Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = reflector cavity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3778 KiB  
Article
Total Internal Reflection End-Pumped Solar Laser with the Solar-to-Laser Conversion Efficiency of 6.09%
by Lin Wang, Haiyang Zhang, Dário Garcia, Weichen Xu, Changming Zhao and Anran Guo
Energies 2025, 18(15), 4033; https://doi.org/10.3390/en18154033 - 29 Jul 2025
Viewed by 130
Abstract
A novel total internal reflection solar end-pumped laser system has been introduced for the first time, aimed at enhancing the solar-to-laser conversion efficiency. Utilizing a conical solid or cavity reflector, this system refocuses sunlight from a 0.2818 m2 parabolic mirror into a [...] Read more.
A novel total internal reflection solar end-pumped laser system has been introduced for the first time, aimed at enhancing the solar-to-laser conversion efficiency. Utilizing a conical solid or cavity reflector, this system refocuses sunlight from a 0.2818 m2 parabolic mirror into a single Ce (0.05 at.%): Nd (1 at.%): YAG crystal rod, measuring 4 mm in diameter and 10 mm in length, thereby promoting total internal reflection and extending the pumping path. Simulation results indicate that under the same solar input power conditions (249.05 W), the conversion efficiencies of the conical solid reflector and cavity reflector systems are 1.2 times and 1.33 times higher than the current highest recorded efficiency of single-rod systems, respectively. At 950 W/m2, the conical reflector reaches 5.48% efficiency, while the cavity reflector attains 6.09%. Their collection efficiencies are 52.03 W/m2 and 57.90 W/m2, with slope efficiencies of 6.65% and 7.72%. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

11 pages, 7216 KiB  
Article
Low-Finesse Fabry–Perot Cavity Design Based on a Reflective Sphere
by Ju Wang, Ye Gao, Jinlong Yu, Hao Luo, Xuemin Su, Xu Han, Yang Gao, Ben Cai and Chuang Ma
Photonics 2025, 12(7), 723; https://doi.org/10.3390/photonics12070723 - 17 Jul 2025
Viewed by 222
Abstract
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. [...] Read more.
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. However, in optical design, low-finesse cavities impose strict requirements on reflectivity, and maintaining fine stability during cavity movement is challenging. Achieving ideal orthogonal interference with a finesse of 0.5 thus presents considerable difficulties. This study proposes a novel low-finesse F–P cavity design that employs a high-reflectivity spherical reflector and the end face of a fiber collimator as the reflective surfaces of the cavity. By utilizing beam divergence characteristics and geometric parameters, a structure with a finesse of approximately 0.5 is quantitatively designed, enabling a simplified implementation without the need for angular alignment. Compared with conventional approaches, this method eliminates the need for precise angular alignment of the reflective surfaces, significantly simplifying implementation. The experimental results show that, under fixed receiving field angles and beam radii of the fiber collimators, ideal orthogonal interference can be achieved by selecting the radius of the reflective sphere. Under varying working distances, the average finesse values of the interference spectra measured by Collimators 1 and 2 are 0.496 and 0.502, respectively, both close to the theoretical design value of 0.5, thereby meeting the design requirements. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

12 pages, 2778 KiB  
Article
High Reflectivity, Compact, and Widely Tunable Distributed Bragg Reflector Based on Silicon-Rich SiNx-SiOy at 80 °C PECVD
by Irene Rodríguez Lamoso and Sascha Preu
Appl. Sci. 2025, 15(6), 3330; https://doi.org/10.3390/app15063330 - 18 Mar 2025
Viewed by 2460
Abstract
This study investigates the mechanical and optical characteristics of silicon nitride thin films deposited with PECVD at 80 °C for tunable silicon-rich SiNx-SiOy-based MEMS optical cavities. Varying the deposition parameters using SiH4 and N2 as precursor gases [...] Read more.
This study investigates the mechanical and optical characteristics of silicon nitride thin films deposited with PECVD at 80 °C for tunable silicon-rich SiNx-SiOy-based MEMS optical cavities. Varying the deposition parameters using SiH4 and N2 as precursor gases for silicon-rich SiNx thin films allows us to tune the refractive index to a value as high as 2.40 ± 0.013 at an extinction coefficient of only 0.008, an extremely low surface roughness of only 0.26 nm, and a compressive stress of about 150 MPa. We deposited 6.5-layer pairs of silicon-rich SiNx/SiOy-distributed Bragg reflector (DBR) micro-electro-mechanical system (MEMS) mirror that covers the whole 1300 and 1550 nm range. Cavity architectures of 6.5 top and 6 bottom layer-pairs were fabricated in the clean room providing a variety of cavity lengths between 0.615 µm and 2.85 µm. These lengths were then simulated in order to estimate the Young’s Modulus of silicon-rich SiNx, obtaining values from 56 to 92 GPa. One of the designs was characterised electro-thermally providing a tuning range of at least 86.7 nm centred at 1585 nm. The tunable filters are well suitable for implementation as tuning element in lasers for optical coherence tomography. Full article
(This article belongs to the Special Issue Interdisciplinary Approaches and Applications of Optics & Photonics)
Show Figures

