Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = recycled brick aggregate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8184 KiB  
Article
Experimental and Mechanism Study on Axial Compressive Performance of Double Steel Tube Columns Filled with Recycled Concrete Containing Abandoned Brick Aggregate
by Yuanyuan Sun, Dongxu Hou, Yanbiao Shi, Yamei Sun, Fancheng Meng and Dong Chen
Buildings 2025, 15(14), 2424; https://doi.org/10.3390/buildings15142424 - 10 Jul 2025
Viewed by 236
Abstract
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer [...] Read more.
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer and an inner steel tube with concrete filling the entire section, are effective in load bearing and deformation resistance. The structural application of abandoned brick aggregate, resulting from urbanization renewal, might be widened through CFDSTCs. This paper presents an experimental and analytical study aiming to investigate the axial compressive behavior of recycled-brick-aggregate-concrete-filled double steel tube columns (RBCDSTs). A total of six specimens were tested under concentric compression, including five RBCDSTs and one concrete-filled single steel tube column. The varied parameters included the replacement ratios (0% and 25%) of brick aggregate and the thickness ratio of the inner and outer steel tubes (0.75, 1, and 1.25). Theoretical analysis was also carried out. A new constitutive model of RBCDST was proposed and used in finite element analysis. The investigation indicated that, under the current conditions, the presence of the inner steel tube only increased the strength by 0.14%. When the inner and outer diameter ratio is 0.73, using a 25% replacement rate of bricks in the entire cross-section or only in the ring area of the cross-section will result in 21.1% and 10.1% strength decreases, respectively. For every 0.6% increase in the diameter-to-thickness ratio of the outer tube, the strength of RBCDST increases 16.3% on average. Full article
Show Figures

Figure 1

13 pages, 881 KiB  
Article
Sustainable Concrete Using Ceramic Tile Waste as a Substitute for Brick Aggregate
by Kamal Hosen and Alina Bărbulescu
Materials 2025, 18(13), 3093; https://doi.org/10.3390/ma18133093 - 30 Jun 2025
Viewed by 492
Abstract
Recycled materials have gained extensive recognition in many industrial sectors for enhancing sustainability and reducing environmental impacts. Combining ceramic tile waste (CTW) in concrete mixes with recycled aggregate will help lower natural aggregate demand and reduce the amount sent to landfill. This paper [...] Read more.
Recycled materials have gained extensive recognition in many industrial sectors for enhancing sustainability and reducing environmental impacts. Combining ceramic tile waste (CTW) in concrete mixes with recycled aggregate will help lower natural aggregate demand and reduce the amount sent to landfill. This paper aims to study the mechanical properties of CTW in concrete mixes as a brick aggregate replacement and its impact on concrete strength and durability. To evaluate and assess their strength and durability, three types of concrete cubes were prepared using 20%, 40%, and 70% of waste ceramic tiles as a replacement for coarse aggregate. Two kinds of concrete samples were also prepared with conventional coarse aggregate as the control specimen (CC). A 1:2:4 concrete mixed ratio was used in this research with a 0.50 water–cement ratio. The samples were tested after 14 days and 28 days to assess their mechanical properties, including strength and durability. When CTW was added to concrete mixtures instead of brick chips, the mechanical strength rose considerably, and the water absorption performance increased. Moreover, replacing brick chips with ceramic waste in concrete could have significant environmental benefits. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

