Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = recombinant Cry3Aa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5432 KB  
Article
Galectin-8A Inhibits Cry11Aa Binding to ALP1 and APN 2 Receptors and Toxicity Against Aedes aegypti Larvae
by Xiaohua Hu, Xianhui Huang, Jiannan Liu, Guohui Zhao, Songqing Wu, Xiaoqiang Yu, Lei Xu, Xiong Guan and Lingling Zhang
Toxins 2025, 17(9), 451; https://doi.org/10.3390/toxins17090451 - 6 Sep 2025
Viewed by 559
Abstract
Aedes aegypti, a crucial vector mosquito that transmits many diseases that cause millions of deaths worldwide, can be controlled with Bacillus thuringiensis subsp. israelensis (Bti). The larvicidal activity of Bti against Ae. aegypti is due primarily to Cry4Aa, Cry4Ba, and Cry11Aa, and Cyt1Aa, [...] Read more.
Aedes aegypti, a crucial vector mosquito that transmits many diseases that cause millions of deaths worldwide, can be controlled with Bacillus thuringiensis subsp. israelensis (Bti). The larvicidal activity of Bti against Ae. aegypti is due primarily to Cry4Aa, Cry4Ba, and Cry11Aa, and Cyt1Aa, a protein that synergizes the activity of the Cry proteins. Interestingly, Galectins-6 and Galectins-14, members of a family of β-galactoside-binding proteins that play a role in immune responses insects, have been shown to decrease the activity of Bti toxins. The activity of other Galectins, particularly Galectin-8A, against the Cry proteins is not known. Toward this end, we cloned the gene coding for galactin-8A and expressed the recombinant protein and purified protein. The bioassay results indicated that Galectin-8A can also reduce the toxicity of Cry11Aa, but it was much stronger than Galectin-6. To investigate the interactions among Galectin-8A, Cry11Aa, and toxin receptors, Octet Red System analysis, Western blot, far-Western blot, and ELISA assay were also performed. The Octet Red System result showed that Galectin-8A could also bind to BBMVs of Ae. aegypti, with a lower kDa value than that of Galectin-6, indicating that Galectin-8A had a stronger binding affinity to BBMVs than Galectin-6. Western blot, far-Western blot, and ELISA assay analyses also demonstrated that Galectin-8A bound to Ae. aegypti receptor ALP1 and APN2, consistent with the protein docking simulation results. These findings support the conclusion that Galectin-8A blocks with ALP1 and APN2 more effectively than Galectin-6, which may subsequently reduce the toxicity of Cry11Aa in Ae. aegypti. Full article
Show Figures

Figure 1

21 pages, 3976 KB  
Article
Culex quinquefasciatus Resistant to the Binary Toxin from Lysinibacillus sphaericus Displays a Consistent Downregulation of Pantetheinase Transcripts
by Tatiana M. T. Rezende, Heverly S. G. Menezes, Antonio M. Rezende, Milena P. Cavalcanti, Yuri M. G. Silva, Osvaldo P. de-Melo-Neto, Tatiany P. Romão and Maria Helena N. L. Silva-Filha
Biomolecules 2024, 14(1), 33; https://doi.org/10.3390/biom14010033 - 25 Dec 2023
Cited by 1 | Viewed by 1721
Abstract
Culex quinquefasciatus resistance to the binary (Bin) toxin, the major larvicidal component from Lysinibacillus sphaericus, is associated with mutations in the cqm1 gene, encoding the Bin-toxin receptor. Downregulation of the cqm1 transcript was found in the transcriptome of larvae resistant to the [...] Read more.
Culex quinquefasciatus resistance to the binary (Bin) toxin, the major larvicidal component from Lysinibacillus sphaericus, is associated with mutations in the cqm1 gene, encoding the Bin-toxin receptor. Downregulation of the cqm1 transcript was found in the transcriptome of larvae resistant to the L. sphaericus IAB59 strain, which produces both the Bin toxin and a second binary toxin, Cry48Aa/Cry49Aa. Here, we investigated the transcription profiles of two other mosquito colonies having Bin resistance only. These confirmed the cqm1 downregulation and identified transcripts encoding the enzyme pantetheinase as the most downregulated mRNAs in both resistant colonies. Further quantification of these transcripts reinforced their strong downregulation in Bin-resistant larvae. Multiple genes were found encoding this enzyme in Cx. quinquefasciatus and a recombinant pantetheinase was then expressed in Escherichia coli and Sf9 cells, with its presence assessed in the midgut brush border membrane of susceptible larvae. The pantetheinase was expressed as a ~70 kDa protein, potentially membrane-bound, which does not seem to be significantly targeted by glycosylation. This is the first pantetheinase characterization in mosquitoes, and its remarkable downregulation might reflect features impacted by co-selection with the Bin-resistant phenotype or potential roles in the Bin-toxin mode of action that deserve to be investigated. Full article
Show Figures