Figure 1

11 pages, 1999 KiB  
Article
Optimized Quasi-Optical Mode Converter for TE33,12 in 210 GHz Gyrotron
by Hamid Sharif, Muhammad Haris Jamil and Wenlong He
Micromachines 2025, 16(3), 308; https://doi.org/10.3390/mi16030308 - 6 Mar 2025
Viewed by 779
Abstract
This article discusses the design of a high-performance quasi-optical mode converter for the TE33,12 mode at 210 GHz. The conversion process is challenging due to a caustic-to-cavity radius ratio of approximately 0.41. The mode converter employs an optimized dimpled [...] Read more.
This article discusses the design of a high-performance quasi-optical mode converter for the TE33,12 mode at 210 GHz. The conversion process is challenging due to a caustic-to-cavity radius ratio of approximately 0.41. The mode converter employs an optimized dimpled wall launcher, analyzed using coupling mode theory with twenty-five coupled modes, compared to the usual nine modes and optimized reflector systems, to effectively address the conversion challenge.Electromagnetic field analysis within the launcher wall was optimized using MATLAB R2021b. The radiation fields from the launcher were analyzed in free space using Gaussian optics and vector diffraction theory. The mirror system consists of a quasi-elliptical mirror, an elliptical mirror, and phase-corrected parabolic mirrors. Following phase correction, the output window achieved a scalar Gaussian mode content of 99.0% and a vector Gaussian mode content of 97.4%. Full article
(This article belongs to the Special Issue Optoelectronic Fusion Technology)
Show Figures

Figure 1

15 pages, 6200 KiB  
Article
Low-Profile Proximity-Coupled Cavity-Less Magneto-Electric Dipole Antenna
by Khalid Almegbel and Kin-Fai Tong
Sensors 2025, 25(4), 1234; https://doi.org/10.3390/s25041234 - 18 Feb 2025
Viewed by 618
Abstract
Magneto-electric dipole (ME-dipole) antennas offer several advantages, including wide impedance bandwidth, stable high gain, unidirectional radiation, and low back-lobe radiation patterns, making them suitable for modern wireless communication systems. However, the thickness of conventional ME-dipole antennas is typically about a quarter wavelength (0.25 [...] Read more.
Magneto-electric dipole (ME-dipole) antennas offer several advantages, including wide impedance bandwidth, stable high gain, unidirectional radiation, and low back-lobe radiation patterns, making them suitable for modern wireless communication systems. However, the thickness of conventional ME-dipole antennas is typically about a quarter wavelength (0.25λo) at the center operating frequency, which may not be desirable for portable device applications. This work introduces a new feeding method that reduces the antenna profile and ground plane size while maintaining the same advantages. A suspended horizontal line is proposed to excite the cavity-less ME-dipole antenna through proximity coupling. The measured results demonstrate a wide impedance bandwidth of 45.3% (ranging from 2.05 GHz to 3.25 GHz) and an average in-band gain of 9 dBi with stable ±1 dBi in-band variation with a ground reflector of size about 0.89λo2. More importantly, the cavity-less design reduces the overall thickness of the antenna to 0.17λo at the center operating frequency. Full article
(This article belongs to the Special Issue Antenna Design and Array Signal Processing)
Show Figures