17 pages, 6242 KiB  
Article
Eco-Efficient Mortars with High-Content Construction, Waste-Derived Aggregates Functionalized via Nano-TiO2 for NOx Abatement
by Xiu-Cheng Zhang and Xue-Fei Chen
Processes 2025, 13(6), 1944; https://doi.org/10.3390/pr13061944 - 19 Jun 2025
Viewed by 276
Abstract
This study elucidates the photocatalytic NOx abatement efficacy of eco-efficient mortars incorporating construction waste-derived aggregates functionalized with nano-TiO2. The research findings demonstrate a positive correlation between NOx abatement efficiency and nano-TiO2 substitution ratio, with recycled glass sand (RG)-based panels exhibiting [...] Read more.
This study elucidates the photocatalytic NOx abatement efficacy of eco-efficient mortars incorporating construction waste-derived aggregates functionalized with nano-TiO2. The research findings demonstrate a positive correlation between NOx abatement efficiency and nano-TiO2 substitution ratio, with recycled glass sand (RG)-based panels exhibiting superior performance compared to standard sand and recycled clay brick sand (RCBS)-based counterparts. The employment of ultrasonic dispersion as a nano-TiO2 incorporation method yields enhanced abatement efficiency relative to direct mixing, attributable to improved photocatalyst dispersion and surface area accessibility. The loading capacity of nano-TiO2 on recycled aggregates is observed to be positively influenced by the concentration of nano-TiO2 solution, with recycled clay brick sand demonstrating the highest loading capacity. RG-RCBS panels are shown to exhibit higher NOx abatement efficiency than standard sand (SS)-RCBS panels, with an optimal substitution ratio of 40% glass sand identified for maximizing abatement efficacy in RG-RCBS systems. A decline in NOx abatement efficiency is observed with increasing NOx flow rate and concentration, attributable to reduced pollutant residence time and excess pollutant load exceeding the panels’ processing capacity. Prolonged curing time also results in diminished abatement efficiency, due to microstructural alterations within the mortar matrix and the accumulation of photocatalytic reaction byproducts. Collectively, these findings underscore the potential of recycled aggregate-based mortars, in conjunction with nano-TiO2, as a viable eco-efficient strategy for NOx abatement, highlighting the critical influence of material selection, photocatalyst loading, and operational parameters on system performance. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

22 pages, 4653 KiB  
Article
Recycled Clay Brick Powder as a Dual-Function Additive: Mitigating the Alkali–Silica Reaction (ASR) and Enhancing Strength in Eco-Friendly Mortar with Hybrid Waste Glass and Clay Brick Aggregates
by Xue-Fei Chen, Xiu-Cheng Zhang and Ying Peng
Materials 2025, 18(12), 2838; https://doi.org/10.3390/ma18122838 - 16 Jun 2025
Viewed by 446
Abstract
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica [...] Read more.
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica reaction (ASR) inhibitor in hybrid mortar systems incorporating recycled glass (RG) and recycled clay brick (RCB) aggregates. Leveraging the pozzolanic activity of RCBP’s residual aluminosilicate phases, the research quantifies its influence on mortar durability and mechanical performance under varying substitution scenarios. Experimental findings reveal a nonlinear relationship between RCBP dosage and mortar properties. A 30% cement replacement with RCBP yields a 28-day activity index of 96.95%, confirming significant pozzolanic contributions. Critically, RCBP substitution ≥20% effectively mitigates ASRs induced by RG aggregates, with optimal suppression observed at 25% replacement. This threshold aligns with microstructural analyses showing RCBP’s Al3+ ions preferentially reacting with alkali hydroxides to form non-expansive gels, reducing pore solution pH and silica dissolution rates. Mechanical characterization reveals trade-offs between workability and strength development. Increasing RCBP substitution decreases mortar consistency and fluidity, which is more pronounced in RG-RCBS blends due to glass aggregates’ smooth texture. Compressively, both SS-RCBS and RG-RCBS mortars exhibit strength reduction with higher RCBP content, yet all specimens show accelerated compressive strength gain relative to flexural strength over curing time. Notably, 28-day water absorption increases with RCBP substitution, correlating with microstructural porosity modifications. These findings position recycled construction wastes and glass as valuable resources in circular economy frameworks, offering municipalities a pathway to meet recycled content mandates without sacrificing structural integrity. The study underscores the importance of waste synergy in advancing sustainable mortar technology, with implications for net-zero building practices and industrial waste valorization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 16082 KiB  
Article
Improvement in the Recycled Aggregate Replacement Ratio in Concrete Pavement Bricks by Incorporating Nano-Calcium Carbonate and Basalt Fibre: Model Experiment Investigation
by Biao Zhang, Xueyuan Zhang, Mengyao Wang, Daoming Zhang, Dandan Wang and Xinwu Ma
Buildings 2025, 15(12), 2070; https://doi.org/10.3390/buildings15122070 - 16 Jun 2025
Cited by 1 | Viewed by 444
Abstract
This study focuses on improving the recycled coarse aggregate (RCA) replacement ratio in recycled aggregate concrete products. First, the mix design and compressive performance of recycled aggregate concrete (RAC, RCA replacement percentages of 20%, 35%, and 50%) were evaluated using the monofactor analysis [...] Read more.
This study focuses on improving the recycled coarse aggregate (RCA) replacement ratio in recycled aggregate concrete products. First, the mix design and compressive performance of recycled aggregate concrete (RAC, RCA replacement percentages of 20%, 35%, and 50%) were evaluated using the monofactor analysis method and response surface methodology under three different conditions: single addition of nano-calcium carbonate (NC, dosages of 0.1%, 0.2%, and 0.3%), single addition of basalt fibre (BF, volume content of 0.1%, 0.2%, and 0.3%), and combined addition of both. The results show that the compressive strength of RAC at 7 and 28 days rises as the BF or NC content increases and then falls as the NC content increases. According to the sensitivity analysis, RAC’s compressive strength is significantly impacted by the replacement ratio of RCA, with NC having a more considerable effect on RAC’s 7-day compressive strength than BF, while BF affects the 28-day compressive strength more than NC does. Based on the desirability function, the ideal BF and NC content in RAC was optimised and confirmed by the compressive strength test. It demonstrates that the best compressive performance is achieved by RAC with 1% NC and 0.3% BF. Finally, concrete pavement brick models were created using the ideal mix proportion provided by the compressive strength test. The model compression test results show that RAC pavement bricks (RCA replacement ratio of 60%) with 1% NC and 0.3% BF had a 28d compressive strength of 5.7% and 15.8% higher than NAC and RAC pavement bricks, respectively. Full article
Show Figures

