Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,642)

Search Parameters:
Keywords = regenerative activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2470 KB  
Article
6-O-trans-feruloyl Catalpol, a Natural Antioxidant from the Stem Bark of Catalpa ovata, Accelerates Liver Regeneration In Vivo via Activation of Hepatocyte Proliferation Signaling Pathways
by Jiyoung Park, Yun-Seo Kil, Ho Jin Yi, Eun Kyoung Seo and Hyun Ae Woo
Antioxidants 2025, 14(10), 1210; https://doi.org/10.3390/antiox14101210 - 6 Oct 2025
Abstract
Background: Liver regeneration is a complex process involving multiple signaling pathways that coordinate hepatocyte proliferation, survival, and tissue repair. Natural compounds like silymarin, ursolic acid, quercetin, and resveratrol have shown regenerative potential, though their precise molecular mechanisms remain unclear. 6-O-trans-feruloyl catalpol [...] Read more.
Background: Liver regeneration is a complex process involving multiple signaling pathways that coordinate hepatocyte proliferation, survival, and tissue repair. Natural compounds like silymarin, ursolic acid, quercetin, and resveratrol have shown regenerative potential, though their precise molecular mechanisms remain unclear. 6-O-trans-feruloyl catalpol (6FC), a major bioactive compound from Catalpa ovata, exhibits anti-inflammatory and potential antioxidant effects via regulation of NF-κB signaling and redox-sensitive pathways such as Akt and MAPK, which are critical for cell survival and proliferation. Moreover, 6FC exhibits peroxynitrite-scavenging activity, suggesting its potential antioxidant properties that may protect hepatocytes from oxidative damage during regeneration. However, the role of 6FC in liver regeneration has not been elucidated, positioning it as a promising natural therapeutic candidate for hepatic repair. Purpose: This study aimed to determine whether 6FC promotes hepatocyte proliferation and liver regeneration in vivo using a 2/3 PHx mouse model, and to validate its proliferative effects in vitro with HGF-stimulated Hep3B cells. Methods: A 2/3 PHx liver regeneration model was used to evaluate 6FC-mediated liver regeneration. Histological and molecular analyses assessed hepatocyte proliferation and signaling activation. HGF-stimulated Hep3B cells were also used to examine 6FC proliferative effects in vitro. Results: 6FC significantly promoted liver regeneration by restoring the liver-to-body weight ratio and reducing serum ALT and AST levels without inducing excessive immune responses. Mechanistic studies revealed that 6FC activates Akt and MAPK pathways, increases the expression of critical growth factors, and upregulates cell cycle regulators. These effects were also observed in HGF-stimulated Hep3B cells, suggesting that 6FC may enhance hepatocyte proliferation without triggering excessive immune responses. Conclusions: 6FC accelerates hepatocyte proliferation and promotes liver regeneration by activating key redox-sensitive signaling pathways, highlighting its potential as a natural antioxidant-based therapeutic agent. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

49 pages, 2570 KB  
Review
Therapeutic Strategies Targeting Oxidative Stress and Inflammation: A Narrative Review
by Charles F. Manful, Eric Fordjour, Emmanuel Ikumoinein, Lord Abbey and Raymond Thomas
BioChem 2025, 5(4), 35; https://doi.org/10.3390/biochem5040035 - 6 Oct 2025
Abstract
Oxidative stress and inflammation are deeply interconnected processes implicated in the onset and progression of numerous chronic diseases. Despite promising mechanistic insights, conventional antioxidant and anti-inflammatory therapies such as NSAIDs, corticosteroids, and dietary antioxidants have shown limited and inconsistent success in long-term clinical [...] Read more.
Oxidative stress and inflammation are deeply interconnected processes implicated in the onset and progression of numerous chronic diseases. Despite promising mechanistic insights, conventional antioxidant and anti-inflammatory therapies such as NSAIDs, corticosteroids, and dietary antioxidants have shown limited and inconsistent success in long-term clinical applications due to challenges with efficacy, safety, and bioavailability. This review explores the molecular interplay between redox imbalance and inflammatory signaling and highlights why conventional therapeutic translation has often been inconsistent. It further examines emerging strategies that aim to overcome these limitations, including mitochondrial-targeted antioxidants, Nrf2 activators, immunometabolic modulators, redox enzyme mimetics, and advanced delivery platforms such as nanoparticle-enabled delivery. Natural polyphenols, nutraceuticals, and regenerative approaches, including stem cell-derived exosomes, are also considered for their dual anti-inflammatory and antioxidant potential. By integrating recent preclinical and clinical evidence, this review underscores the need for multimodal, personalized interventions that target the redox-inflammatory axis more precisely. These advances offer renewed promise for addressing complex diseases rooted in chronic inflammation and oxidative stress. Full article
Show Figures