Figure 1

13 pages, 5289 KiB  
Article
Structure Design of UVA VCSEL for High Wall Plug Efficiency and Low Threshold Current
by Bing An, Yukun Wang, Yachao Wang, Zhijie Zou, Yang Mei, Hao Long, Zhiwei Zheng and Baoping Zhang
Photonics 2024, 11(11), 1012; https://doi.org/10.3390/photonics11111012 - 27 Oct 2024
Cited by 1 | Viewed by 1927
Abstract
Vertical-cavity surface emitting lasers in UVA band (UVA VCSELs) operating at a central wavelength of 395 nm are designed by employing PICS3D(2021) software. The simulation results indicate that the thickness of the InGaN quantum well and GaN barrier layers affect the emission efficiency [...] Read more.
Vertical-cavity surface emitting lasers in UVA band (UVA VCSELs) operating at a central wavelength of 395 nm are designed by employing PICS3D(2021) software. The simulation results indicate that the thickness of the InGaN quantum well and GaN barrier layers affect the emission efficiency of UVA VCSELs greatly, suggesting an optimal thicknesses of 2.2 nm for the well layer and 2.7 nm for the barrier layer. Additionally, an overall consideration of threshold current, series resistance, photoelectric conversion efficiency, and optical output power results in the optimized thickness of the ITO current spreading layer, ~20 nm. Furthermore, by employing a five-pair Al0.15Ga0.85N/GaN multi-quantum barrier electron blocking layer (EBL) instead of a single Al0.2Ga0.8N EBL, the device shows a ~51% enhancement in the optical output power and a ~48% reduction in the threshold current. The number of distributed Bragg reflector (DBR) pairs also plays crucial roles in the device’s photoelectric performance. The device designed in this study demonstrates a minimum lasing threshold of 1.16 mA and achieves a maximum wall plug efficiency of approximately 5%, outperforming other similar studies. Full article
(This article belongs to the Special Issue Next-Generation Vertical-Cavity Surface-Emitting Lasers)
Show Figures

Figure 1

12 pages, 5099 KiB  
Article
Application of Single-Frequency Arbitrarily Directed Split Beam Metasurface Reflector in Refractive Index Measurements
by Brian M. Wells, Joseph F. Tripp, Nicholas W. Krupa, Andrew J. Rittenberg and Richard J. Williams
Sensors 2024, 24(20), 6519; https://doi.org/10.3390/s24206519 - 10 Oct 2024
Viewed by 1501
Abstract
We present a sensor that utilizes a modified single-frequency split beam metasurface reflector to measure the refractive index of materials ranging from one to three. Samples are placed into a cavity between a PCB-etched dielectric and a reflecting ground plane. It is illuminated [...] Read more.
We present a sensor that utilizes a modified single-frequency split beam metasurface reflector to measure the refractive index of materials ranging from one to three. Samples are placed into a cavity between a PCB-etched dielectric and a reflecting ground plane. It is illuminated using a 10.525 GHz free-space transmit horn with reflecting angles measured by sweeping a receiving horn around the setup. Predetermined changes in measured angles determined through simulations will coincide with the material’s index. The sensor is designed using the Fourier transform method of array synthesis and verified with FEM simulations. The device is fabricated using PCB milling and 3D printing. The quality of the sensor is verified by characterizing 3D printed dielectric samples of various infill percentages and thicknesses. Without changing the metasurface design, the sensing performance is extended to accommodate larger sample thicknesses by including a modified 3D printed fish-eye lens mounted in front of the beam splitter; this helps to exaggerate changes in reflected angles for those samples. All the methods presented are in agreement and verified with single-frequency index measurements using Snell’s law. This device may offer a viable alternative to traditional index characterization methods, which often require large sample sizes for single-frequency measurements or expensive equipment for multi-frequency parameter extraction. Full article
(This article belongs to the Special Issue Optoelectronic Functional Devices for Sensing Applications)
Show Figures

Figure 1

13 pages, 4666 KiB  
Article
Tilted Wire Metamaterials Enabling Ultra-Broadband Absorption from Middle to Very Long Infrared Regimes
by Pan Wang, Chengyu Xiao, Shaowen Chen, Mengqi Zhang, Ya Sun, Haoyu Wang, Jin Zhang and Han Zhou
Photonics 2024, 11(10), 899; https://doi.org/10.3390/photonics11100899 - 25 Sep 2024
Cited by 1 | Viewed by 1287
Abstract
Infrared metamaterial absorbers underpin many entrenched scientific and technical applications, including radiative cooling, energy harvesting, infrared detectors, and microbolometers. However, achieving both perfect and ultra-broadband absorption remains an unmet scientific challenge because the traditional metamaterial absorber strategy suffers from complex multi-sized resonators and [...] Read more.
Infrared metamaterial absorbers underpin many entrenched scientific and technical applications, including radiative cooling, energy harvesting, infrared detectors, and microbolometers. However, achieving both perfect and ultra-broadband absorption remains an unmet scientific challenge because the traditional metamaterial absorber strategy suffers from complex multi-sized resonators and multiple meta-element patterns. We demonstrate a simple ultra-broadband infrared metamaterial absorber consisting of tilted graphite wires and an Al reflector. The proposed tilted wires-based metamaterial (TWM) absorber exhibits absorption of above 0.95 across the middle to very long-wavelength infrared spectrum (3–30 µm). By increasing the aspect ratio, the bandwidth can be expanded and achieve near-perfect absorption in the 3–50 μm spectral range. The excellent infrared absorptance performance primarily originates from the ohmic loss induced by the electromagnetic coupling between neighboring tilted wires. Furthermore, we propose a typical three-layer equivalent model featuring a resonator/insulator/reflector configuration that requires more than 84 resonant cavities to obtain comparable infrared absorptance. Our high-performance TWM absorber could accelerate the development of next-generation infrared thermal emitters and devices and other technologies that require infrared absorption. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

