Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = reinforced bioplastic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 373
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

16 pages, 2440 KiB  
Article
Optimization of Cassava Starch/Onion Peel Powder-Based Bioplastics: Influence of Composition on Mechanical Properties and Biodegradability Using Central Composite Design
by Assala Torche, Chouana Toufik, Fairouz Djeghim, Ibtissem Sanah, Rabah Arhab, Maria D’Elia and Luca Rastrelli
Foods 2025, 14(14), 2414; https://doi.org/10.3390/foods14142414 - 8 Jul 2025
Viewed by 472
Abstract
Synthetic plastic pollution represents a major global concern, driving the search for sustainable and biodegradable packaging alternatives. However, many biodegradable plastics suffer from inadequate mechanical performance. This study aimed to develop a biodegradable film based on cassava starch, incorporating onion peel powder (OPP), [...] Read more.
Synthetic plastic pollution represents a major global concern, driving the search for sustainable and biodegradable packaging alternatives. However, many biodegradable plastics suffer from inadequate mechanical performance. This study aimed to develop a biodegradable film based on cassava starch, incorporating onion peel powder (OPP), a byproduct rich in quercetin derivatives, as a reinforcing agent and plasticized with crude glycerol. A Central Composite Design (CCD), implemented using Minitab 19, was employed to investigate the effects of starch (60–80%) and OPP (0–40%) content on the mechanical properties and biodegradability of the resulting bioplastics. Three optimized formulations were identified according to specific performance criteria. The first formulation, containing 72.07% starch and 21.06% OPP, was optimized for maximum tensile strength while maintaining target values for elongation and biodegradability. The second, composed of 77.28% starch and 37.69% OPP, was optimized to enhance tensile strength and biodegradability while minimizing elongation. The third formulation, with 84.56% starch and 27.74% OPP, aimed to achieve a balanced optimization of tensile strength, elongation, and biodegradability. After a 30-day soil burial test, these formulations exhibited weight loss percentages of 31.86%, 29.12%, and 29.02%, respectively, confirming their biodegradability. This study optimized the mechanical and biodegradability properties of cassava starch-based bioplastics using statistical modeling. The optimized formulations show potential for application in sustainable food packaging. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

18 pages, 9953 KiB  
Article
Impact of Steam-Exploded Feather Incorporation on the Biodegradation Performance of Renewable Biocomposites
by Julen Vadillo, Sarah Montes, Hans-Jürgen Grande, Eveline Beeckman, Steven Verstichel and Jonna Almqvist
Polymers 2025, 17(7), 910; https://doi.org/10.3390/polym17070910 - 28 Mar 2025
Viewed by 645
Abstract
The increasing environmental concerns regarding plastic waste, especially in agriculture, have driven the search for sustainable alternatives. Agricultural plastics, such as mulching films and greenhouse covers, are heavily reliant on petrochemical-derived materials, which persist in the environment and contribute to long-term pollution. This [...] Read more.
The increasing environmental concerns regarding plastic waste, especially in agriculture, have driven the search for sustainable alternatives. Agricultural plastics, such as mulching films and greenhouse covers, are heavily reliant on petrochemical-derived materials, which persist in the environment and contribute to long-term pollution. This study explores the use of biodegradable biocomposites made from steam explosion-treated chicken feathers and various polymer matrices to address these issues. Chicken feathers, a waste by-product of the poultry industry, present an excellent biodegradability as a result of the steam explosion treatment and contain nitrogen, potentially enhancing soil fertility. The biocomposites were characterized by thermal stability, mechanical properties, and biodegradability, and ecotoxicity assessments were carried out studying the incorporation of feathers into the soil. Results showed that the incorporation of treated chicken feathers increased the water absorption capacity of the composites, promoting faster disintegration and biodegradation. In particular, biocomposites made with polyhydroxyalkanoates and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) exhibited a significant increase in degradation rates, from 3–10% in the first month for pure matrices to 40–50% when reinforced with treated feathers. Meanwhile, those made from polylactic acid showed slower degradation. Furthermore, the addition of feathers positively influenced crop growth at low concentrations, acting as a slow-release fertilizer. However, high concentrations of feathers negatively affect plant growth due to excess nitrogen. These findings highlight the potential of poultry feathers as a valuable, sustainable filler for agricultural bioplastics, contributing to waste valorization and environmentally friendly farming practices. Full article
Show Figures