Graphical abstract

15 pages, 5237 KB  
Article
Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor
by Qian Zhang, Maogang He, Yabin Jin, Zizhen Huang, Tiantian Xu and Long Li
Energies 2025, 18(19), 5276; https://doi.org/10.3390/en18195276 - 4 Oct 2025
Abstract
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative [...] Read more.
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative conditions (wall temperature 623.15 K, p = 0.708–6.816 MPa) and pyrolytic conditions (wall temperature 793.15 K, p = 2.706–7.165 MPa); carbon deposits were quantified by LECO analysis, oxidation activity was assessed by temperature-programmed oxidation (TPO), and morphology was performed by FESEM and EDS. Results show that oxidative coking is minimal (5.37–14.95 μg·cm2) and largely insensitive to pressure in the liquid phase (1.882–6.816 MPa), whereas at 0.708 MPa (gas/phase-change conditions), deposition increases, implicating phase and local heat-transfer effects. Under oxidative conditions, deposits are predominantly amorphous carbon with a disordered structure, formed at relatively low temperatures, with only a few fiber-like metal sulfides identified by EDS. In contrast, under pyrolysis conditions, the deposits are predominantly carbon nanotubes, exhibiting well-defined tubular morphology formed at elevated temperatures via metal-catalyzed growth. The pyrolysis coking yield is substantially higher (66.88–221.89 μg·cm−2) and increases with pressure. The findings imply that the pressure influences the coking of JP-10 via phase state under oxidative conditions and residence time under pyrolytic conditions, while basic morphologies of coke deposits remain similar; operationally, maintaining the working pressure higher than the saturated vapor pressure can mitigate oxidation coking associated with phase transitions, and minimizing residence time can mitigate pyrolytic coking. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

22 pages, 2686 KB  
Article
In Vitro Effects of PRP, Ozonized PRP, Hyaluronic Acid, Paracetamol, and Polyacrylamide on Equine Synovial Fluid-Derived Mesenchymal Stem Cells
by Denisa Bungărdean, Emoke Pall, Zsofia Daradics, Maria Popescu, Mirela Alexandra Tripon, Alexandru Florin Lupșan, Cristian Mihăiță Crecan, Ianu Adrian Morar, Alexandru Nicolescu, Florin Dumitru Bora and Ioan Marcus
Life 2025, 15(10), 1558; https://doi.org/10.3390/life15101558 - 4 Oct 2025
Abstract
Musculoskeletal disorders are a major cause of lameness in horses, often necessitating innovative regenerative strategies to restore joint function and improve quality of life. This study investigated the effects of platelet-rich plasma (PRP), ozonized PRP, hyaluronic acid, paracetamol, and polyacrylamide hydrogel (NOLTREX® [...] Read more.
Musculoskeletal disorders are a major cause of lameness in horses, often necessitating innovative regenerative strategies to restore joint function and improve quality of life. This study investigated the effects of platelet-rich plasma (PRP), ozonized PRP, hyaluronic acid, paracetamol, and polyacrylamide hydrogel (NOLTREX®) on the behavior of mesenchymal stem cells (MSCs) derived from equine synovial fluid. Synovial fluid samples were collected under strict cytological criteria to ensure viability, followed by in vitro expansion and phenotypic characterization of MSCs. Cultures were supplemented with the tested preparations, and cellular proliferation and viability were evaluated at 24 h, 72 h, and 7 days. PRP significantly promoted MSC proliferation in a time- and dose-dependent manner, with maximal effect at 10%. Hyaluronic acid stimulated growth, most pronounced at 1 mg/mL, while paracetamol induced a concentration-dependent proliferative response, strongest at 100 μg/mL. NOLTREX displayed a biphasic effect, initially inhibitory at high concentrations but stimulatory at 7 days. Ozonized PRP showed concentration-dependent redox activity, with lower doses maintaining viability and higher doses producing an initial suppression followed by delayed stimulation. Collectively, these findings support the therapeutic potential of PRP and related biologic preparations as intra-articular regenerative therapies in equine medicine, while underscoring the importance of dose optimization and standardized protocols to facilitate clinical translation. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