Figure 1

30 pages, 11632 KiB  
Article
Mechanical Properties of Recycled Concrete Containing Brick–Concrete Waste Aggregates with Basalt Fiber-Reinforced Polymer (BFRP) Fibers
by Yuanyuan Sun, Dongxu Hou, Yanbiao Shi, Yamei Sun, Chi Xv and Yunlin Wang
Buildings 2025, 15(12), 2047; https://doi.org/10.3390/buildings15122047 - 14 Jun 2025
Cited by 1 | Viewed by 294
Abstract
With the advancement of urbanization, recycled aggregate concrete derived from construction waste has received increasing research attention. This study primarily focuses on a novel method to enhance the mechanical properties of recycled aggregate concrete derived from brick–concrete waste by mixing short-cut BFRP fibers. [...] Read more.
With the advancement of urbanization, recycled aggregate concrete derived from construction waste has received increasing research attention. This study primarily focuses on a novel method to enhance the mechanical properties of recycled aggregate concrete derived from brick–concrete waste by mixing short-cut BFRP fibers. A series of experimental tests, including an axial compression test, a splitting tensile test, and a bending test, were conducted on specimens of RBCAC (recycled brick–concrete aggregate concrete) with different brick–concrete ratios and BFRP fiber contents. The effects of the brick–concrete ratio and BFRP content on various mechanical properties were systematically investigated. The results indicate that the brick–concrete ratio significantly affects the mechanical properties of RBCAC. The compressive strength decreased by approximately 2.0–4.7% as the brick-to-aggregate ratio increased from 0.25 to 4, with the peak strength (34.3 MPa) occurring at a ratio of 0.67. In addition, a strong linear relationship was observed between the compressive strength and other mechanical properties of BFRP-RBCAC. Based on the experimental data, the existing constitutive model for recycled concrete was modified by introducing a brick–concrete ratio correction factor and a fiber reinforcement factor. The proposed compression constitutive model is suitable for recycled brick–concrete aggregate concrete incorporating hybrid BFRP fibers. Full article
Show Figures

