Sustainable Exploitation of Posidonia oceanica Sea Balls (Egagropili): A Review
Abstract
:1. Introduction
1.1. Biological Role of Posidonia oceanica and Derived Egagropili
1.2. POEG Structural Characteristics
2. Posidonia oceanica Egagropili as Lignocellulosic Biomass to Valorize
2.1. Posidonia oceanica Egagropili in Biotechnological Applications
2.2. Posidonia oceanica Egagropili in Environmental Decontamination Processes
2.3. Posidonia oceanica Egagropili in Bioplastic and Biocomposite Preparations
2.4. Posidonia oceanica Egagropili in Construction Materials and as Decoration
3. Conclusions
4. Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trache, D.; Tarchoun, A.F.; De Vita, D.; Kennedy, J.F. Posidonia oceanica (L.) Delile: A Mediterranean seagrass with potential applications but regularly and erroneously referred to as an algal species. Int. J. Biol. Macromol. 2022, 230, 122624. [Google Scholar] [CrossRef] [PubMed]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Di Pierro, P.; Di Girolamo, R.; Regalado-González, C.; Porta, R. Valorisation of Posidonia oceanica sea balls (egagropili) as a potential source of reinforcement agents in protein-based biocomposites. Polymers 2020, 12, 2788. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, L.; Compère, P.; Léonard, A.; Plougonven, E.; Vandewalle, N.; Gobert, S. Mediterranean aegagropiles from Posidonia oceanica (L.) Delile (1813): A first complete description from macroscopic to microscopic structure. Mar. Biol. 2021, 168, 37. [Google Scholar] [CrossRef]
- Verhille, G.; Moulinet, S.; Vandenberghe, N.; Adda-Bedia, M.; Le Gal, P. Structure and mechanics of aegagropilae fiber network. Proc. Natl. Acad. Sci. USA 2017, 114, 4607–4612. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A. Egagropili Sand Dunes (Holocene) along the southeastern Gulf of Sirte (Mediterranean Sea) coast of Brega, Libya. Geophytology 2022, 52, 29–38. [Google Scholar]
- Khiari, R.; Belgacem, M.N. Potential for using multiscale Posidonia oceanica waste: Current status and prospect in material science. In Lignocellulosic Fibre and Biomass-Based Composite Materials: Processing, Properties and Applications; Woodhead Publishing Series in Composites Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 447–471. [Google Scholar]
- Pascucci, V.; De Falco, G.; Del Vais, C.; Sanna, I.; Melis, R.T.; Andreucci, S. Climate changes and human impact on the Mistras coastal barrier system (W Sardinia, Italy). Mar. Geol. 2018, 395, 271–284. [Google Scholar] [CrossRef]
- Restaino, O.F.; Scognamiglio, M.; Mirpoor, S.F.; Cammarota, M.; Ventriglia, R.; Giosafatto, C.V.L.; Fiorentino, A.; Porta, R.; Schiraldi, C. Enhanced Streptomyces roseochromogenes melanin production by using the marine renewable source Posidonia oceanica egagropili. Appl. Microbiol. Biotechnol. 2022, 106, 7265–7283. [Google Scholar] [CrossRef]
- Benito-González, I.; López-Rubio, A.; Martínez-Abad, A.; Ballester, A.-R.; Falcó, I.; González-Candelas, L.; Sánchez, G.; Lozano-Sánchez, J.; Borrás-Linares, I.; Segura-Carretero, A.; et al. In-depth characterization of bioactive extracts from Posidonia oceanica waste biomass. Mar Drugs 2019, 17, 409. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, L. “Neptune balls” polysaccharides: Disentangling the wiry seagrass detritus. Polymers 2021, 13, 4285. [Google Scholar] [CrossRef]