Figure 1

23 pages, 9198 KiB  
Article
ZnO-Embedded Carboxymethyl Cellulose Bioplastic Film Synthesized from Sugarcane Bagasse for Packaging Applications
by Anand Vyas, Sun-pui Ng, Tao Fu and Ifrah Anum
Polymers 2025, 17(5), 579; https://doi.org/10.3390/polym17050579 - 22 Feb 2025
Cited by 2 | Viewed by 1953
Abstract
This research explores the synthesis of carboxymethyl cellulose (CMC) for the development of a cost-effective bioplastic film that can serve as a sustainable alternative to synthetic plastic. Replacing plastic packaging with CMC-based films offers a solution for mitigating environmental pollution, although the inherent [...] Read more.
This research explores the synthesis of carboxymethyl cellulose (CMC) for the development of a cost-effective bioplastic film that can serve as a sustainable alternative to synthetic plastic. Replacing plastic packaging with CMC-based films offers a solution for mitigating environmental pollution, although the inherent hydrophilicity and low mechanical strength of CMC present significant challenges. To address these limitations, zinc oxide nanoparticles (ZnO NPs) were employed as a biocompatible and non-toxic reinforcement filler to improve CMC’s properties. A solution casting method which incorporated varying concentrations of ZnO NPs (0%, 5%, 10%, 15%, 20%, and 25%) into the CMC matrix allowed for the preparation of composite bioplastic films, the physicochemical properties of which were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results revealed that the ZnO NPs were well-integrated into the CMC matrix, thereby improving the film’s crystallinity, with a significant shift from amorphousness to the crystalline phase. The uniform dispersion of ZnO NPs and the development of hydrogen bonding between ZnO and the CMC matrix resulted in enhanced mechanical properties, with the film CZ20 exhibiting the greatest tensile strength—15.12 ± 1.28 MPa. This film (CZ20) was primarily discussed and compared with the control film in additional comparison graphs. Thermal stability, assessed via thermogravimetric analysis, improved with an increasing percentage of ZnO Nps, while a substantial decrease in water vapor permeability and oil permeability coefficients was observed. In addition, such water-related properties as water contact angle, moisture content, and moisture absorption were also markedly improved. Furthermore, biodegradability studies demonstrated that the films decomposed by 71.43% to 100% within 7 days under ambient conditions when buried in soil. Thus, CMC-based eco-friendly composite films have the clear potential to become viable replacements for conventional plastics in the packaging industry. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

16 pages, 3472 KiB  
Article
Development of Sodium Alginate Bioplastic Reinforced with Dried Orange Juice By-Product for Use in Packaging
by Pedro H. S. Bezerra, Yves J. Souza-Santos, Eliria M. J. A. Pallone, Rosemary A. Carvalho and Fernanda M. Vanin
Polymers 2024, 16(23), 3382; https://doi.org/10.3390/polym16233382 - 30 Nov 2024
Cited by 2 | Viewed by 2856
Abstract
Pollution caused by nonrenewable plastics has driven the use of natural polymers. Similarly, the disposal of food waste still harms the environment. Considering both aspects, this study aimed to evaluate the effect of incorporating orange by-product powder (OBP) as a reinforcing material into [...] Read more.
Pollution caused by nonrenewable plastics has driven the use of natural polymers. Similarly, the disposal of food waste still harms the environment. Considering both aspects, this study aimed to evaluate the effect of incorporating orange by-product powder (OBP) as a reinforcing material into sodium alginate films with glycerol. Sodium alginate-based films were produced using glycerol and various concentrations of OBP. The films were characterized in terms of thickness, color, water content, mechanical properties, light transmission, transparency, X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), contact angle, solubility, swelling, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The addition of OBP significantly (p < 0.05) reduced the water content of the film from 37.75% ± 5.80a (0-OBP) to 24.49% ± 1.47b (45-OBP). The higher the concentration of OBP, the higher the tensile strength of the films, from 7.99 MPa ± 0.91a (0-OBP) to 18 MPa ± 1.38d (45-OBP), and the higher the hydrophobicity, from 57.60° ± 0.41a (0-OBP) to 70.34° ± 0.98c (45-OBP). From TGA and XRD analyses, it was observed that the incorporation of OBP resulted in less crystalline and more thermally resistant materials. Therefore, this study shows that OBP is a promising reinforcing component for sodium alginate films. Full article
Show Figures