Figure 1

17 pages, 1863 KB  
Article
Cry3Aa Toxin Is Not Suitable to Control Lepidopteran Pest Spodoptera littoralis (Boisd.)
by Oxana Skoková Habuštová, Zdeňka Svobodová, Dalibor Kodrík and František Sehnal
Plants 2022, 11(10), 1312; https://doi.org/10.3390/plants11101312 - 15 May 2022
Cited by 2 | Viewed by 2529
Abstract
The toxicity of the Bacillus thuringiensis (Bt) toxin Cry3Aa—originally used against the main potato pest, the Colorado potato beetle, Leptinotarsa decemlineata—was verified on this species and then evaluated against the Egyptian armyworm, Spodoptera littoralis, which is a pest of several economically [...] Read more.
The toxicity of the Bacillus thuringiensis (Bt) toxin Cry3Aa—originally used against the main potato pest, the Colorado potato beetle, Leptinotarsa decemlineata—was verified on this species and then evaluated against the Egyptian armyworm, Spodoptera littoralis, which is a pest of several economically important plants. Larvae of S. littoralis were fed a semi-artificial diet supplemented either with a recombinant or with a natural Bt toxin Cry3Aa and with the genetically engineered (GE) potato of variety Superior NewLeaf (SNL) expressing Cry3Aa. Cry3Aa concentration in the diet and the content in the leaves were verified via ELISA (enzyme-linked immunosorbent assay) and HPLC (high-performance liquid chromatography) during and at the end of the experiments. The biological effectiveness of the coleopteran-specific Cry3Aa with previous reports of activity against S. littoralis was tested on five different populations of S. littoralis larvae by monitoring 13 parameters involving development from penultimate instar, weight, the efficiency of food conversion to biomass, ability to reproduce, and mortality. Although some occasional differences occurred between the Cry3Aa treatments and control, any key deleterious effects on S. littoralis in this study were not confirmed. We concluded that the Cry3Aa toxin appears to be non-toxic to S. littoralis, and its practical application against this pest is unsuitable. Full article
Show Figures