Figure 1

17 pages, 3550 KiB  
Article
Meso-Scale Breakage Characteristics of Recycling Construction and Demolition Waste Subgrade Material Under Compaction Effort
by Lu Han, Weiliang Gao, Yaping Tao and Lulu Liu
Materials 2025, 18(11), 2439; https://doi.org/10.3390/ma18112439 - 23 May 2025
Cited by 1 | Viewed by 318
Abstract
The application of construction and demolition waste (CDW) as roadbed filler faces challenges due to the variable mechanical properties caused by fragile recycled brick aggregates. This study elucidates the breakage mechanism of CDW fillers under compaction effort through a combination of standardized laboratory [...] Read more.
The application of construction and demolition waste (CDW) as roadbed filler faces challenges due to the variable mechanical properties caused by fragile recycled brick aggregates. This study elucidates the breakage mechanism of CDW fillers under compaction effort through a combination of standardized laboratory compaction tests and discrete element method (DEM) simulations. Furthermore, the breakage evolution patterns of mixed fills comprising recycled concrete and brick aggregates at various mixing ratios were revealed. A DEM model was developed to characterize recycled concrete and brick aggregates, adopting polygonal clumps for particles >4.75 mm and spherical clumps for finer fractions. The results indicate that particle breakage progresses through three distinct stages: linear fragment stage (0–200 kJ/m3, 50% of total breakage), deceleration growth stage (200–1000 kJ/m3, 38% of total breakage), and residual crushing stage (1000–2684.9 kJ/m3, 12% of total breakage). Recycled concrete aggregates form a skeleton restraining deep cracks, while brick aggregates enhance stability through energy dissipation and void filling. However, exceeding 30% brick content impedes skeleton development. Critically, a 30% brick content optimizes performance, achieving peak dry density with 25% lower compression deformation than concrete-only fillers, while limiting breakage index rise. These results provide a science-based strategy to optimize CDW roadbed design, improving recycling efficiency and supporting sustainable infrastructure. Full article
Show Figures

Figure 1

21 pages, 7391 KiB  
Article
Recycling of Plastic Waste in the Construction Industry
by Nancy Sakr and Mohamed AbouZeid
Polymers 2025, 17(9), 1282; https://doi.org/10.3390/polym17091282 - 7 May 2025
Viewed by 767
Abstract
This study underscores the importance of sustainable practices by exploring the utilization of recycled plastic within the global construction industry. Plastic recycling has emerged as a crucial strategy that aligns with environmental, social, and economic sustainability indicators. Currently, substantial volumes of plastic waste [...] Read more.
This study underscores the importance of sustainable practices by exploring the utilization of recycled plastic within the global construction industry. Plastic recycling has emerged as a crucial strategy that aligns with environmental, social, and economic sustainability indicators. Currently, substantial volumes of plastic waste are either deposited in landfills or incinerated, neglecting the potential to harness its embodied energy and the energy consumed for producing virgin materials. A key advantage of plastic lies in its promising mechanical properties. Concrete mix design is fundamental to a wide range of construction applications, including brick walls, reinforced concrete slabs, and concrete pavements. Despite the adoption of recycled plastic in construction materials in various countries, its widespread implementation remains limited. This is primarily due to the scarcity of experimental research in this area and the absence of a robust waste management system. This research specifically investigates the reuse of two common types of plastic waste: polyethylene terephthalate (PET) and high-density polyethylene (HDPE) to mitigate plastic waste accumulation in landfills and enhance the performance of construction materials. The study investigates the use of recycled HDPE and PET as a replacement for coarse aggregates in concrete pavement mixtures. While recycled PET is more prevalent in concrete applications, recycled HDPE has demonstrated exceptional efficiency and durability. The recycling method used in this research is the mechanical recycling method due to its superior effectiveness in comparison with other methodologies. This research assesses the performance of recycled PET and HDPE in concrete pavement, aiming to diminish non-renewable energy consumption by 15–20%, curtail the carbon footprint by 15–30%, and decrease plastic waste in landfills by 20–30% compared to conventional concrete. Full article
(This article belongs to the Special Issue Recycling of Plastic and Rubber Wastes, 2nd Edition)
Show Figures

