Expression of a Synthetic Gene for the Major Cytotoxin (Cyt1Aa) of Bacillus thuringiensis subsp. israelensis in the Chloroplast of Wild-Type Chlamydomonas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chlamydomonas Strains, Growth, and Chlorophyll Determination
2.2. DNA Constructs
2.3. Chloroplast Transformation and DNA Analysis
2.4. Protein Extraction and Western Blotting
2.5. Mosquito Bioassay
3. Results
3.1. cyt1Aa Gene Engineering and Chloroplast Transformation
3.2. Analysis of rCyt1Aa Protein Accumulation in the psbDm:cyt1Aa:psbA Transformants
3.3. Growth Rates for the psbDm:cyt1Aa:psbA Transformants
3.4. Bioassay with Aedes Aegypti Larvae
3.5. Transforming a Wild-Type (WT) Strain Capable of Growth on Nitrate
3.6. Expression and Growth Characteristics of the CC-1690 Transformant
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. A Global Brief on Vector-Borne Diseases; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Ibrahim, M.A.; Griko, N.B.; Bulla, L.A. The Cry4B toxin of Bacillus thuringiensis subsp. israelensis kills permethrin-resistant Anopheles gambiae, the principal vector of malaria. Exp. Biol. Med. 2013, 238, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Kioulos, I.; Kampouraki, A.; Morou, E.; Skavdis, G.; Vontas, J. Insecticide resistance status in the major West Nile virus vector Culex pipiens from Greece. Pest Manag. Sci. 2014, 70, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Koou, S.Y.; Chong, C.S.; Vythilingam, I.; Ng, L.C.; Lee, C.Y. Pyrethroid resistance in Aedes aegypti larvae (Diptera: Culicidae) from Singapore. J. Med. Entomol. 2014, 51, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Ben-Dov, E. Bacillus thuringiensis subsp. israelensis and its Dipteran-specific toxins. Toxins 2014, 6, 1222–1243. [Google Scholar] [CrossRef] [PubMed]
- Ohana, B.; Margalit, J.; Barak, Z. Fate of Bacillus thuringiensis subsp. israelensis under simulated field conditions. Appl. Environ. Microbiol. 1987, 53, 828–831. [Google Scholar] [PubMed]
- De Barjac, H.; Sutherland, D.J. Bacterial Control of Mosquitoes and Black Flies: Biochemistry, Genetics, & Applications of Bacillus thuringiensis israelensis and Bacillus sphaericus; Rutgers University Press: New Brunswick, NJ, USA, 1990. [Google Scholar]
- Liu, Y.-T.; Sui, M.-J.; Dar-Der, J.I.; Wu, I.-H.; Chou, C.-C.; Chen, C.-C. Protection from ultraviolet irradiation by melanin of mosquitocidal activity of Bacillus thuringiensis var. israelensis. J. Invert. Pathol. 1993, 62, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Glare, T.R.; O’Callaghan, M. Bacillus thuringiensis: Biology, Ecology and Safety; Wiley: West Sussex, UK, 2000. [Google Scholar]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberon, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Tetreau, G.; Stalinski, R.; Kersusan, D.; Veyrenc, S.; David, J.-P.; Reynaud, S.; Després, L. Decreased toxicity of Bacillus thuringiensis subsp. israelensis to mosquito larvae after contact with leaf litter. Appl. Environ. Microbiol. 2012, 78, 5189–5195. [Google Scholar] [CrossRef] [PubMed]
- Angsuthanasombat, C.; Panyim, S. Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. Appl. Environ. Microbiol. 1989, 55, 2428–2430. [Google Scholar] [PubMed]
- Khasdan, V.; Ben-Dov, E.; Manasherob, R.; Boussiba, S.; Zaritsky, A. Mosquito larvicidal activity of transgenic Anabaena strain PCC 7120 expressing toxin genes from Bacillus thuringiensis subsp. israelensis. FEMS Microbiol. Lett. 2003, 227, 189–195. [Google Scholar] [CrossRef]
- Soltes-Rak, E.; Kushner, D.; Williams, D.D.; Coleman, J. Factors regulating cryIVB expression in the cyanobacterium Synechococcus PCC 7942. Mol. Gen. Genet. 1995, 246, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.E.; Murphy, R.C.; Lamoreaux, W.J.; Coons, L.B. A genetically engineered mosquitocidal cyanobacterium. J. Appl. Phycol. 1994, 6, 187–197. [Google Scholar] [CrossRef]
- Wu, X.; Vennison, S.J.; Huirong, L.; Ben-Dov, E.; Zaritsky, A.; Boussiba, S. Mosquito larvicidal activity of transgenic Anabaena strain PCC 7120 expressing combinations of genes from Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 1997, 63, 4971–4974. [Google Scholar]