Graphical abstract

14 pages, 6823 KiB  
Article
Development of Biodegradable Bioplastics with Sericin and Gelatin from Silk Cocoons and Fish Waste
by Natesan Vijayakumar, Aathiyur Velumani Sanjay, Khalid A. Al-Ghanim, Marcello Nicoletti, Gurunathan Baskar, Ranvijay Kumar and Marimuthu Govindarajan
Toxics 2024, 12(7), 453; https://doi.org/10.3390/toxics12070453 - 24 Jun 2024
Cited by 8 | Viewed by 5409
Abstract
The bioplastics sector promotes environmentally friendly means of cutting down on the usage of fossil fuels, plastic waste, and environmental pollution. Plastic contamination has detrimental effects on both ecological systems and the global food supply. The approach we present here to resolve this [...] Read more.
The bioplastics sector promotes environmentally friendly means of cutting down on the usage of fossil fuels, plastic waste, and environmental pollution. Plastic contamination has detrimental effects on both ecological systems and the global food supply. The approach we present here to resolve this issue involves the integration of sericin and gelatin, obtained from cocoon and fish waste, respectively, with nano-reinforced cellulose crystals, to develop a biodegradable and compostable plastic material. The use of cocoon and fish wastes for the extraction of sericin and gelatin presents an environmentally beneficial approach since it contributes to waste reduction. The sericin level found in silk cocoon waste was determined to be 28.08%, and the gelatin amount in fish waste was measured to be 58.25%. The inclusion of sericin and gelatin in bioplastics was accompanied by the incorporation of glycerol, vinegar, starch, sodium hydroxide, and other coloring agents. Fourier transform infrared (FTIR) examination of bioplastics revealed the presence of functional groups that corresponded to the sericin and gelatin components. The tensile strength of the bioplastic material was measured to be 27.64 MPa/psi, while its thickness varied between 0.072 and 0.316 mm. The results of burial experiments indicated that the bioplastic material had a degradation rate of 85% after 14 days. The invention exhibits potential as a viable alternative for packaging, containment, and disposable plastic materials. The use of this sustainable approach is recommended for the extraction of sericin and gelatin from silk cocoons and fish waste, with the intention of using them as raw materials for bioplastic production. Full article
Show Figures

Figure 1

19 pages, 5645 KiB  
Article
Preparation of Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)/Zinc Oxide Nanocomposite Bioplastics for Potential Use as Flexible and Antibacterial Food Packaging
by Yaowalak Srisuwan, Prasong Srihanam, Surachai Rattanasuk and Yodthong Baimark
Polymers 2024, 16(12), 1660; https://doi.org/10.3390/polym16121660 - 11 Jun 2024
Cited by 4 | Viewed by 1640
Abstract
High-molecular-weight poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) is a flexible and biodegradable bioplastic that has promising potential in flexible food packaging but it has no antibacterial ability. Thus, in this work, the effect of zinc oxide nanoparticles (nano-ZnOs) which have antimicrobial activity [...] Read more.
High-molecular-weight poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) is a flexible and biodegradable bioplastic that has promising potential in flexible food packaging but it has no antibacterial ability. Thus, in this work, the effect of zinc oxide nanoparticles (nano-ZnOs) which have antimicrobial activity on various properties of PLLA-PEG-PLLA was determined. The addition of nano-ZnOs enhanced the crystallization, tensile, UV-barrier, and antibacterial properties of PLLA-PEG-PLLA. However, the crystallization and tensile properties of nanocomposite films decreased again as the nano-ZnO increased beyond 2 wt%. The nano-ZnO was well distributed in the PLLA-PEG-PLLA matrix when the nano-ZnO content did not exceed 2 wt% and exhibited some nano-ZnO agglomerates when the nano-ZnO content was higher than 2 wt%. The thermal stability and moisture uptake of the PLLA-PEG-PLLA matrix decreased and the film’s opacity increased as the nano-ZnO content increased. The PLLA-PEG-PLLA/ZnO nanocomposite films showed good antibacterial activity against bacteria such as Escherichia coli and Staphylococcus aureus. It can be concluded that nano-ZnOs can be used as a multi-functional filler of the flexible PLLA-PEG-PLLA. As a result, the addition of nano-ZnOs as a nucleating, reinforcing, UV-screening, and antibacterial agent in the flexible PLLA-PEG-PLLA matrix may provide protection for both the food and the packaging during transportation and storage. Full article
(This article belongs to the Special Issue Advances in Bio-Based and Biodegradable Polymeric Composites II)
Show Figures