Graphical abstract

15 pages, 2498 KB  
Article
Recombinant Mosquito Densovirus with Bti Toxins Significantly Improves Pathogenicity against Aedes albopictus
by Khadija Batool, Intikhab Alam, Peiwen Liu, Zeng Shu, Siyu Zhao, Wenqiang Yang, Xiao Jie, Jinbao Gu and Xiao-Guang Chen
Toxins 2022, 14(2), 147; https://doi.org/10.3390/toxins14020147 - 17 Feb 2022
Cited by 9 | Viewed by 3582
Abstract
Mosquito densoviruses (MDVs) are mosquito-specific viruses that are recommended as mosquito bio-control agents. The MDV Aedes aegypti densovirus (AeDNV) is a good candidate for controlling mosquitoes. However, the slow activity restricts their widespread use for vector control. In this study, we introduced the [...] Read more.
Mosquito densoviruses (MDVs) are mosquito-specific viruses that are recommended as mosquito bio-control agents. The MDV Aedes aegypti densovirus (AeDNV) is a good candidate for controlling mosquitoes. However, the slow activity restricts their widespread use for vector control. In this study, we introduced the Bacillus thuringiensis (Bti) toxin Cry11Aa domain II loop α8 and Cyt1Aa loop β6-αE peptides into the AeDNV genome to improve its mosquitocidal efficiency; protein expression was confirmed using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Recombinant plasmids were transfected into mosquito C6/36 cell lines, and the expression of specific peptides was detected through RT-PCR. A toxicity bioassay against the first instar Aedes albopictus larvae revealed that the pathogenic activity of recombinant AeDNV was significantly higher and faster than the wild-type (wt) viruses, and mortality increased in a dose-dependent manner. The recombinant viruses were genetically stable and displayed growth phenotype and virus proliferation ability, similar to wild-type AeDNV. Our novel results offer further insights by combining two mosquitocidal pathogens to improve viral toxicity for mosquito control. Full article
Show Figures

Graphical abstract

14 pages, 952 KB  
Article
Potential of Cry10Aa and Cyt2Ba, Two Minority δ-endotoxins Produced by Bacillus thuringiensis ser. israelensis, for the Control of Aedes aegypti Larvae
by Daniel Valtierra-de-Luis, Maite Villanueva, Liliana Lai, Trevor Williams and Primitivo Caballero
Toxins 2020, 12(6), 355; https://doi.org/10.3390/toxins12060355 - 29 May 2020
Cited by 32 | Viewed by 6119
Abstract
Bacillus thuringiensis ser. israelensis (Bti) has been widely used as microbial larvicide for the control of many species of mosquitoes and blackflies. The larvicidal activity of Bti resides in Cry and Cyt δ-endotoxins present in the parasporal crystal of this pathogen. The insecticidal [...] Read more.
Bacillus thuringiensis ser. israelensis (Bti) has been widely used as microbial larvicide for the control of many species of mosquitoes and blackflies. The larvicidal activity of Bti resides in Cry and Cyt δ-endotoxins present in the parasporal crystal of this pathogen. The insecticidal activity of the crystal is higher than the activities of the individual toxins, which is likely due to synergistic interactions among the crystal component proteins, particularly those involving Cyt1Aa. In the present study, Cry10Aa and Cyt2Ba were cloned from the commercial larvicide VectoBac-12AS® and expressed in the acrystalliferous Bt strain BMB171 under the cyt1Aa strong promoter of the pSTAB vector. The LC50 values for Aedes aegypti second instar larvae estimated at 24 hpi for these two recombinant proteins (Cry10Aa and Cyt2Ba) were 299.62 and 279.37 ng/mL, respectively. Remarkable synergistic mosquitocidal activity was observed between Cry10Aa and Cyt2Ba (synergistic potentiation of 68.6-fold) when spore + crystal preparations, comprising a mixture of both recombinant strains in equal relative concentrations, were ingested by A. aegypti larvae. This synergistic activity is among the most powerful described so far with Bt toxins and is comparable to that reported for Cyt1A when interacting with Cry4Aa, Cry4Ba or Cry11Aa. Synergistic mosquitocidal activity was also observed between the recombinant proteins Cyt2Ba and Cry4Aa, but in this case, the synergistic potentiation was 4.6-fold. In conclusion, although Cry10Aa and Cyt2Ba are rarely detectable or appear as minor components in the crystals of Bti strains, they represent toxicity factors with a high potential for the control of mosquito populations. Full article
Show Figures