11 pages, 1329 KB  
Article
Active Inclusion Bodies in the Multienzymatic Synthesis of UDP-N-acetylglucosamine
by Romana Köszagová, Klaudia Palenčárová and Jozef Nahálka
Int. J. Mol. Sci. 2025, 26(19), 9679; https://doi.org/10.3390/ijms26199679 - 4 Oct 2025
Abstract
Bacterial inclusion bodies (IBs) are still generally considered to be waste products of recombinant protein production, despite various studies that have challenged this conventional view in the last two decades, and have been proposed for use as immobilized enzymes in vivo for biocatalysis. [...] Read more.
Bacterial inclusion bodies (IBs) are still generally considered to be waste products of recombinant protein production, despite various studies that have challenged this conventional view in the last two decades, and have been proposed for use as immobilized enzymes in vivo for biocatalysis. Current advances in genetic and molecular biology make it possible to perform multienzymatic reactions or enzymatic cascades to synthesize valuable products. When cascades need cofactor regener tion, it is difficult to use “cheap” whole cells or their lysates, and “expensive” enzyme purification is required. The capture of enzymatic activity into active IBs (aIBs), well-separable protein aggregates from cell lysate, could represent a usable compromise between purified enzymes and cell lysates. It is shown here that the combination of two polyphosphate kinases (PPKs) in the form of aIBs leads to almost 10-fold ATP regeneration and 100% UTP utilization without degradation into adenosine or uridine. PPKs have been combined with N-acetylhexosamine 1-kinase and N-acetylglucosamine-1-phosphate uridyltransferase to produce valuable UDP-N-acetylglucosamine, but the described approach could be used in various multienzymatic syntheses to avoid enzyme purification and ensure nucleotide triphosphate regeneration. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 1190 KB  
Review
Liver Progenitor Cells: Cellular Origins, Plasticity, and Signaling Pathways in Liver Regeneration
by Jinsol Han, Ahyeon Sung, Hayeong Jeong and Youngmi Jung
Biology 2025, 14(10), 1361; https://doi.org/10.3390/biology14101361 - 4 Oct 2025
Abstract
The liver has a notable regenerative capacity, primarily through hepatocyte proliferation. However, when this process is impaired—due to severe and/or chronic injury—liver progenitor cells (LPCs) serve as a facultative reserve to restore hepatic function. LPCs, which are a bipotent and heterogeneous population located [...] Read more.
The liver has a notable regenerative capacity, primarily through hepatocyte proliferation. However, when this process is impaired—due to severe and/or chronic injury—liver progenitor cells (LPCs) serve as a facultative reserve to restore hepatic function. LPCs, which are a bipotent and heterogeneous population located near the canals of Hering, can differentiate into hepatocytes and cholangiocytes. Recent evidence suggests that LPCs may originate from mature hepatic cells—such as hepatocytes, cholangiocytes, and hepatic stellate cells—through dedifferentiation under specific injury conditions. Cellular plasticity in the liver is governed by complex signaling networks that regulate LPC activation, maintenance, and lineage commitment. However, the precise cellular origin of LPCs and the mechanisms driving their activation remain incompletely defined. Therefore, this review aims to synthesize current insights into LPC biology and emphasize their diverse cellular origins, functional roles in liver regeneration, and the key signaling pathways involved. A deeper understanding of LPC dynamics may ultimately guide the development of novel therapeutic strategies to enhance liver regeneration in chronic liver disease. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