Figure 1

15 pages, 5803 KiB  
Article
Use of Recycled Aggregates in Lime Mortars for Conservation of Historical Buildings
by Menard Kilumile, Marilda Barra, Fatma Mohamed and Diego Aponte
Constr. Mater. 2025, 5(2), 28; https://doi.org/10.3390/constrmater5020028 - 24 Apr 2025
Viewed by 988
Abstract
The use of recycled burnt clay brick sand (RBS) and recycled concrete sand (RCS) in historical lime-based repair mortars can reduce the environmental impact caused by construction and demolition waste disposal. This study examined the use of fine recycled concrete and recycled brick [...] Read more.
The use of recycled burnt clay brick sand (RBS) and recycled concrete sand (RCS) in historical lime-based repair mortars can reduce the environmental impact caused by construction and demolition waste disposal. This study examined the use of fine recycled concrete and recycled brick aggregates for the production of historical repair mortars using hydraulic lime binder and the influence of the resulting mortars on the performance of historical buildings in reduced scale walls (stacks). Natural-river-sand mortar (NSM) was used as control. Results showed that the recycled-burnt-brick-sand mortar (RBSM) performed better in terms of strength compared to the recycled-concrete sand (RCSM) and the NSM mortars. At the age of 7 and 28 days, the flexural strength of the RBSM and the RCSM was 131% and 44%, respectively, and 300% and 68% above that of the control mortar. The 45-day flexural strength of the NSM and RCSM was similar whilst the RBSM mortar’s strength was 177% higher. The compressive strength followed similar trend. On the other hand, the strength and modulus of elasticity of the stacks were found to be largely influenced by the strength of the brick units. Full article
Show Figures

Figure 1

20 pages, 5021 KiB  
Article
Eco-Friendly Lightweight Aggregate Concrete of Structural Grade Made with Recycled Brick Aggregate Containing Expanded Polystyrene Beads
by Bogdan Rosca
Sustainability 2025, 17(7), 3050; https://doi.org/10.3390/su17073050 - 29 Mar 2025
Viewed by 744
Abstract
The quantity of construction demolition waste (CDW) has been increasing due to the demolition of many old buildings throughout the world. So far, all the statistics indicate that there is a very large generation of CDW, which increases annually. The increasing amount CDW [...] Read more.
The quantity of construction demolition waste (CDW) has been increasing due to the demolition of many old buildings throughout the world. So far, all the statistics indicate that there is a very large generation of CDW, which increases annually. The increasing amount CDW in landfills will cause a scarcity of landfill space and will also increase pollution and cost due to transportation. Recycled brick aggregate concrete (RBAC) incorporating polystyrene (EPS) aggregate beads has emerged as an alternative lightweight material with numerous obvious sustainable benefits, suitable for a future circular economy. The goal of this paper is to assess the feasibility of obtaining lightweight aggregate concrete of structural grade with recycled brick aggregate (RBA) as a coarse aggregate and the incorporation of polystyrene beads in a certain percentage by conducting an experimental study on the dry and apparent density, compressive strength, split-tensile strength and elasticity modulus. In addition, the effects of the w/c ratio and cement content on these properties were studied to provide useful information for the performance optimization of this concrete with RBA and polystyrene (EPS) beads. The properties were investigated for two cement contents, 400 and 360 kg/m3, and two ratios between water and cement, 0.43 and 0.39, respectively. The RBAC mixtures containing EPS beads in 15%, 25% and 35% replacement percentages were evaluated through a comprehensive test program based on the European standards. The results showed that, in general, the use of polystyrene (EPS) beads decreased the mechanical properties of the recycled brick aggregate concrete; however, the outcome indicates the potential for producing lightweight concrete of different grades, including structural classes. It was found that the developed lightweight concrete presents a uniform distribution of the polystyrene granules in the hardened volume of concrete. Also, it was found that the recycled brick aggregate with a 16 mm maximum size did not negatively influence the uniform distribution of the EPS beads, avoiding concentrations of beads. With the increase in the percentage of EPS beads, the properties of the recycled brick aggregate concrete were found to be less sensitive to the water-to-cement ratio. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