Graphical abstract

11 pages, 1262 KB  
Article
A Strain of Bacillus thuringiensis Containing a Novel cry7Aa2 Gene that Is Toxic to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)
by Mikel Domínguez-Arrizabalaga, Maite Villanueva, Ana Beatriz Fernandez and Primitivo Caballero
Insects 2019, 10(9), 259; https://doi.org/10.3390/insects10090259 - 21 Aug 2019
Cited by 23 | Viewed by 4100
Abstract
The genome of the Bacillus thuringiensis BM311.1 strain was sequenced and assembled in 359 contigs containing a total of 6,390,221 bp. The plasmidic ORF of a putative cry gene from this strain was identified as a potential novel Cry protein of 1138 amino [...] Read more.
The genome of the Bacillus thuringiensis BM311.1 strain was sequenced and assembled in 359 contigs containing a total of 6,390,221 bp. The plasmidic ORF of a putative cry gene from this strain was identified as a potential novel Cry protein of 1138 amino acid residues with a 98% identity compared to Cry7Aa1 and a predicted molecular mass of 129.4 kDa. The primary structure of Cry7Aa2, which had eight conserved blocks and the classical structure of three domains, differed in 28 amino acid residues from that of Cry7Aa1. The cry7Aa2 gene was amplified by PCR and then expressed in the acrystalliferous strain BMB171. SDS-PAGE analysis confirmed the predicted molecular mass for the Cry7Aa2 protein and revealed that after in vitro trypsin incubation, the protein was degraded to a toxin of 62 kDa. However, when treated with digestive fluids from Leptinotarsa decemlineata larvae, one major proteinase-resistant fragment of slightly smaller size was produced. The spore and crystal mixture produced by the wild-type BM311.1 strain against L. decemlineata neonate larvae resulted in a LC50 value of 18.8 μg/mL, which was statistically similar to the estimated LC50 of 20.8 μg/mL for the recombinant BMB17-Cry7Aa2 strain. In addition, when this novel toxin was activated in vitro with commercial trypsin, the LC50 value was reduced 3.8-fold to LC50 = 4.9 μg/mL. The potential advantages of Cry7Aa2 protoxin compared to Cry7Aa1 protoxin when used in the control of insect pests are discussed. Full article
Show Figures

