Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = refrigerant centrifugal pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14552 KiB  
Article
Energy Characteristics of the Compressor in a Heat Pump Based on Energy Conversion Theory
by Yingju Pei, Zhezhong Xue, Xu Luo, Lei Zeng, Xiaohua Xiao, Huyang Xu and Li Kou
Processes 2025, 13(2), 471; https://doi.org/10.3390/pr13020471 - 8 Feb 2025
Viewed by 728
Abstract
The compressor in the heat pump is crucial for efficient geothermal energy utilization, but faces challenges in optimizing energy efficiency, especially under variable working conditions. This paper investigates the complex energy characteristics of the R134a refrigerant in centrifugal compressors using CFD, combining entropy [...] Read more.
The compressor in the heat pump is crucial for efficient geothermal energy utilization, but faces challenges in optimizing energy efficiency, especially under variable working conditions. This paper investigates the complex energy characteristics of the R134a refrigerant in centrifugal compressors using CFD, combining entropy generation and relative energy rotor enthalpy to analyze energy conversion theory. Key factors such as temperature and pressure are fully considered. The results indicate that energy loss in centrifugal compressors mainly occurs in the gap between the blade top and near the tongue, with a vortex tendency at the impeller’s tail edge. As the flow rate increases from 1.2 kg/s to 1.45 kg/s, the maximum total entropy generation in the impeller decreases by 161%, and the rotor enthalpy minimum value increases by about 90%. This energy conversion analysis method can identify changes in the location and extent of energy loss, offering a new perspective for optimizing the structure and energy-saving design of centrifugal impellers. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 9760 KiB  
Review
Application and Challenge of High-Speed Pumps with Low-Temperature Thermosensitive Fluids
by Beile Zhang, Ben Niu, Ze Zhang, Shuangtao Chen, Rong Xue and Yu Hou
Energies 2024, 17(15), 3732; https://doi.org/10.3390/en17153732 - 29 Jul 2024
Viewed by 1994
Abstract
The rapid development of industrial and information technology is driving the demand to improve the applicability and hydraulic performance of centrifugal pumps in various applications. Enhancing the rotational speed of pumps can simultaneously increase the head and reduce the impeller diameter, thereby reducing [...] Read more.
The rapid development of industrial and information technology is driving the demand to improve the applicability and hydraulic performance of centrifugal pumps in various applications. Enhancing the rotational speed of pumps can simultaneously increase the head and reduce the impeller diameter, thereby reducing the pump size and weight and also improving pump efficiency. This paper reviews the current application status of high-speed pumps using low-temperature thermosensitive fluids, which have been applied in fields such as novel energy-saving cooling technologies, aerospace, chemical industries, and cryogenic engineering. Due to operational constraints and thermal effects, there are inherent challenges that still need to be addressed for high-speed pumps. Based on numerical simulation and experimental research for different working fluids, the results regarding cavitation within the inducer have been categorized and summarized. Improvements to cavitation models, the mechanism of unsteady cavity shedding, vortex generation and cavitation suppression, and the impact of cavitation on pump performance were examined. Subsequently, the thermal properties and cavitation thermal effects of low-temperature thermosensitive fluids were analyzed. In response to the application requirements of pump-driven two-phase cooling systems in data centers, a high-speed refrigerant pump employing hydrodynamic bearings has been proposed. Experimental results indicate that the prototype achieves a head of 56.5 m and an efficiency of 36.1% at design conditions (n = 7000 rpm, Q = 1.5 m3/h). The prototype features a variable frequency motor, allowing for a wider operational range, and has successfully passed both on/off and continuous operation tests. These findings provide valuable insights for improving the performance of high-speed refrigerant pumps in relevant applications. Full article
Show Figures

Figure 1

50 pages, 9834 KiB  
Review
A Review of Energy-Efficient Technologies and Decarbonating Solutions for Process Heat in the Food Industry
by François Faraldo and Paul Byrne
Energies 2024, 17(12), 3051; https://doi.org/10.3390/en17123051 - 20 Jun 2024
Cited by 6 | Viewed by 4851
Abstract
Heat is involved in many processes in the food industry: drying, dissolving, centrifugation, extraction, cleaning, washing, and cooling. Heat generation encompasses nearly all processes. This review first presents two representative case studies in order to identify which processes rely on the major energy [...] Read more.
Heat is involved in many processes in the food industry: drying, dissolving, centrifugation, extraction, cleaning, washing, and cooling. Heat generation encompasses nearly all processes. This review first presents two representative case studies in order to identify which processes rely on the major energy consumption and greenhouse gas (GHG) emissions. Energy-saving and decarbonating potential solutions are explored through a thorough review of technologies employed in refrigeration, heat generation, waste heat recovery, and thermal energy storage. Information from industrial plants is collected to show their performance under real conditions. The replacement of high-GWP (global warming potential) refrigerants by natural fluids in the refrigeration sector acts to lower GHG emissions. Being the greatest consumers, the heat generation technologies are compared using the levelized cost of heat (LCOH). This analysis shows that absorption heat transformers and high-temperature heat pumps are the most interesting technologies from the economic and decarbonation points of view, while waste heat recovery technologies present the shortest payback periods. In all sectors, energy efficiency improvements on components, storage technologies, polygeneration systems, the concept of smart industry, and the penetration of renewable energy sources appear as valuable pathways. Full article
(This article belongs to the Collection Energy Transition Towards Carbon Neutrality)
Show Figures

Graphical abstract

20 pages, 10796 KiB  
Article
Numerical and Experimental Investigation of Flow Characteristics in a Fluid Self-Lubricating Centrifugal Pump with R134a Refrigerant
by Xufeng Fang, Beile Zhang, Xinyi Lin, Hong Zhou, Shuangtao Chen, Yu Hou, Rong Xue and Ze Zhang
Appl. Sci. 2023, 13(14), 8062; https://doi.org/10.3390/app13148062 - 10 Jul 2023
Cited by 5 | Viewed by 2728
Abstract
With the rapid development of information technology, researchers have paid attention to the pump-driven two-phase cooling loop technology for data centers, which imposes requirements on the efficiency and size of the pump. A fluid self-lubricating centrifugal pump with R134a refrigerant was developed to [...] Read more.
With the rapid development of information technology, researchers have paid attention to the pump-driven two-phase cooling loop technology for data centers, which imposes requirements on the efficiency and size of the pump. A fluid self-lubricating centrifugal pump with R134a refrigerant was developed to reach a higher rotation speed and oil-free system, resulting in a more diminutive size. Due to the high rotation speed and refrigerant pressure approaching saturated vapor pressure, the internal flow characteristics and cavitating characteristics are critical and complex. This paper focuses on the prototype’s head and cavitation performance based on experimental and numerical data. The experiments indicated that the head coefficient of the pump under design conditions is 0.9881, and the pump’s critical cavitation number and breakdown number are 0.551 and 0.412, respectively. The numerical results can predict the head and cavitation with deviations less than 2.6%. To study changing patterns in flow characteristics under the different operating conditions in the refrigerant centrifugal pump, the numerical model based on a modified Sauer-Schnerr cavitation model was built to analyze the distributions of pressure, temperature, relative velocity, and bubble volume across every hydraulic component and different degrees of cavitation, and proposed the influence of the thermal effect on refrigerant cavitating. The cavitating flow characteristics were obtained with the aim of providing guidance for the hydraulic design of a refrigerant centrifugal pump. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics and Its Engineering Applications)
Show Figures

Figure 1

Back to TopTop