nov 2023
Cited by 6 | Viewed by 2368
Abstract
The diffusion coefficient of heavy quarks in a deconfined medium is examined in this research using a deep convolutional neural network (CNN) that is trained with data from relativistic heavy ion collisions involving heavy flavor hadrons. The CNN is trained using observables such [...] Read more.
The diffusion coefficient of heavy quarks in a deconfined medium is examined in this research using a deep convolutional neural network (CNN) that is trained with data from relativistic heavy ion collisions involving heavy flavor hadrons. The CNN is trained using observables such as the nuclear modification factor RAA and the elliptic flow v2 of non-prompt J/ψ from the B-hadron decay in different centralities, where B meson evolutions are calculated using the Langevin equation and the instantaneous coalescence model. The CNN outputs the parameters, thereby characterizing the temperature and momentum dependence of the heavy quark diffusion coefficient. By inputting the experimental data of the non-prompt J/ψ(RAA,v2) from various collision centralities into multiple channels of a well-trained network, we derive the values of the diffusion coefficient parameters. Additionally, we evaluate the uncertainty in determining the diffusion coefficient by taking into account the uncertainties present in the experimental data (RAA,v2), which serve as inputs to the deep neural network. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

13 pages, 383 KB  
Article
Paired Double Heavy Baryons Production in Decays of the Higgs Boson
by Alexei P. Martynenko and Fedor A. Martynenko
Symmetry 2023, 15(10), 1944; https://doi.org/10.3390/sym15101944 - 20 Oct 2023
Cited by 3 | Viewed by 2519
Abstract
Rare decays of the Higgs boson into a pair of diquarks cc(bb) and c¯c¯(b¯b¯) are studied within the perturbative Standard Model and relativistic quark model. The relativistic corrections determined [...] Read more.
Rare decays of the Higgs boson into a pair of diquarks cc(bb) and c¯c¯(b¯b¯) are studied within the perturbative Standard Model and relativistic quark model. The relativistic corrections determined by the relative motion of quarks are calculated using the production amplitude and the diquark wave functions. Numerical values of the decay widths of the Higgs boson into a baryon pair ccq(bbq) and c¯c¯q¯(b¯b¯q¯) are obtained. Full article
(This article belongs to the Special Issue Symmetry in Hadron and Quark Models)
Show Figures

Figure 1

12 pages, 563 KB  
Article
Role of Quark Matter and Color Superconductivity in the Structure and Tidal Deformability of Strange Dwarfs
by Loïc Perot and Nicolas Chamel
Universe 2023, 9(9), 382; https://doi.org/10.3390/universe9090382 - 25 Aug 2023
Cited by 3 | Viewed by 1671
Abstract
In 1995, Glendenning, Kettner and Weber postulated the existence of a new class of compact stars resembling white dwarfs but containing a small strange quark-matter core surrounded by hadronic layers attaining much higher densities than those found in white dwarfs. In our previous [...] Read more.
In 1995, Glendenning, Kettner and Weber postulated the existence of a new class of compact stars resembling white dwarfs but containing a small strange quark-matter core surrounded by hadronic layers attaining much higher densities than those found in white dwarfs. In our previous study, we have shown that it could be possible to unmask these so-called strange dwarfs through gravitational-wave observations with future space-based detectors such as the Laser Interferometer Space Antenna. We calculated more realistic equations of state for the hadronic envelope, but the quark core was treated using the simplest MIT bag model. In this paper, we investigate more closely the role of the possibly solid core in the structure and the tidal deformability of strange dwarfs in the full general relativistic framework by considering different models of strange quark matter in the crystalline color -superconducting phase. We find that the effect of the extreme rigidity of the elastic core on the tidal deformability is almost completely canceled by the surrounding hadronic layers. However, in all cases, the tidal deformability of strange dwarfs remains sufficiently lower than that of white dwarfs, to be potentially observable with gravitational waves despite the uncertainties in the strange quark-matter equation of state. Full article
(This article belongs to the Special Issue Exotic Scenarios for Compact Astrophysical Objects)
Show Figures

Figure 1

Back to TopTop