Figure 1

10 pages, 296 KB  
Article
Insecticidal Activity and Synergistic Combinations of Ten Different Bt Toxins against Mythimna separata (Walker)
by Jing Yang, Yudong Quan, Prabu Sivaprasath, Muhammad Zeeshan Shabbir, Zhenying Wang, Juan Ferré and Kanglai He
Toxins 2018, 10(11), 454; https://doi.org/10.3390/toxins10110454 - 4 Nov 2018
Cited by 33 | Viewed by 5470
Abstract
The oriental armyworm (OAW), Mythimna separata (Walker), is a destructive pest of agricultural crops in Asia and Australia. Commercialized Bt crops have performed very well against their target pests; however, very few studies have been done on the susceptibility of OAW to Bt [...] Read more.
The oriental armyworm (OAW), Mythimna separata (Walker), is a destructive pest of agricultural crops in Asia and Australia. Commercialized Bt crops have performed very well against their target pests; however, very few studies have been done on the susceptibility of OAW to Bt toxins in either sprays or expressed in Bt crops. In this work, we evaluated the toxicities of Cry1Ab, Cry1Ac, Cry1Ah, Cry1Fa, Cry2Aa, Cry2Ab, Cry1Ie, Vip3Aa19, Vip3Aa16, and Vip3Ca against OAW neonate larvae, as well as the interaction between Cry and Vip toxins. The results from bioassays revealed that LC50 (lethal concentration for 50% mortality) values ranged from 1.6 to 78.6 μg/g (toxin/diet) for those toxins. Among them, Vip3 proteins, along with Cry1A proteins and Cry2Aa, were the ones with the highest potency, with LC50 values ranging from 1.6 to 7.4 μg/g. Synergism between Cry and Vip toxins was observed, being high in the combination of Vip3Aa16 with Cry1 toxins, with synergetic factors ranging from 2.2 to 9.2. The Vip3Ca toxin did not show any synergistic effect with any of the toxins tested. These results can help in designing new combinations of pyramiding genes in Bt crops, as well as in recombinant bacteria, for the control of OAW as well as for resistance management programs. Full article
(This article belongs to the Special Issue Insecticidal Toxins from Bacillus thuringiensis)
11 pages, 2065 KB  
Article
C-Type Lectin-20 Interacts with ALP1 Receptor to Reduce Cry Toxicity in Aedes aegypti
by Khadija Batool, Intikhab Alam, Guohui Zhao, Junxiang Wang, Jin Xu, Xiaoqiang Yu, Enjiong Huang, Xiong Guan and Lingling Zhang
Toxins 2018, 10(10), 390; https://doi.org/10.3390/toxins10100390 - 25 Sep 2018
Cited by 18 | Viewed by 4105
Abstract
Aedes aegypti is a crucial vector for human diseases, such as yellow fever, dengue, chikungunya, and Zika viruses. Today, a major challenge throughout the globe is the insufficient availability of antiviral drugs and vaccines against arboviruses, and toxins produced by Bacillus thuringiensis (Bt) [...] Read more.
Aedes aegypti is a crucial vector for human diseases, such as yellow fever, dengue, chikungunya, and Zika viruses. Today, a major challenge throughout the globe is the insufficient availability of antiviral drugs and vaccines against arboviruses, and toxins produced by Bacillus thuringiensis (Bt) are still used as biological agents for mosquito control. The use of Cry toxins to kill insects mainly depends on the interaction between Cry toxins and important toxin receptors, such as alkaline phosphatase (ALP). In this study, we investigated the function of A. aegypti C-type lectin-20 (CTL-20) in the tolerance of Cry toxins. We showed that recombinant CTL-20 protein interacted with both Cry11Aa and ALP1 by the Far-Western blot and ELISA methods, and CTL-20 bound to A. aegypti larval brush border membrane vesicles (BBMVs). Binding affinity of CTL-20 to ALP1 was higher than that of Cry11Aa to ALP1. Furthermore, the survival rate of A. aegypti larvae fed with Cry11Aa toxin mixed with recombinant CTL-20 fusion protein was significantly increased compared with that of the control larvae fed with Cry11Aa mixed with thioredoxin. Our novel results suggest that midgut proteins like CTLs may interfere with interactions between Cry toxins and toxin receptors by binding to both Cry toxins and receptors to alter Cry toxicity. Full article
(This article belongs to the Special Issue Insecticidal Toxins from Bacillus thuringiensis)
Show Figures

Graphical abstract

14 pages, 1419 KB  
Article
Expression of a Synthetic Gene for the Major Cytotoxin (Cyt1Aa) of Bacillus thuringiensis subsp. israelensis in the Chloroplast of Wild-Type Chlamydomonas
by Seongjoon Kang, Obed W. Odom, Candice L. Malone, Saravanan Thangamani and David L. Herrin
Biology 2018, 7(2), 29; https://doi.org/10.3390/biology7020029 - 8 May 2018
Cited by 9 | Viewed by 5807
Abstract
Chlamydomonas reinhardtii (Chlamydomonas) strains that are toxic to mosquito larvae because they express chloroplast transgenes that are based on the mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis (Bti) could be very useful in mosquito control. Chlamydomonas has several advantages for this [...] Read more.
Chlamydomonas reinhardtii (Chlamydomonas) strains that are toxic to mosquito larvae because they express chloroplast transgenes that are based on the mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis (Bti) could be very useful in mosquito control. Chlamydomonas has several advantages for this approach, including genetic controls not generally available with industrial algae. The Bti toxin is produced by sporulating bacteria and has been used for mosquito control for >30 years without creating highly resistant mosquito populations. The suite of toxins is four main proteins: three Cry proteins and the cytotoxic Cyt1Aa (27 kDa). Cyt1Aa is not very toxic to mosquitoes by itself, but it prevents the development of resistance. The production of Cyt1Aa in other microbes, however, has been challenging due to its affinity for certain membrane phospholipids. Here we report on the production of recombinant Cyt1Aa (rCyt1A) in the chloroplast of photosynthetic Chlamydomonas at levels of at least 0.3% total protein. Live cell bioassays demonstrated toxicity of the rCyt1Aa Chlamydomonas to larvae of Aedes aegypti. We also expressed the chloroplast cyt1Aa gene in a wild-type Chlamydomonas strain (21 gr) that can grow on nitrate. These results have implications for developing a Chlamydomonas strain that will be toxic to mosquito larvae but will not induce strongly resistant populations. Full article
(This article belongs to the Special Issue Microalgal Biotechnology)
Show Figures