Figure 1

17 pages, 5749 KiB  
Article
Improvement in Crystallization, Thermal, and Mechanical Properties of Flexible Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) Bioplastic with Zinc Phenylphosphate
by Kansiri Pakkethati, Prasong Srihanam, Apirada Manphae, Wuttipong Rungseesantivanon, Natcha Prakymoramas, Pham Ngoc Lan and Yodthong Baimark
Polymers 2024, 16(7), 975; https://doi.org/10.3390/polym16070975 - 3 Apr 2024
Cited by 4 | Viewed by 1812
Abstract
Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) shows promise for use in bioplastic applications due to its greater flexibility over PLLA. However, further research is needed to improve PLLA-PEG-PLLA’s properties with appropriate fillers. This study employed zinc phenylphosphate (PPZn) as a multi-functional filler [...] Read more.
Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) shows promise for use in bioplastic applications due to its greater flexibility over PLLA. However, further research is needed to improve PLLA-PEG-PLLA’s properties with appropriate fillers. This study employed zinc phenylphosphate (PPZn) as a multi-functional filler for PLLA-PEG-PLLA. The effects of PPZn addition on PLLA-PEG-PLLA characteristics, such as crystallization and thermal and mechanical properties, were investigated. There was good phase compatibility between the PPZn and PLLA-PEG-PLLA. The addition of PPZn improved PLLA-PEG-PLLA’s crystallization properties, as evidenced by the disappearance of the cold crystallization temperature, an increase in the crystallinity, an increase in the crystallization temperature, and a decrease in the crystallization half-time. The PLLA-PEG-PLLA’s thermal stability and heat resistance were enhanced by the addition of PPZn. The PPZn addition also enhanced the mechanical properties of the PLLA-PEG-PLLA, as demonstrated by the rise in ultimate tensile stress and Young’s modulus. We can conclude that the PPZn has potential for use as a multi-functional filler for the PLLA-PEG-PLLA composite due to its nucleating-enhancing, thermal-stabilizing, and reinforcing ability. Full article
(This article belongs to the Special Issue Development and Application of Bio-Based Polymers)
Show Figures

Figure 1

21 pages, 4935 KiB  
Article
Combined Effect of Poly(lactic acid)-Grafted Maleic Anhydride Compatibilizer and Halloysite Nanotubes on Morphology and Properties of Polylactide/Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Blends
by Nawel Mokrane, Mustapha Kaci, José-Marie Lopez-Cuesta and Nadjet Dehouche
Materials 2023, 16(19), 6438; https://doi.org/10.3390/ma16196438 - 27 Sep 2023
Cited by 6 | Viewed by 2036
Abstract
Given the global challenge of plastic pollution, the development of new bioplastics to replace conventional polymers has become a priority. It is therefore essential to achieve a balance in the performances of biopolymers in order to improve their commercial availability. In this topic, [...] Read more.
Given the global challenge of plastic pollution, the development of new bioplastics to replace conventional polymers has become a priority. It is therefore essential to achieve a balance in the performances of biopolymers in order to improve their commercial availability. In this topic, this study aims to investigate the morphology and properties of poly(lactic acid) (PLA)/ poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) (at a ratio of 75/25 (w/w)) blends reinforced with halloysite nanotubes (HNTs) and compatibilized with poly(lactic acid)-grafted maleic anhydride (PLA-g-MA). HNTs and PLA-g-MA were added to the polymer blend at 5 and 10 wt.%, respectively, and everything was processed via melt compounding. A scanning electron microscopy (SEM) analysis shows that HNTs are preferentially localized in PHBHHx nodules rather than in the PLA matrix due to its higher wettability. When HNTs are combined with PLA-g-MA, a finer and a more homogeneous morphology is observed, resulting in a reduction in the size of PHBHHx nodules. The presence of HNTs in the polymer blend improves the impact strength from 12.7 to 20.9 kJ/mm2. Further, with the addition of PLA-g-MA to PLA/PHBHHX/HNT nanocomposites, the tensile strength, elongation at break, and impact strength all improve significantly, rising from roughly 42 MPa, 14.5%, and 20.9 kJ/mm2 to nearly 46 MPa, 18.2%, and 31.2 kJ/mm2, respectively. This is consistent with the data obtained via dynamic mechanical analysis (DMA). The thermal stability of the compatibilized blend reinforced with HNTs is also improved compared to the non-compatibilized one. Overall, this study highlights the effectiveness of combining HNTs and PLA-g-AM for the properties enhancement of PLA/PHBHHx blends. Full article
Show Figures