23 pages, 5026 KiB  
Article
Study on Bottom Distributed Bragg Reflector Radius and Electric Aperture Radius on Performance Characteristics of GaN-Based Vertical-Cavity Surface-Emitting Laser
by Dominika Dąbrówka and Robert P. Sarzała
Materials 2024, 17(13), 3107; https://doi.org/10.3390/ma17133107 - 25 Jun 2024
Cited by 1 | Viewed by 1517
Abstract
This article presents the results of a numerical analysis of a nitride-based vertical-cavity surface-emitting laser (VCSEL). The analyzed laser features an upper mirror composed of a monolithic high-contrast grating (MHCG) and a dielectric bottom mirror made of SiO2 and Ta2O [...] Read more.
This article presents the results of a numerical analysis of a nitride-based vertical-cavity surface-emitting laser (VCSEL). The analyzed laser features an upper mirror composed of a monolithic high-contrast grating (MHCG) and a dielectric bottom mirror made of SiO2 and Ta2O5 materials. The emitter was designed for light emission at a wavelength of 403 nm. We analyze the influence of the size of the dielectric bottom mirrors on the operation of the laser, including its power–current–voltage (LIV) characteristics. We also study the effect of changing the electrical aperture radius (active area dimensions). We demonstrate that the appropriate selection of these two parameters enables the temperature inside the laser to be reduced, lowering the laser threshold current and increasing its optical power output significantly. Full article
Show Figures

Figure 1

10 pages, 6251 KiB  
Article
Wavelength Tuning in Resonant Cavity Interband Cascade Light Emitting Diodes (RCICLEDs) via Post Growth Cavity Length Adjustment
by Nicolas Schäfer, Robert Weih, Julian Scheuermann, Florian Rothmayr, Johannes Koeth and Sven Höfling
Sensors 2024, 24(12), 3843; https://doi.org/10.3390/s24123843 - 14 Jun 2024
Cited by 1 | Viewed by 1289
Abstract
We demonstrate substrate-emitting resonant cavity interband cascade light emitting diodes (RCICLEDs) based on a single distributed Bragg reflector (DBR). These devices operate in continuous wave mode at room temperature. Compared to standard ICLEDs without a cavity, we achieved an 89% reduction in the [...] Read more.
We demonstrate substrate-emitting resonant cavity interband cascade light emitting diodes (RCICLEDs) based on a single distributed Bragg reflector (DBR). These devices operate in continuous wave mode at room temperature. Compared to standard ICLEDs without a cavity, we achieved an 89% reduction in the emission spectrum width, as indicated by the Full Width Half Maximum (FWHM) of 70 nm. Furthermore, we observed far-field narrowing and improved thermal stability. A single DBR configuration allows the cavity length to be adjusted by adding refractive index-matched material to the top of the epitaxial structure after epitaxial growth. This modification effectively shifts the cavity response towards longer wavelengths. We fabricated emitters comprising two cavities of different lengths, resulting in the emission of two distinct spectral lines that can be independently controlled. This dual-color capability enables one of the emission lines to serve as a built-in reference channel, making these LEDs highly suitable for cost-effective gas-sensing applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 3207 KiB  
Communication
Visual Strain Sensors Based on Fabry–Perot Structures for Structural Integrity Monitoring
by Qingyuan Chen, Furong Liu, Guofeng Xu, Boshuo Yin, Ming Liu, Yifei Xiong and Feiying Wang
Sensors 2024, 24(11), 3676; https://doi.org/10.3390/s24113676 - 6 Jun 2024
Cited by 1 | Viewed by 1367
Abstract
Strain sensors that can rapidly and efficiently detect strain distribution and magnitude are crucial for structural health monitoring and human–computer interactions. However, traditional electrical and optical strain sensors make access to structural health information challenging because data conversion is required, and they have [...] Read more.
Strain sensors that can rapidly and efficiently detect strain distribution and magnitude are crucial for structural health monitoring and human–computer interactions. However, traditional electrical and optical strain sensors make access to structural health information challenging because data conversion is required, and they have intricate, delicate designs. Drawing inspiration from the moisture-responsive coloration of beetle wing sheaths, we propose using Ecoflex as a flexible substrate. This substrate is coated with a Fabry–Perot (F–P) optical structure, comprising a “reflective layer/stretchable interference cavity/reflective layer”, creating a dynamic color-changing visual strain sensor. Upon the application of external stress, the flexible interference chamber of the sensor stretches and contracts, prompting a blue-shift in the structural reflection curve and displaying varying colors that correlate with the applied strain. The innovative flexible sensor can be attached to complex-shaped components, enabling the visual detection of structural integrity. This biomimetic visual strain sensor holds significant promise for real-time structural health monitoring applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