20 pages, 1591 KB  
Case Report
Highlighting the Importance of Signaling Pathways and Immunohistochemistry Features in HCC: A Case Report and Literature Review
by Madalin Alexandru Hasan, Ioana Larisa Paul, Simona Cavalu, Ovidiu Laurean Pop, Lorena Paduraru, Ioan Magyar and Mihaela Doina Chirila
Reports 2025, 8(4), 197; https://doi.org/10.3390/reports8040197 - 3 Oct 2025
Abstract
Background and Clinical Significance: In hepatocellular carcinoma (HCC), numerous signaling pathways become aberrantly regulated, resulting in sustained cellular proliferation and enhanced metastatic potential. Tumors that lack PYGO2 may not show the same types of tissue remodeling or regenerative features driven by the Wnt/β-catenin [...] Read more.
Background and Clinical Significance: In hepatocellular carcinoma (HCC), numerous signaling pathways become aberrantly regulated, resulting in sustained cellular proliferation and enhanced metastatic potential. Tumors that lack PYGO2 may not show the same types of tissue remodeling or regenerative features driven by the Wnt/β-catenin pathway, which could make the tumor behave differently from others that are Wnt-positive. PIK3CA-positive tumors are often associated with worse prognosis due to the aggressive nature of the PI3K/AKT pathway activation. This is linked to higher chances of metastasis, recurrence, and resistance to therapies that do not target this pathway. Case presentation: In this paper we present a rare case of hepatocellular carcinoma with PIK3CA-positive and PYGO2-negative signaling pathways, several key aspects of the tumor’s behavior, prognosis, and treatment options. Although alpha-fetoprotein (AFP) levels were significantly elevated, the CT and MRI examination showed characteristics of malignancy, HCC with secondary hepatic lesions and associated perfusion disturbances. The case particularities and immunohistochemistry features are highlighted in the context of literature review, the PIK3CA mutation suggesting the activation of the PI3K/AKT/mTOR pathway, a critical signaling pathway involved in cell survival, proliferation, and metabolism. Conclusions: Due to the aggressive nature of PIK3CA mutations, close monitoring and consideration of immunotherapy and targeted treatments are of crucial importance. Full article
(This article belongs to the Section Oncology)
15 pages, 1603 KB  
Article
Comparative In Vitro Osteogenic Capacities of Bone Marrow- and Periosteal-Derived Progenitor Cells
by Kalyn Herzog, Julie Nguyen-Edquilang and Matthew Stewart
Biology 2025, 14(10), 1354; https://doi.org/10.3390/biology14101354 - 2 Oct 2025
Abstract
Fracture repair complications occur in 5–10% of cases, despite bone’s regenerative capacity. Bone marrow-derived (BM) stem cells have been extensively investigated for orthopedic applications but, given the critical role that periosteum plays in fracture repair, periosteal-derived (PO) cells offer a promising alternative cell [...] Read more.
Fracture repair complications occur in 5–10% of cases, despite bone’s regenerative capacity. Bone marrow-derived (BM) stem cells have been extensively investigated for orthopedic applications but, given the critical role that periosteum plays in fracture repair, periosteal-derived (PO) cells offer a promising alternative cell source. This study compared the in vitro osteogenic capacities of equine BM and PO cells. Passage 3 cells from each source were maintained in osteogenic medium for up to 10 days. Osteogenesis was assessed by Runx2, Osterix, and alkaline phosphatase (ALP) mRNA up-regulation, induction of ALP activity, and matrix mineralization. Comparisons were made by paired t tests, repeated measures one-way or two-way ANOVAs, as indicated. BM cells proved superior to PO cells in osteogenesis assays. BM cells significantly up-regulated Runx2, Osterix, and ALP mRNAs, ALP activity, and secreted a mineralized matrix by day 10. PO cells did not. BMP-2 expression increased significantly in BM cells in osteogenic medium, whereas BMP-2 expression in PO cells was unchanged. Exogenous BMP-2 did not restore osteogenesis in periosteal cells, indicating that ex vivo expansion affects periosteal osteogenic capacity beyond BMP-2 downregulation. Clinical applications of PO cells will require the identification and exogenous provision of requisite stimulatory factors and substrates. Full article
(This article belongs to the Special Issue Osteoblast Differentiation in Health and Disease)
Show Figures