Figure 1

13 pages, 2932 KiB  
Article
Zein as a Basis of Recyclable Injection Moulded Materials: Effect of Formulation and Processing Conditions
by Fahimeh Alsadat-Seyedbokaei, Manuel Felix and Carlos Bengoechea
Polymers 2023, 15(18), 3841; https://doi.org/10.3390/polym15183841 - 21 Sep 2023
Cited by 10 | Viewed by 1815
Abstract
The growing concern about reducing carbon footprint has led to the progressive replacement of traditional polymeric materials by natural-based biodegradable materials. However, materials from natural sources (i.e., plants) typically possess poorer mechanical properties when compared to conventional plastics. To counterbalance this, they need [...] Read more.
The growing concern about reducing carbon footprint has led to the progressive replacement of traditional polymeric materials by natural-based biodegradable materials. However, materials from natural sources (i.e., plants) typically possess poorer mechanical properties when compared to conventional plastics. To counterbalance this, they need to be adequately formulated and processed to eventually meet the standards for certain applications. Zein is the major storage protein from corn and can be obtained as a by-product from the corn-oil industry. It is an excellent candidate for producing green materials due to its stability, biodegradability, renewability, and suitable mechanical and technical-functional properties. In the present work, zein was blended with a plasticizer (i.e., glycerol) at three different zein/glycerol ratios (75/25, 70/30, and 65/25) and then injection moulded at three different processing temperatures (120, 150, and 190 °C). The properties of both blends and bioplastics were evaluated using dynamic mechanical analysis (DMA), tensile tests, and water absorption capacity (WUC). The properties–structure interrelation was assessed through a scanning electron microscope. Generally, a higher zein content and processing temperature led to a certain reinforcement of the samples. Moreover, all bioplastics displayed a thermoplastic behaviour finally melting at temperatures around 80 °C. The lack of massive crosslinking enabled this melting, which finally could be used to confirm the ability of zein based materials to be recycled, while maintaining their properties. The recyclability of thermoplastic zein materials widens the scope of their application, especially considering its biodegradability. Full article
(This article belongs to the Collection Progress in Recycling of (Bio)Polymers and Composites)
Show Figures

Figure 1

20 pages, 7295 KiB  
Article
A Comparison of Cellulose Nanocrystals and Nanofibers as Reinforcements to Amylose-Based Composite Bioplastics
by Marwa Faisal, Marija Žmirić, Ngoc Quynh Nhu Kim, Sander Bruun, Loredana Mariniello, Michela Famiglietti, Heloisa N. Bordallo, Jacob Judas Kain Kirkensgaard, Bodil Jørgensen, Peter Ulvskov, Kim Henrik Hebelstrup and Andreas Blennow
Coatings 2023, 13(9), 1573; https://doi.org/10.3390/coatings13091573 - 9 Sep 2023
Cited by 14 | Viewed by 4581
Abstract
Starch-based bioplastics offer a promising alternative to conventional plastics. However, they exhibit certain limitations, notably in terms of mechanical strength and barrier properties. These challenges could potentially be addressed through the incorporation of nanocellulose as a reinforcing agent. In this study, we fabricated [...] Read more.
Starch-based bioplastics offer a promising alternative to conventional plastics. However, they exhibit certain limitations, notably in terms of mechanical strength and barrier properties. These challenges could potentially be addressed through the incorporation of nanocellulose as a reinforcing agent. In this study, we fabricated bioplastic films using a casting and blending approach, employing highly linear pure amylose (AM) in combination with cellulose nanofibers (CNF) or cellulose nanocrystals (CNC) at various ratios. This allowed for a direct comparison of CNF and CNC functionality within the AM matrix. We systematically assessed mechanical properties and water barrier characteristics, encompassing parameters such as water permeability, moisture content, swelling, solubility, crystallinity, thermal stability, transmittance, and opacity. Additionally, we investigated water vapor and oxygen permeability. Furthermore, we delved into distinctions between CNC and CNF biocomposites. Incorporation of either type of nanocellulose yielded enhancements in film properties, with CNF exerting a more pronounced positive influence compared to CNC. Particularly noteworthy were the mechanical properties, wherein CNF composite films demonstrated markedly higher tensile strength and Young’s modulus compared to their CNC counterparts. For instance, the inclusion of 1% CNF led to a substantial increase in AM tensile strength from 66.1 MPa to 144.8 MPa. Conversely, water vapor permeability exhibited a converse behavior, as the addition of 1% CNF resulted in a significant reduction of water barrier properties from 8.7 to 1.32 g mm m−2 24 h−1kPa−1. Intriguingly, CNC films displayed greater elongation at the point of rupture in comparison to CNF films. This can be attributed to the larger surface area of the CNC and the favorable interfacial interaction between AM and CNC. Notably, the introduction of nanocellulose led to reduced film opacity and improved thermal stability. In summary, nanocellulose interacted synergistically with the AM matrix, establishing a robust hydrogen-bonded network that greatly enhanced the performance of the biocomposite films. Full article
Show Figures