22 pages, 7141 KiB  
Article
Enhancement of Mosquito Collection for Ultraviolet Light-Emitting Diodes Trapping System Using Cavity Reflectors
by Jui-Chen Chang, Yi-Chian Chen, Wei-Yu Lu, Xuan-Huy Nguyen and Hsiao-Yi Lee
Photonics 2024, 11(6), 532; https://doi.org/10.3390/photonics11060532 - 3 Jun 2024
Viewed by 2700
Abstract
This research explores novel avenues for optimizing mosquito-catching efficiency using a multifaceted approach. While previous studies have primarily focused on singular parameters, such as light intensity or wind speed, this study delves into the intricate interplay between various factors. Experiment 1 challenges conventional [...] Read more.
This research explores novel avenues for optimizing mosquito-catching efficiency using a multifaceted approach. While previous studies have primarily focused on singular parameters, such as light intensity or wind speed, this study delves into the intricate interplay between various factors. Experiment 1 challenges conventional wisdom by revealing a wider light divergence angle. When the reflective plate combined with the airflow board was set to 0 cm in length, the effectiveness of capturing mosquitoes was lower than that of the 3 cm unit, suggesting overlooked variables at play. Experiment 2 introduces a novel perspective by demonstrating the superior efficiency of the 5 cm unit, even with reduced wind speed and luminous area under optimized conditions, showcasing the significance of a holistic approach. Moreover, Experiment 3 uncovers nuanced insights, showcasing the differential performance of units in capturing small insects versus mosquitoes and moths, highlighting the need for tailored strategies. By integrating these findings, the study pioneers the development of two distinct mosquito collection units, emphasizing the critical importance of balancing diverse parameters for optimal results. The innovation lies in the thorough investigation of multifaceted optimization strategies, providing valuable insights to propel advancements in mosquito control technologies. Full article
(This article belongs to the Special Issue Photodetector Materials and Optoelectronic Devices)
Show Figures

Figure 1

17 pages, 10836 KiB  
Article
Design of Mantis-Shrimp-Inspired Multifunctional Imaging Sensors with Simultaneous Spectrum and Polarization Detection Capability at a Wide Waveband
by Tianxin Wang, Shuai Wang, Bo Gao, Chenxi Li and Weixing Yu
Sensors 2024, 24(5), 1689; https://doi.org/10.3390/s24051689 - 6 Mar 2024
Cited by 1 | Viewed by 2890
Abstract
The remarkable light perception abilities of the mantis shrimp, which span a broad spectrum ranging from 300 nm to 720 nm and include the detection of polarized light, serve as the inspiration for our exploration. Drawing insights from the mantis shrimp’s unique visual [...] Read more.
The remarkable light perception abilities of the mantis shrimp, which span a broad spectrum ranging from 300 nm to 720 nm and include the detection of polarized light, serve as the inspiration for our exploration. Drawing insights from the mantis shrimp’s unique visual system, we propose the design of a multifunctional imaging sensor capable of concurrently detecting spectrum and polarization across a wide waveband. This sensor is able to show spectral imaging capability through the utilization of a 16-channel multi-waveband Fabry–Pérot (FP) resonator filter array. The design incorporates a composite thin film structure comprising metal and dielectric layers as the reflector of the resonant cavity. The resulting metal–dielectric composite film FP resonator extends the operating bandwidth to cover both visible and infrared regions, specifically spanning a broader range from 450 nm to 900 nm. Furthermore, within this operational bandwidth, the metal–dielectric composite film FP resonator demonstrates an average peak transmittance exceeding 60%, representing a notable improvement over the metallic resonator. Additionally, aluminum-based metallic grating arrays are incorporated beneath the FP filter array to capture polarization information. This innovative approach enables the simultaneous acquisition of spectrum and polarization information using a single sensor device. The outcomes of this research hold promise for advancing the development of high-performance, multifunctional optical sensors, thereby unlocking new possibilities in the field of optical information acquisition. Full article
(This article belongs to the Special Issue Nature Inspired Engineering: Biomimetic Sensors)
Show Figures