27 pages, 8596 KiB  
Article
Eco-Friendly High-Strength Geopolymer Mortar from Construction and Demolition Wastes
by Osama Youssf, Donia Safaa Eldin and Ahmed M. Tahwia
Infrastructures 2025, 10(4), 76; https://doi.org/10.3390/infrastructures10040076 - 27 Mar 2025
Cited by 3 | Viewed by 787
Abstract
Geopolymer mortar is an eco-friendly type of mortar that is mainly made of fly ash, slag, and sand as common precursors. Recently, the availability of these materials has become limited due to the huge increase in geopolymer constructions. This is aligned with the [...] Read more.
Geopolymer mortar is an eco-friendly type of mortar that is mainly made of fly ash, slag, and sand as common precursors. Recently, the availability of these materials has become limited due to the huge increase in geopolymer constructions. This is aligned with the recent demand for recycling construction and demolition waste (CDW). In this study, brick waste (BW), ceramic tile waste (CTW), roof tile waste (RTW), and glass waste (GW) extracted from CDW were prepared in the following two sizes: one equivalent to the traditional geopolymer mortar binder (fly ash and slag) size and the other one equivalent to the sand size. The prepared CDW was used to partially replace the binder or sand to produce high-strength geopolymer mortar (HSGM). The replacements were carried out at rates of 25% and 50% by volume. The variety of mechanical and durability characteristics were measured, including workability, compressive strength, freezing/thawing resistance, sulfate attack, water sorptivity, and water absorption. Three curing conditions were applied for the proposed HSGM in this study, namely, water, heat followed by water, and heat followed by air. The results showed that the compressive strength of all HSGM mixes containing CDW ranged from 24 to 104 MPa. HSGM mixes cured in heat followed by water showed the highest 28-day compressive strengths of 104 MPa (when using 25% BW binder), 84.5 MPa (when using 25% BW fine aggregate), 91.3 MPa (when using 50% BW fine aggregate), 84 MPa (when using 25% CTW binder), and 94 MPa (when using 25% CTW fine aggregate). The findings demonstrated that using BW provided good resistance to freezing/thawing and sulfate attack. The water absorption of HSGM increased by 57.8% when using 50% CTW fine aggregate and decreased by 26.5% when using 50% GW fine aggregate. The highest water sorptivity of HSGM was recorded when 50% CTW fine aggregate was used. The use of CDW in HSGM helps reduce the depletion of natural resources and minimizes waste accumulation, enhancing environmental sustainability. These benefits make HSGM an eco-friendly alternative that promotes circular economy practices. Full article
Show Figures