Figure 1

17 pages, 8644 KiB  
Article
Agro-Waste Bean Fibers as Reinforce Materials for Polycaprolactone Composites
by Cristina De Monte, Leonardo Arrighetti, Lucia Ricci, Alessandra Civello and Simona Bronco
Compounds 2023, 3(3), 504-520; https://doi.org/10.3390/compounds3030036 - 1 Sep 2023
Cited by 6 | Viewed by 2541
Abstract
The agrifood industry shows one of the widest ranges of possible end products from crops, such as fruits, legumes, cereals, and tubers. The raw material is generally collected and processed industrially, producing a significant amount of organic waste. The overall picture is made [...] Read more.
The agrifood industry shows one of the widest ranges of possible end products from crops, such as fruits, legumes, cereals, and tubers. The raw material is generally collected and processed industrially, producing a significant amount of organic waste. The overall picture is made more complex by the wide variety of nature and composition, and by the difficulty identifying the possible uses of the wastes coming from the processing industry. Such wastes are often disposed of in landfills or treated in waste-to-energy plants depending on the area where they are produced. The circular economy approach has suggested numerous possible generic strategies to improve waste management, involving the exploitation of waste to obtain new value-added products. The use of fibers from legume waste from the canning industry in the bioplastics production sector is a promising and relatively little explored line, particularly for the fibers of beans and green beans. With this in mind, in this article, green bean and borlotti bean fibers obtained from the treatment of wastes were used as reinforcing material for polycaprolactone (PCL)-based biocomposites by melt blending. Analyses were carried out about the morphological, spectroscopic, thermal, and mechanical properties of the starting and the obtained materials. Full article
(This article belongs to the Special Issue Polymeric Substrates Modification with Biobased Functional Compounds)
Show Figures

Figure 1

19 pages, 3178 KiB  
Review
Innovative Polymer Composites with Natural Fillers Produced by Additive Manufacturing (3D Printing)—A Literature Review
by Beata Anwajler, Ewa Zdybel and Ewa Tomaszewska-Ciosk
Polymers 2023, 15(17), 3534; https://doi.org/10.3390/polym15173534 - 24 Aug 2023
Cited by 22 | Viewed by 4174
Abstract
In recent years, plastics recycling has become one of the leading environmental and waste management issues. Along with the main advantage of plastics, which is undoubtedly their long life, the problem of managing their waste has arisen. Recycling is recognised as the preferred [...] Read more.
In recent years, plastics recycling has become one of the leading environmental and waste management issues. Along with the main advantage of plastics, which is undoubtedly their long life, the problem of managing their waste has arisen. Recycling is recognised as the preferred option for waste management, with the aim of reusing them to create new products using 3D printing. Additive manufacturing (AM) is an emerging and evolving rapid tooling technology. With 3D printing, it is possible to achieve lightweight structures with high dimensional accuracy and reduce manufacturing costs for non-standard geometries. Currently, 3D printing research is moving towards the production of materials not only of pure polymers but also their composites. Bioplastics, especially those that are biodegradable and compostable, have emerged as an alternative for human development. This article provides a brief overview of the possibilities of using thermoplastic waste materials through the application of 3D printing, creating innovative materials from recycled and naturally derived materials, i.e., biomass (natural reinforcing fibres) in 3D printing. The materials produced from them are ecological, widely available and cost-effective. Research activities related to the production of bio-based materials have gradually increased over the last two decades, with the aim of reducing environmental problems. This article summarises the efforts made by researchers to discover new innovative materials for 3D printing. Full article
(This article belongs to the Special Issue Advance in 3D/4D Printing of Polymeric Materials)
Show Figures