Figure 1

14 pages, 483 KB  
Article
Evaluation of Cytotoxicity, Genotoxicity and Hematotoxicity of the Recombinant Spore-Crystal Complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss Mice
by Ingrid De Souza Freire, Ana Luisa Miranda-Vilela, Lilian Carla Pereira Barbosa, Erica Soares Martins, Rose Gomes Monnerat and Cesar Koppe Grisolia
Toxins 2014, 6(10), 2872-2885; https://doi.org/10.3390/toxins6102872 - 29 Sep 2014
Cited by 9 | Viewed by 6264
Abstract
The insecticidal properties of Cry-endotoxins from Bacillus thuringiensis (Bt) have long been used as spore-crystals in commercial spray formulations for insect control. Recently, some Bt-endotoxin genes have been cloned in many different plants. Toxicological evaluations of three spore-crystal endotoxins, BtCry1Ia, BtCry10Aa and BtCry1Ba6 [...] Read more.
The insecticidal properties of Cry-endotoxins from Bacillus thuringiensis (Bt) have long been used as spore-crystals in commercial spray formulations for insect control. Recently, some Bt-endotoxin genes have been cloned in many different plants. Toxicological evaluations of three spore-crystal endotoxins, BtCry1Ia, BtCry10Aa and BtCry1Ba6 from B. thuringiensis, were carried out on mice to understand their adverse effects on hematological systems and on genetic material. These three spore-crystals have shown toxic activity to the boll weevil, which is one of the most aggressive pests of the cotton crop. Cry1Ia, Cry10Aa and Cry1Ba6 did not increase the micronucleus frequency in the peripheral erythrocytes of mice and did not cause changes in the frequency of polychromatic erythrocytes. However, some hematologic disburbances were observed, specifically related to Cry1Ia and Cry1Ba6, respectively, for the erythroid and lymphoid lineage. Thus, although the profile of such adverse side effects can be related to their high level of exposure, which is not commonly found in the environment, results showed that these Bt spore-crystals were not harmless to mice, indicating that each spore-crystal endotoxin presents a characteristic profile of toxicity and might be investigated individually. Full article
(This article belongs to the Special Issue Bacillus thuringiensis Toxins)
15 pages, 767 KB  
Article
Draft Genome Sequences of Two Bacillus thuringiensis Strains and Characterization of a Putative 41.9-kDa Insecticidal Toxin
by Leopoldo Palma, Delia Muñoz, Colin Berry, Jesús Murillo and Primitivo Caballero
Toxins 2014, 6(5), 1490-1504; https://doi.org/10.3390/toxins6051490 - 30 Apr 2014
Cited by 26 | Viewed by 9176
Abstract
In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, [...] Read more.
In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip) gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants) and a vip3 gene (vip3Aa10). A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900) and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis) and the green-peach aphid Myzus persicae at doses as high as 4.8 µg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein’s target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins. Full article
(This article belongs to the Special Issue Bacillus thuringiensis Toxins)
Show Figures

Figure 1

Back to TopTop