Figure 1

19 pages, 7932 KiB  
Article
Theoretical Investigation and Parametric Sensitivity Analysis of Polypropylene–Polyester Fiber-Reinforced Recycled Brick Aggregate Concrete Pavement Humidity Warping Stress During the Service Life
by Fei Li, Shenghao Jin, Peifeng Cheng and Zehui Wang
Materials 2025, 18(5), 1093; https://doi.org/10.3390/ma18051093 - 28 Feb 2025
Viewed by 666
Abstract
Pavement humidity warping is a critical factor limiting the application of PPRBAC on low-volume roads. A nonlinear wet-warping stress formula for PPRBAC slabs has been derived based on previous experimental results, and the finite element method was employed to develop a single-board model [...] Read more.
Pavement humidity warping is a critical factor limiting the application of PPRBAC on low-volume roads. A nonlinear wet-warping stress formula for PPRBAC slabs has been derived based on previous experimental results, and the finite element method was employed to develop a single-board model in order to verify the accuracy of the analytical solution. Subsequently, the finite difference method, in conjunction with the finite element method, was employed to investigate the calculation methodology for wet-warping stress in PPRBAC slabs during service. Finally, the Taguchi–GRA (gray relational analysis) method was selected to analyze the sensitivity of humidity warping factors affecting PPRBAC slabs. The findings indicate that compared to the traditional bending moment equivalent method, the wetness warping stress formula established in this study accounts for the nonlinearity of wetness warping stress and demonstrates higher accuracy. For PPRBAC pavements during the service period, assuming uniform initial humidity distribution along the height within the concrete does not align with practical observations. The calculated humidity warping stress and deformation using this assumption are 1.1 and 1.7 times those obtained from the comprehensive dry–wet calculation method. It is crucial to consider the wet stage’s impact on the dry stage in the calculations. The Taguchi–GRA method objectively determines the weight of factors affecting humidity warping in PPRBAC, with slab size, thickness, and flexural strength having the greatest influence. Full article
Show Figures

Figure 1

32 pages, 6546 KiB  
Article
Evaluation of Three Drying Options (Solar Energy, Traditional Ovens, and Electric Muffle) for the Manufacture of Bricks Using Recycled Aggregates
by María Neftalí Rojas-Valencia, Alberto Rodas-Joo, Alfredo Martínez-Cruz and Juan Antonio Araiza-Aguilar
Processes 2025, 13(3), 686; https://doi.org/10.3390/pr13030686 - 27 Feb 2025
Viewed by 851
Abstract
The informality in brick production and fossil fuel use are environmental problems of concern. Construction and demolition waste (CDW) is included in brick manufacturing. Solar drying is an alternative to traditional fossil fuel ovens. From eight formulation mixtures, considering load resistance and 24 [...] Read more.
The informality in brick production and fossil fuel use are environmental problems of concern. Construction and demolition waste (CDW) is included in brick manufacturing. Solar drying is an alternative to traditional fossil fuel ovens. From eight formulation mixtures, considering load resistance and 24 h water absorption tests (WA24), two manufacturing mixtures were selected (mixture 2: 40% clay, CDW ¼” 60%; mixture 4: 40% clay, CDW 1 4” 50%, 10% limestone). Three drying processes were evaluated: solar, electric muffle and a traditional oven. With the traditional combustion furnace, mixture 2 obtained the highest mechanical resistance to compression (MRC), obtaining bricks for structural use (145.1 kg cm−2) and WA24 19.3%. Muffle drying mixture 2 obtained MRC 62.1 kg cm−2 and WA24 18.4%. Solar drying mixture 2 obtained MRC 48.3 kg cm−2. Although the use of the muffle and solar option resulted in bricks for non-structural use, solar drying has the environmental benefit of completely eliminating the use of fossil fuels. The proposal to include at least 50% CDW in bricks is an interesting option for upgrading these residues. In Mexico, a 10% drying implementation would lead to a reduction of 0.27 million tons of CO2 each year. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