- Rencoret, J.; Marques, G.; Serrano, O.; Kaal, J.; Martínez, A.T.; del Río, J.C.; Gutierrez, A. Deciphering the unique structure and acylation pattern of Posidonia oceanica lignin. ACS Sustain. Chem. Eng. 2020, 8, 12521–12533. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Restaino, O.F.; Schiraldi, C.; Giosafatto, C.V.L.; Ruffo, F.; Porta, R. Lignin/carbohydrate complex isolated from Posidonia oceanica sea balls (Egagropili): Characterization and antioxidant reinforcement of protein-based films. Int. J. Mol. Sci. 2021, 22, 9147. [Google Scholar] [CrossRef] [PubMed]
- Kaal, J.; Serrano, O.; del Río, J.C.; Rencoret, J. Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity. Org. Geochem. 2018, 124, 247–256. [Google Scholar] [CrossRef]
- Rudovica, V.; Rotter, A.; Gaudêncio, S.P.; Novoveská, L.; Akgül, F.; Akslen-Hoel, L.K.; Alexandrino, D.A.M.; Anne, O.; Arbidans, L.; Atanassova, M.; et al. Valorization of marine waste: Use of industrial by-products and beach wrack towards the production of high added-value products. Front. Mar. Sci. 2021, 8, 723333. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Antoniou, N.; Koutsovitis, P.; Zygouri, E.; Krassakis, P.; Islam, I.; Koukouzas, N. Posidonia oceanica balls (Egagropili) from Kefalonia Island evaluated as alternative biomass source for green energy. J. Mar. Sci. Eng. 2023, 11, 749. [Google Scholar] [CrossRef]
- Restaino, O.F.; Cuomo, S.; D’Ambrosio, S.; Vassallo, V.; Mirpoor, S.F.; Giosafatto, C.V.L.; Porta, R.; Schiraldi, C. Cellulose from Posidonia oceanica sea balls (egagropili) as substrate to enhance Streptomyces roseochromogenes cellulase biosynthesis. Fermentation 2023, 9, 98. [Google Scholar] [CrossRef]
- Souii, A.; Gorrab, A.; Ouertani, R.; Ouertani, A.; Hammami, K.; Saidi, N.; Souissi, Y.; Chouchane, H.; Masmoudi, A.S.; Sghaier, H.; et al. Sustainable bioethanol production from enzymatically hydrolyzed second-generation Posidonia oceanica waste using stable Microbacterium metallidurans carbohydrate-active enzymes as biocatalysts. Biomass Convers. Biorefinery 2022, 308, 1–20. [Google Scholar] [CrossRef]
- Kadraoui, M.; Khairi, R.; Brosse, N.; Bergaoui, L.; Mauret, E. Combination of steam explosion and TEMPO-mediated oxidation as pre-treatments to produce nanofibril of cellulose from Posidonia oceanica bleached fibres. BioResources 2022, 17, 2933–2958. [Google Scholar] [CrossRef]
- D’ Imperio, M.; Montesano, F.F.; Montemurro, N.; Parente, A. Posidonia natural residues as growing substrate component: An ecofriendly method to improve nutritional profile of brassica microgreens. Front. Plant Sci. 2021, 12, 580596. [Google Scholar] [CrossRef]
- Bonet-Aracil, M.; Gisbert-Payá, J.; Bou-Belda, E.; Montava, I.; Díaz-García, P. Fibers of the seagrass Posidonia oceanica as substrate for germination of lentil seeds. SN Appl. Sci. 2019, 1, 1414. [Google Scholar]
- Elmorsi, R.R.; El-Wakeel, S.T.; Shehab El-Dein, W.A.; Lotfy, H.R.; Rashwan, W.E.; Nagah, M.; Shaaban, S.A.; Sayed Ahmed, S.A.; El-Sherif, I.Y.; Abou-El-Sherbini, K.S. Adsorption of methylene blue and Pb2+ by using acid-activated Posidonia oceanica waste. Sci. Rep. 2019, 9, 3356. [Google Scholar] [CrossRef] [Green Version]