Figure 1

25 pages, 5895 KB  
Article
Oral Gel Formulation of Cotinus coggygria Scop. Stem Bark Extract: Development, Characterization, and Therapeutic Efficacy in a Rat Model of Aphthous Stomatitis
by Jovana Bradic, Miona Vuletic, Vladimir Jakovljevic, Jasmina Sretenovic, Suzana Zivanovic, Marina Tomovic, Jelena Zivkovic, Aleksandar Kocovic and Nina Dragicevic
Pharmaceutics 2025, 17(10), 1293; https://doi.org/10.3390/pharmaceutics17101293 - 2 Oct 2025
Abstract
Background/Objectives: Encouraged by the traditional use of Cotinus coggygria Scop. (European smoketree) for its anti-inflammatory and antioxidant properties, and considering the limitations of current therapies for recurrent aphthous stomatitis (RAS), we aimed to develop and evaluate a mucoadhesive oral gel containing C. coggygria [...] Read more.
Background/Objectives: Encouraged by the traditional use of Cotinus coggygria Scop. (European smoketree) for its anti-inflammatory and antioxidant properties, and considering the limitations of current therapies for recurrent aphthous stomatitis (RAS), we aimed to develop and evaluate a mucoadhesive oral gel containing C. coggygria stem bark extract. Methods: A thermosensitive gel was formulated using Carbopol® 974P NF and poloxamer 407, enriched with 5% C. coggygria extract (CC gel), and characterized for its organoleptic properties, pH, electrical conductivity, and storage stability over six months. Therapeutic efficacy was assessed in a Wistar albino rat model of chemically induced oral ulcers. Animals were divided into three groups: untreated controls (CTRL), rats treated with gel base (GB), and those treated with CC gel over a 10-day period. Healing progression was monitored macroscopically (ulcer size reduction), biochemically (oxidative stress markers in plasma and tissue), and histologically. Results: The CC gel demonstrated satisfactory physicochemical stability and mucosal compatibility. Moreover, it significantly accelerated ulcer contraction and achieved complete re-epithelialization by day 6. Biochemical analyses revealed reduced TBARS and increased SOD, CAT, and GSH levels in ulcer tissue, indicating enhanced local antioxidant defense. Histological evaluation confirmed early resolution of inflammation, pronounced fibroblast activity, capillary proliferation, and full epithelial regeneration in the CC group, in contrast to delayed healing and persistent inflammatory infiltration in the GB and CTRL groups. Conclusions: These findings indicate that the CC gel has potential as a natural, topical formulation with antioxidant and regenerative properties for RAS, although further studies, including clinical evaluation, are required to confirm its overall efficacy and long-term safety. Full article
Show Figures

Figure 1

15 pages, 1939 KB  
Review
Challenges of Ozone Therapy in Periodontal Regeneration: A Narrative Review and Possible Therapeutic Improvements
by Nada Tawfig Hashim, Rasha Babiker, Vivek Padmanabhan, Md Sofiqul Islam, Sivan Padma Priya, Nallan C. S. K. Chaitanya, Riham Mohammed, Shahistha Parveen Dasnadi, Ayman Ahmed, Bakri Gobara Gismalla and Muhammed Mustahsen Rahman
Curr. Issues Mol. Biol. 2025, 47(10), 811; https://doi.org/10.3390/cimb47100811 - 1 Oct 2025
Abstract
Ozone (O3) has re-emerged in periodontology for its antimicrobial, oxygenating, and immunomodulatory actions, yet its role in regeneration remains contentious. This narrative review synthesizes current evidence on adjunctive ozone use in periodontal therapy, delineates cellular constraints—especially in periodontal ligament fibroblasts (PDLFs)—and [...] Read more.
Ozone (O3) has re-emerged in periodontology for its antimicrobial, oxygenating, and immunomodulatory actions, yet its role in regeneration remains contentious. This narrative review synthesizes current evidence on adjunctive ozone use in periodontal therapy, delineates cellular constraints—especially in periodontal ligament fibroblasts (PDLFs)—and explores mitigation strategies using bioactive compounds and advanced delivery platforms. Two recent meta-analyses indicate that adjunctive ozone with scaling and root planing yields statistically significant reductions in probing depth and gingival inflammation, with no significant effects on bleeding on probing, plaque control, or clinical attachment level; interpretation is limited by heterogeneity of formulations, concentrations, and delivery methods. Mechanistically, ozone imposes a dose-dependent oxidative burden that depletes glutathione and inhibits glutathione peroxidase and superoxide dismutase, precipitating lipid peroxidation, mitochondrial dysfunction, ATP depletion, and PDLF apoptosis. Concurrent activation of NF-κB and upregulation of IL-6/TNF-α, together with matrix metalloproteinase-mediated extracellular matrix degradation and tissue dehydration (notably with gaseous applications), further impairs fibroblast migration, adhesion, and ECM remodeling, constraining regenerative potential. Emerging countermeasures include co-administration of polyphenols (epigallocatechin-3-gallate, resveratrol, curcumin, quercetin), coenzyme Q10, vitamin C, and hyaluronic acid to restore redox balance, stabilize mitochondria, down-modulate inflammatory cascades, and preserve ECM integrity. Nanocarrier-based platforms (nanoemulsions, polymeric nanoparticles, liposomes, hydrogels, bioadhesive films) offer controlled ozone release and co-delivery of protectants, potentially widening the therapeutic window while minimizing cytotoxicity. Overall, current evidence supports ozone as an experimental adjunct rather than a routine regenerative modality. Priority research needs include protocol standardization, dose–response definition, long-term safety, and rigorously powered randomized trials evaluating bioactive-ozone combinations and nanocarrier systems in clinically relevant periodontal endpoints. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