Figure 1

14 pages, 60654 KiB  
Article
Broadband-Tunable Vanadium Dioxide (VO2)-Based Linear Optical Cavity Sensor
by Rana M. Armaghan Ayaz, Amin Balazadeh Koucheh and Kursat Sendur
Nanomaterials 2024, 14(4), 328; https://doi.org/10.3390/nano14040328 - 7 Feb 2024
Cited by 2 | Viewed by 2020
Abstract
Sensors fabricated by using a silicon-on-insulator (SOI) platform provide promising solutions to issues such as size, power consumption, wavelength-specific nature of end reflectors and difficulty to detect ternary mixture. To address these limitations, we proposed and investigated a broadband-thermally tunable vanadium dioxide (VO [...] Read more.
Sensors fabricated by using a silicon-on-insulator (SOI) platform provide promising solutions to issues such as size, power consumption, wavelength-specific nature of end reflectors and difficulty to detect ternary mixture. To address these limitations, we proposed and investigated a broadband-thermally tunable vanadium dioxide (VO2)-based linear optical cavity sensor model using a finite element method. The proposed structure consists of a silicon wire waveguide on a silicon-on-insulator (SOI) platform terminated with phase-change vanadium oxide (VO2) on each side to provide light confinement. A smooth transmission modulation range of 0.8 (VO2 in the insulator state) and 0.03 (VO2 in the conductive phase state) in the 125 to 230 THz spectral region was obtained due to the of Fabry–Pérot (FP) effect. For the 3.84 μm cavity length, the presented sensor resulted in a sensitivity of 20.2 THz/RIU or 179.56 nm/RIU, which is approximately two orders of magnitude higher than its counterparts in the literature. The sensitivity of the 2D model showed direct relation with the length of the optical cavity. Moreover, the change in the resonating mode line width Δν of approximately 6.94 THz/RIU or 59.96 nm/RIU was also observed when the sensor was subjected to the change of the imaginary part k of complex refractive index (RI). This property of the sensor equips it for the sensing of aternary mixture without using any chemical surface modification. The proposed sensor haspotential applications in the areas of chemical industries, environmental monitoring and biomedical sensing. Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanotechnologies for Micro/Nano-Sensors)
Show Figures

Figure 1

9 pages, 8519 KiB  
Communication
Single-Frequency Ring Fiber Laser with Random Distributed Feedback Provided by Artificial Rayleigh Scattering
by Mikhail I. Skvortsov, Kseniya V. Proskurina, Evgeniy V. Golikov, Alexander V. Dostovalov, Alexey A. Wolf, Zhibzema E. Munkueva, Sofia R. Abdullina, Vadim S. Terentyev, Olga N. Egorova, Sergey L. Semjonov and Sergey A. Babin
Photonics 2024, 11(2), 103; https://doi.org/10.3390/photonics11020103 - 23 Jan 2024
Cited by 2 | Viewed by 2219
Abstract
Femtosecond (fs) laser inscription technology allows for the production of in-fiber disordered structures with an enhanced level of Rayleigh backscattering with relatively few induced losses. These properties enable the application of these structures as reflectors in fiber lasers. In this study, a narrow-linewidth [...] Read more.
Femtosecond (fs) laser inscription technology allows for the production of in-fiber disordered structures with an enhanced level of Rayleigh backscattering with relatively few induced losses. These properties enable the application of these structures as reflectors in fiber lasers. In this study, a narrow-linewidth erbium fiber laser with random distributed feedback provided by a fs-induced random structure in a ring cavity configuration was developed. A single-frequency regime was observed over the entire lasing power range. At a maximum output power of 7.8 mW, the linewidth did not exceed 0.75 kHz. Full article
Show Figures

Figure 1

Back to TopTop