- Boulaiche, W.; Belhamdi, B.; Hamdi, B.; Trari, M. Kinetic and equilibrium studies of biosorption of M(II) (M = Cu, Pb, Ni, Zn and Cd) onto seaweed Posidonia oceanica fibers. Appl. Water Sci. 2019, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Asimakopoulos, G.; Baikousi, M.; Salmas, C.; Bourlinos, A.B.; Zboril, R.; Karakassides, M.A. Advanced Cr (VI) sorption properties of activated carbon produced via pyrolysis of the Posidonia oceanica seagrass. J. Hazard. Mater. 2021, 405, 124274. [Google Scholar] [CrossRef] [PubMed]
- Jmaa, S.B.; Kallel, A. Assessment of performance of Posidonia oceanica (L.) as biosorbent for crude oil-spill cleanup in seawater. Biomed Res. Int. 2019, 2019, 6029654. [Google Scholar]
- Ferchichi, K.; Amdouni, N.; Chevalier, Y.; Hbaieb, S. Low-cost Posidonia oceanica bio-adsorbent for efficient removal of antibiotic oxytetracycline from water. Environ. Sci. Pollut. Res. 2022, 29, 83112–83125. [Google Scholar] [CrossRef]
- Sanchez-Vidal, A.; Canals, M.; de Haan, W.P.; Romero, J.; Veny1, M. Seagrasses provide a novel ecosystem service by trapping marine plastics. Sci. Rep. 2021, 11, 254. [Google Scholar] [CrossRef] [PubMed]
- Khadraoui, M.; Nader, S.; Khiari, R.; Brosse, N.; Bergaoui, L.; Mauret, E. Effectiveness of sulfonation to produce lignin-containing cellulose micro/nanofibrils (LCM/NF) by grinding. Cellulose 2023, 30, 815–832. [Google Scholar] [CrossRef]
- Puglia, D.; Petrucci, R.; Fortunati, E.; Luzi, F.; Kenny, J.M.; Torre, L. Revalorisation of Posidonia oceanica as reinforcement in polyethylene/maleic anhydride grafted polyethylene composites. J. Renew. Mater. 2014, 2, 66–76. [Google Scholar] [CrossRef]
- Haddar, M.; Elloumi, A.; Koubaa, A.; Bradai, C.; Migneault, S.; Elhalouani, F. Synergetic effect of Posidonia oceanica fibres and deinking paper sludge on the thermo-mechanical properties of high-density polyethylene composites. Ind. Crops Prod. 2018, 121, 26–35. [Google Scholar] [CrossRef]
- Haddar, M.; Youssef, B.S.; Koubaa, S. Mechanical and water absorption behavior of thermoset matrices reinforced with natural fiber. Polym. Compos. 2022, 43, 3481–3495. [Google Scholar] [CrossRef]
- Seggiani, M.; Cinelli, P.; Mallegni, N.; Balestri, E.; Puccini, M.; Vitolo, S.; Lardicci, C.; Lazzeri, A. New bio-composites based on polyhydroxyalkanoates and Posidonia oceanica fibres for applications in a marine environment. Materials 2017, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Balestri, E.; Vallerini, F.; Seggiani, M.; Cinelli, P.; Menicagli, V.; Vannini, C.; Lardicci, C. Use of bio-containers from seagrass wrack with nursery planting to improve the eco-sustainability of coastal habitat restoration. J. Environ. Manag. 2019, 251, 109604. [Google Scholar] [CrossRef] [PubMed]
- Hamdaoui, O.; Ibos, L.; Mazioud, A.; Safi, M.; Limam, O. Thermophysical characterization of Posidonia Oceanica marine fibers intended to be used as an insulation material in Mediterranean buildings. Constr. Build. Mater. 2018, 180, 68–76. [Google Scholar] [CrossRef]
- Jedidi, M.; Abroug, A. Valorization of Posidonia oceanica balls for the manufacture of an insulating and ecological material. Jordan J. Civ. Eng. 2020, 14, 417–430. [Google Scholar]
- Benjeddou, O.; Jedidi, M.; Khadimallah, M.A.; Ravindran, G.; Sridhar, J. Effect of Posidonia oceanica fibers addition on the thermal and acoustic properties of cement paste. Buildings 2022, 12, 909. [Google Scholar] [CrossRef]