30 pages, 1346 KB  
Review
Electrospun Bio-Scaffolds for Mesenchymal Stem Cell-Mediated Neural Differentiation: Systematic Review of Advances and Future Directions
by Luigi Ruccolo, Aleksandra Evangelista, Marco Benazzo, Bice Conti and Silvia Pisani
Int. J. Mol. Sci. 2025, 26(19), 9528; https://doi.org/10.3390/ijms26199528 - 29 Sep 2025
Abstract
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly [...] Read more.
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly through the combination of electrospun nanofibrous scaffolds and mesenchymal stem cells (MSCs). Electrospun fibers mimic the neural extracellular matrix, providing topographical and mechanical cues that enhance MSC adhesion, viability, and neural differentiation. MSCs are multipotent stem cells with robust paracrine and immunomodulatory activity, capable of supporting regeneration and, under proper stimuli, acquiring neural-like phenotypes. This systematic review, following the PRISMA 2020 method, analyzes 77 selected articles from the last ten years to assess the potential of electrospun biopolymer scaffolds for MSC-mediated neural repair. We critically examine the scaffold’s composition (synthetic and natural polymers), fiber architecture (alignment and diameter), structural and mechanical properties (porosity and stiffness), and biofunctionalization strategies. The influence of MSC tissue sources (bone marrow, adipose, and dental pulp) on neural differentiation outcomes is also discussed. The results of a literature search show both in vitro and in vivo enhanced neural marker expression, neurite extension, and functional recovery when MSCs are seeded onto optimized electrospun scaffolds. Therefore, integrating stem cell therapy with advanced biomaterials offers a promising route to bridge the gap between neural injury and functional regeneration. Full article
(This article belongs to the Special Issue Tissue Engineering Related Biomaterials: Progress and Challenges)
Show Figures

Figure 1

27 pages, 8669 KB  
Article
Cerium Phosphate Nanoparticles: Synthesis, Characterization, Biocompatibility, Regenerative Potential, and Antioxidant Activity
by Ekaterina V. Silina, Victor A. Stupin, Natalia E. Manturova, Elena L. Chuvilina, Akhmedali A. Gasanov, Olga I. Andreeva, Elena V. Korobko, Natalia V. Andreeva, Svetlana A. Dodonova, Daria D. Tkachenko, Dmitry Y. Izmailov, Natalia Y. Tabachkova and Yulia G. Suzdaltseva
Molecules 2025, 30(19), 3916; https://doi.org/10.3390/molecules30193916 - 28 Sep 2025
Abstract
The aim of this study was to synthesize, characterize, and investigate the biomedical effects of nanoscale cerium phosphate obtained via different synthesis techniques, as well as to evaluate the influence of various CePO4 concentrations on cells involved in skin structure regeneration (human [...] Read more.
The aim of this study was to synthesize, characterize, and investigate the biomedical effects of nanoscale cerium phosphate obtained via different synthesis techniques, as well as to evaluate the influence of various CePO4 concentrations on cells involved in skin structure regeneration (human mesenchymal stem cells, keratinocytes, and fibroblasts) and establish their antioxidant properties. Methods and Results: Cerium(III) orthophosphate was obtained by precipitation with ammonium dihydrogen phosphate from a nitrate solution. By changing the initial concentrations of the solutions and the drying and annealing temperatures, the best conditions for obtaining nanosized phosphate powders were established. The structure of rhabdophane was obtained by X-ray diffraction analysis, and the particle sizes were measured by transmission electron microscopy. The particle sizes ranged from 2 to 10 nm in the transverse direction and 20 to 50 nm in the longitudinal direction. Studies on cell lines have shown a high level of safety, as well as the regenerative potential of CePO4 nanoparticles, which have a stimulating effect on the proliferation of MSCs at concentrations of 10−2 to 10−3 M for 48 h after application and stimulate the metabolism of human keratinocytes and fibroblasts at a wide range of concentrations (10−3 to 10−5 M). A dose-dependent antioxidant effect of small CePO4 nanoparticles at a concentration of 10−2 to 10−5 has been established, which is stronger than ascorbic acid. Conclusions: A method for obtaining cerium phosphate nanoparticles with beneficial biomedical effects was developed. The non-cytotoxicity and regenerative potential of CePO4 were established at a wide range of concentrations on different cell lines that are involved in the healing of skin wounds, as were their antioxidant properties. Full article
Show Figures