Figure 1

20 pages, 715 KiB  
Review
The Potential Applications of Reinforced Bioplastics in Various Industries: A Review
by Uwei Kong, Nurul Fazita Mohammad Rawi and Guan Seng Tay
Polymers 2023, 15(10), 2399; https://doi.org/10.3390/polym15102399 - 22 May 2023
Cited by 48 | Viewed by 15797
Abstract
The introduction of bioplastics has been an evolution for plastic industry since conventional plastics have been claimed to cause several environmental issues. Apart from its biodegradability, one of the advantages can be identified of using bioplastic is that they are produced by renewal [...] Read more.
The introduction of bioplastics has been an evolution for plastic industry since conventional plastics have been claimed to cause several environmental issues. Apart from its biodegradability, one of the advantages can be identified of using bioplastic is that they are produced by renewal resources as the raw materials for synthesis. Nevertheless, bioplastics can be classified into two types, which are biodegradable and non-biodegradable, depending on the type of plastic that is produced. Although some of the bioplastics are non-biodegradable, the usage of biomass in synthesising the bioplastics helps in preserving non-renewable resources, which are petrochemical, in producing conventional plastics. However, the mechanical strength of bioplastic still has room for improvement as compared to conventional plastics, which is believed to limit its application. Ideally, bioplastics need to be reinforced for improving their performance and properties to serve their application. Before 21st century, synthetic reinforcement has been used to reinforce conventional plastic to achieve its desire properties to serve its application, such as glass fiber. Owing to several issues, the trend has been diversified to utilise natural resources as reinforcements. There are several industries that have started to use reinforced bioplastic, and this article focuses on the advantages of using reinforced bioplastic in various industries and its limitations. Therefore, this article aims to study the trend of reinforced bioplastic applications and the potential applications of reinforced bioplastics in various industries. Full article
(This article belongs to the Special Issue Advances in Bio-Based and Biodegradable Polymeric Composites II)
Show Figures

Figure 1

18 pages, 3003 KiB  
Review
Sustainable Exploitation of Posidonia oceanica Sea Balls (Egagropili): A Review
by Odile Francesca Restaino, Concetta Valeria L. Giosafatto, Seyedeh Fatemeh Mirpoor, Marcella Cammarota, Sondos Hejazi, Loredana Mariniello, Chiara Schiraldi and Raffaele Porta
Int. J. Mol. Sci. 2023, 24(8), 7301; https://doi.org/10.3390/ijms24087301 - 14 Apr 2023
Cited by 22 | Viewed by 7732
Abstract
Posidonia oceanica (L.) Delile is the main seagrass plant in the Mediterranean basin that forms huge underwater meadows. Its leaves, when decomposed, are transported to the coasts, where they create huge banquettes that protect the beaches from sea erosion. Its roots and rhizome [...] Read more.
Posidonia oceanica (L.) Delile is the main seagrass plant in the Mediterranean basin that forms huge underwater meadows. Its leaves, when decomposed, are transported to the coasts, where they create huge banquettes that protect the beaches from sea erosion. Its roots and rhizome fragments, instead, aggregate into fibrous sea balls, called egagropili, that are shaped and accumulated by the waves along the shoreline. Their presence on the beach is generally disliked by tourists, and, thus, local communities commonly treat them as waste to remove and discard. Posidonia oceanica egagropili might represent a vegetable lignocellulose biomass to be valorized as a renewable substrate to produce added value molecules in biotechnological processes, as bio-absorbents in environmental decontamination, to prepare new bioplastics and biocomposites, or as insulating and reinforcement materials for construction and building. In this review, the structural characteristics, and the biological role of Posidonia oceanica egagropili are described, as well as their applications in different fields as reported in scientific papers published in recent years. Full article
(This article belongs to the Special Issue Novel Bio-Based Materials from Renewable Sources)
Show Figures

Figure 1

Back to TopTop