19 pages, 13201 KiB  
Article
Experimental Evidence on the Possible Use of Fine Concrete and Brick Recycled Aggregates for 3D Printed Cement-Based Mixtures
by Marco Pepe, Rosario Lombardi, Carmine Lima, Bruno Paolillo and Enzo Martinelli
Materials 2025, 18(3), 583; https://doi.org/10.3390/ma18030583 - 27 Jan 2025
Cited by 2 | Viewed by 949
Abstract
In recent years, the development of alternative and more sustainable technologies for reinforced concrete structures has been attracting more and more interest, given the increasing need to reduce the impact that the construction sector has on the environment. Furthermore, 3D concrete printing (3DCP) [...] Read more.
In recent years, the development of alternative and more sustainable technologies for reinforced concrete structures has been attracting more and more interest, given the increasing need to reduce the impact that the construction sector has on the environment. Furthermore, 3D concrete printing (3DCP) technology falls into this context, allowing the optimization of the quantities of employed raw material to be used while at the same time allowing the possibility to design more complex elements’ shapes. In the view of improving the sustainability of construction sector, the present study aims at experimentally investigating the characteristics of the fresh and hardened states of concrete mixtures incorporating different percentages of replacement of the fine aggregate with recycled aggregates of different nature. As such, the key innovative aspect of the present study is the possible investigation of cement-based mixtures produced with 100% recycled fine aggregates (both derived from concrete waste and brick elements) without affecting either the fresh or hardened mechanical properties of the resulting Recycled Aggregate Concrete (RAC) mixtures. Furthermore, in order to make this study linked to 3D printing technology, extruded concrete elements were realized and tested through a process designed to simulate the automated 3D concrete printing process: in fact, the RAC mixtures were designed in order to obtain an adequate workability and compressive strength typically adopted for ordinary 3D printed mixtures. Although some adjustments and further analyses are required in order to optimize the shape retention and stability, as well as the well-known problem of the 3D mixtures being linked to anisotropic behavior, the obtained results unveil that it was possible to observe promising characteristics for the mixes containing recycled aggregates (i.e., consistency index at the fresh state above 150 mm and compressive strength at 28 days above 50 MPa), which were in any case suitable for the creation of 3D printed structural concrete elements and can be further confirmed with future studies in order to validate their possible buildability. Full article
Show Figures

Figure 1

25 pages, 9570 KiB  
Article
The Effect of Recycled Crushed Brick Aggregate on the Physical–Mechanical Properties of Earth Blocks
by Carlos Alberto Casapino-Espinoza, José Manuel Gómez-Soberón and María Consolación Gómez-Soberón
Buildings 2025, 15(1), 145; https://doi.org/10.3390/buildings15010145 - 6 Jan 2025
Cited by 2 | Viewed by 2214
Abstract
The use of different components, such as alternative aggregates, represents an innovation in construction. According to various studies, these components improve certain properties of the elements that incorporate them. Specifically, recycled construction aggregates (RCAs)—such as crushed ceramic bricks (CCBs)—offer several benefits, including reducing [...] Read more.
The use of different components, such as alternative aggregates, represents an innovation in construction. According to various studies, these components improve certain properties of the elements that incorporate them. Specifically, recycled construction aggregates (RCAs)—such as crushed ceramic bricks (CCBs)—offer several benefits, including reducing landfill waste, enhancing the mechanical properties of the elements that integrate them, and ensuring availability. This research focuses on utilizing these waste materials and determining their feasibility and compatibility (in the short term) for manufacturing traditional earth blocks (EBs). This is achieved by studying the physical and mechanical properties of CCBs in matrices for EB construction, adhering to performance standards, emphasizing the advantages these aggregates provide for mechanical properties in sustainable construction and applying them in the context of traditional construction. Correlations were established through a statistical study of experimental data, graphically indicating the relationship between the different properties of CCBs, the mix design process, and the structural behavior of the resulting EB. Based on the key variable of the CCB replacement percentage, properties such as the elastic module by ultrasound, porosity, and expansion by hygroscopicity were analyzed, alongside mechanical properties like compressive and flexural strength. The results show that EBs with CCBs increases porosity by up to 21.59%. These blocks exhibit dimensional shrinkage of up to 14.5%, correlating with the increase in the CCB content. This aggregate replacement leads to a reduction in compressive strength (up to −23%) and flexural strength (up to −17.43%); however, all CCB content levels studied met the requirements of the applied standards. It is concluded that CCBs satisfactorily modifies the properties of the EBs and is suitable for use in construction. Full article
Show Figures

Graphical abstract

Back to TopTop