Figure 1

15 pages, 2459 KB  
Article
The Effect of Liposomal DMU-212 on the Differentiation of Human Ovarian Granulosa Cells in a Primary 3D Culture Model
by Małgorzata Jόzkowiak, Dariusz Wawrzyniak, Alicja Kawczyńska, Paulina Skupin-Mrugalska, Mikołaj Czajkowski, Paul Mozdziak, Marta Podralska, Marek Żywicki, Bartosz Kempisty, Robert Z. Spaczyński and Hanna Piotrowska-Kempisty
Pharmaceuticals 2025, 18(10), 1460; https://doi.org/10.3390/ph18101460 - 28 Sep 2025
Abstract
Background/Objectives: Human ovarian granulosa cells (hGCs) are crucial to ovarian follicle development and function, exhibiting multipotency and the ability to differentiate into neuronal cells, chondrocytes, and osteoblasts in vitro. 3,4,5,4′-tetramethoxystilbene (DMU-212) is a methylated derivative of resveratrol, a natural polyphenol found in grapes [...] Read more.
Background/Objectives: Human ovarian granulosa cells (hGCs) are crucial to ovarian follicle development and function, exhibiting multipotency and the ability to differentiate into neuronal cells, chondrocytes, and osteoblasts in vitro. 3,4,5,4′-tetramethoxystilbene (DMU-212) is a methylated derivative of resveratrol, a natural polyphenol found in grapes and berries, with a wide spectrum of biological activities, including notable anticancer properties. Interestingly, DMU-212 exhibits cytotoxic effects predominantly on cancer cells while sparing non-cancerous ones, and evidence suggests that similar to resveratrol, it may also promote hGC differentiation. This study aimed to investigate the effects of the liposomal formulation of this methylated resveratrol analog—lipDMU-212—on the osteogenic differentiation ability of hGCs in a primary three-dimensional cell culture model. Methods: lipDMU-212 was formulated using the thin-film hydration method. GC spheroids’ viability was evaluated after exposure to lipDMU-212, an osteoinductive medium, or both. Osteogenic differentiation was confirmed using Alizarin Red staining and quantified by measuring Alkaline Phosphatase (ALP) activity on days 1, 7, and 15. RNA sequencing (RNA-seq) was performed to explore molecular mechanisms underlying lipDMU-212-induced differentiation. Results: lipDMU-212 promoted osteogenic differentiation of hGCs in the 3D cell culture model, as evidenced by increased mineralization and a ~4-fold increase in ALP activity compared with the control. RNA-seq revealed up-regulation of genes related to cell differentiation and cellular identity. Furthermore, JUN (+2.82, p = 0.003), LRP1 (+2.06, p = 0.05), AXIN1 (+3.02, p = 0.03), and FYN (+3.30, p = 0.01) were up-regulated, indicating modulation of the Wnt/β-catenin signaling pathway, a key regulator of osteoblast differentiation. Conclusions: The ability of GCs to differentiate into diverse tissue-specific cell types underscores their potential in regenerative medicine. This study contributes to the understanding of lipDMU-212’s role in osteogenic differentiation and highlights its potential in developing future therapies for degenerative bone diseases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