- Mayer, A.K.; Kuqo, A.; Koddenberg, T.; Mai, C. Seagrass- and wood-based cement boards: A comparative study in terms of physico-mechanical and structural properties. Compos. Part A 2022, 156, 106864. [Google Scholar] [CrossRef]
- Varun Teja, K.; Meena, T. Performance of ternary blended concrete and binary concrete made with perlite powder at elevated temperatures. Jordan J. Civ. Eng. 2020, 14, 198–209. [Google Scholar]
Field of Application | POEGs or Their Components | Application | Reference |
---|---|---|---|
Biotechnology | POEG powder | Melanin production by Streptomyces roseochromogenes | [8] |
Cellulose component | Cellulase production by Streptomyces roseochromogenes | [16] | |
POEG fibers | Cellulase and xylanase production by Microbacterium metallidurans TL13 | [17] | |
POEG fibers | Nanofibrillated cellulose production | [18] | |
POEGs | Supplementation of the medium composition of brassica microgreens | [19] | |
POEG fibers | Medium to boost lentice germination | [20] | |
Enviromental decontamination | Activated POEG powder | Blackish water decontamination from methylene blue and Pb2+ | [21] |
POEG fibers | Water decontamination from Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ | [22] | |
Activated POEG powder | Water decontamination from Cr6+ | [23] | |
POEGs and POEG powder | Sea decontamination from hydrocarbon spill pollution | [24] | |
POEG powder | Water decontamination from antibiotics like oxytetracycline | [25] | |
POEGs | Sea decontamination from plastics | [26] | |
Bioplastic and biocomposite preparation | Lignin-carbohydrate complex and nanocrystalline cellulose | Reinforcing agents for biodegradable films obtained from hemp | [2,12] |
Lignin-containing cellulose micro/nanofibrils | Packaging materials | [27] | |
POEG fibers | Reinforcing agents in matrices of high-density polyethylene and maleated polyethylene | [28,29] | |
POEG fibers | Reinforcing agents in matrices of unsaturated polyester resin matrices | [30] | |
POEG fibers | Reinforcing agents in polyhydroxybutyrate-co-hydroxyvalerate matrix | [31] | |
POEG fibers | Reinforcing agents in polyhydroxybutyrate-co-hydroxyvalerate based bio-containers | [32] | |
Construction materials | POEGs | Insulating materials in building | [33] |
POEG fibers | Additive in plasters | [34] | |
POEG fibers | Additive in cement composites | [35,36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restaino, O.F.; Giosafatto, C.V.L.; Mirpoor, S.F.; Cammarota, M.; Hejazi, S.; Mariniello, L.; Schiraldi, C.; Porta, R. Sustainable Exploitation of Posidonia oceanica Sea Balls (Egagropili): A Review. Int. J. Mol. Sci. 2023, 24, 7301. https://doi.org/10.3390/ijms24087301
Restaino OF, Giosafatto CVL, Mirpoor SF, Cammarota M, Hejazi S, Mariniello L, Schiraldi C, Porta R. Sustainable Exploitation of Posidonia oceanica Sea Balls (Egagropili): A Review. International Journal of Molecular Sciences. 2023; 24(8):7301. https://doi.org/10.3390/ijms24087301
Chicago/Turabian StyleRestaino, Odile Francesca, Concetta Valeria L. Giosafatto, Seyedeh Fatemeh Mirpoor, Marcella Cammarota, Sondos Hejazi, Loredana Mariniello, Chiara Schiraldi, and Raffaele Porta. 2023. "Sustainable Exploitation of Posidonia oceanica Sea Balls (Egagropili): A Review" International Journal of Molecular Sciences 24, no. 8: 7301. https://doi.org/10.3390/ijms24087301