18 pages, 2404 KB  
Communication
Osteoporosis-Improving Effects of Extracellular Vesicles from Human Amniotic Membrane Stem Cells in Ovariectomized Rats
by Ka Young Kim, Khan-Erdene Tsolmon, Zolzaya Bavuu, Chan Ho Noh, Hyun-Soo Kim, Heon-Sang Jeong, Dongsun Park, Soon-Cheol Hong and Yun-Bae Kim
Int. J. Mol. Sci. 2025, 26(19), 9503; https://doi.org/10.3390/ijms26199503 - 28 Sep 2025
Abstract
Osteoporosis is a common skeletal disease characterized by decreased bone density, leading to bone fragility and fractures, especially in menopausal women. The purpose of this study is to confirm the anti-osteoporosis activity of stem cell extracellular vesicles (EVs) as a material of regenerative [...] Read more.
Osteoporosis is a common skeletal disease characterized by decreased bone density, leading to bone fragility and fractures, especially in menopausal women. The purpose of this study is to confirm the anti-osteoporosis activity of stem cell extracellular vesicles (EVs) as a material of regenerative medicine. Mesenchymal stem cells have a potential to differentiate into osteocytes, so directly reconstruct bone tissue or facilitate bone regeneration via paracrine effects. Paracrine effects are mediated by functional molecules delivered in EVs released from stem cells. EVs containing high concentrations of growth factors (GFs) and neurotrophic factors (NFs) were attained via hypoxia culture of human amniotic membrane stem cells (AMSCs). From the EVs with a mean diameter of 77 nm, 751 proteins and 15 species of lipids were identified. Sprague-Dawley rats were ovariectomized, and eight weeks later, intravenously injected with EVs at doses of 1 × 108, 3 × 108 or 1 × 109 particles/100 μL/body, weekly for eight weeks. One week after the final administration, the serum and bone parameters related to bone density were analyzed. Serum 17β-estradiol, alkaline phosphatase, and calcium levels that decreased in ovariectomized rats were restored by EVs in a dose-dependent manner. Bone parameters such as bone mineral density, bone mineral content, bone volume/tissue volume ratio, trabecular number, trabecular space, and bending strength were also improved by treatment with EVs. Such effects were confirmed by morphological findings of micro-computed tomography. Taken together, it is suggested that AMSC-EVs containing high concentrations of GFs and NFs preserve bone soundness by promoting bone regeneration and inhibiting bone resorption. Full article
(This article belongs to the Special Issue Stem Cells in Health and Disease: 3rd Edition)
Show Figures

Figure 1

53 pages, 5543 KB  
Review
A Review of Linear Motor Electromagnetic Energy Regenerative Suspension and Key Technologies
by Dong Sun, Renkai Ding and Rijing Dong
Energies 2025, 18(19), 5158; https://doi.org/10.3390/en18195158 - 28 Sep 2025
Abstract
Linear motor electromagnetic energy regenerative suspension (LMEERS), integrating dual functionalities of energy regeneration and active control, possesses the potential to overcome the performance limitations inherent in existing suspension architectures. Research on key technologies for LMEERS aligns with the contemporary automotive development theme of [...] Read more.
Linear motor electromagnetic energy regenerative suspension (LMEERS), integrating dual functionalities of energy regeneration and active control, possesses the potential to overcome the performance limitations inherent in existing suspension architectures. Research on key technologies for LMEERS aligns with the contemporary automotive development theme of “enhanced comfort, improved safety, and optimized energy efficiency”. This paper reviews the research progress of the configuration design, performance optimization, functionality switching criterion identification, and top-layer control strategies of LMEERS. Regarding configuration design, a systematic summary is provided for the design schemes of fundamental configuration and the technical features of three composite configurations. In the aspect of performance optimization, the specific approaches and their effectiveness in enhancing LMEERS comprehensive characteristics are analyzed. Concerning functionality switching criterion identification, the operating principles and performance differences among various estimation methods in identifying road surface information are discussed. For top-layer control strategies, the characteristics and applicability of various control methods in exploiting the dual functionalities of LMEERS are summarized. Future developments in LMEERS are anticipated to trend towards integration, lightweighting, standardization, intellectualization, and multi-mode operation. This review provides a theoretical reference for the design optimization and technological innovation of LMEERS, contributing to the advancement of automotive chassis systems in terms of electrification, intellectualization, and energy conservation. Full article
(This article belongs to the Special Issue Vibration Energy Harvesting)
Show Figures

Figure 1

Back to TopTop