- Zaritsky, A.; Ben-Dov, E.; Borovsky, D.; Boussiba, S.; Einav, M.; Gindin, G.; Horowitz, A.R.; Kolot, M.; Melnikov, O.; Mendel, Z.; et al. Transgenic organisms expressing genes from Bacillus thuringiensis to combat insect pests. Bioeng. Bugs 2010, 1, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Borovsky, D.; Sterner, A.; Powell, C.A. Cloning and expressing trypsin modulating oostatic factor in Chlorella desiccata to control mosquito larvae. Arch. Insect Biochem. Physiol. 2016, 91, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Odom, O.W.; Thangamani, S.; Herrin, D.L. Toward mosquito control with a green alga: Expression of Cry toxins of Bacillus thuringiensis subsp. israelensis (Bti) in the chloroplast of Chlamydomonas. J. Appl. Phycol. 2017, 29, 1377–1389. [Google Scholar] [CrossRef] [PubMed]
- Marten, G.G. Mosquito control by plankton management: The potential of indigestible green algae. J. Trop. Med. Hyg. 1986, 89, 213–222. [Google Scholar] [PubMed]
- Laird, M. The Natural History of Larval Mosquito Habitats; Academic Press: London, UK, 1988. [Google Scholar]
- Kaufman, M.G.; Wanja, E.; Maknojia, S.; Bayoh, M.N.; Vulule, J.M.; Walker, E.D. Importance of algal biomass to growth and development of Anopheles gambiae larvae. J. Med. Entomol. 2006, 43, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Wang, S.; Ou, R.; Samrakandi, M.; Beerntsen, B.T.; Sayre, R.T. Development of an RNAi based microalgal larvicide to control mosquitoes. Malaria World J. 2013, 4, 1–6. [Google Scholar]
- Harris, E.H. The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its Laboratory Use, 2nd ed.; Elsevier: Burlington, VT, USA, 2009. [Google Scholar]
- Boynton, J.E.; Gillham, N.W. Chloroplast transformation in Chlamydomonas. In Methods in Enzymology; Wu, R., Ed.; Academic Press: New York, NY, USA, 1993; Volume 217, pp. 510–536. [Google Scholar]
- Fischer, N.; Stampacchia, O.; Redding, K.; Rochaix, J.D. Selectable marker recycling in the chloroplast. Mol. Gen. Genet. 1996, 251, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Odom, O.W.; Holloway, S.P.; Deshpande, N.N.; Lee, J.; Herrin, D.L. Mobile self-splicing group I introns from the psbA gene of Chlamydomonas reinhardtii: Highly efficient homing of an exogenous intron containing its own promoter. Mol. Cell. Biol. 2001, 21, 3472–3481. [Google Scholar] [CrossRef] [PubMed]
- Purton, S.; Szaub, J.B.; Wannathong, T.; Young, R.; Economou, C.K. Genetic engineering of algal chloroplasts: Progress and prospects. Russ. J. Plant Physiol. 2013, 60, 491–499. [Google Scholar] [CrossRef]
- Thomas, W.E.; Ellar, D.J. Mechanism of action of Bacillus thuringiensis var israelensis insecticidal delta-endotoxin. FEBS Lett. 1983, 154, 362–368. [Google Scholar] [CrossRef]
- Khasdan, V.; Ben-Dov, E.; Manasherob, R.; Boussiba, S.; Zaritsky, A. Toxicity and synergism in transgenic Escherichia coli expressing four genes from Bacillus thuringiensis subsp. israelensis. Environ. Microbiol. 2001, 3, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Manasherob, R.; Zaritsky, A.; Ben-Dov, E.; Saxena, D.; Barak, Z.; Einav, M. Effect of accessory proteins P19 and P20 on cytolytic activity of Cyt1Aa from Bacillus thuringiensis subsp. israelensis in Escherichia coli. Curr. Microbiol. 2001, 43, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Schroda, M.; Vallon, O. Chaperones and proteases. In The Chlamydomonas Sourcebook, 2nd ed.; Stern, D., Ed.; Academic Press: Oxford, UK, 2009; Volume 2, pp. 671–712. ISBN 978-0-12-370873-1. [Google Scholar]
- Fargo, D.C.; Zhang, M.; Gillham, N.W.; Boynton, J.E. Shine-Dalgarno-like sequences are not required for translation of chloroplast mRNAs in Chlamydomonas reinhardtii chloroplasts or in Escherichia coli. Mol. Gen. Genet. 1998, 257, 271–282. [Google Scholar] [PubMed]
- Puigbò, P.; Guzmán, E.; Romeu, A.; Garcia-Vallvé, S. OPTIMIZER: A web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 2007, 35, W126–W131. [Google Scholar] [CrossRef] [PubMed]
- Stemmer, W.P. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 1994, 91, 10747–10751. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Odom, O.W.; Qiu, W.; Herrin, D.L. PCR Analysis of chloroplast double-strand break (DSB) repair products induced by I-CreII in Chlamydomonas and Arabidopsis. In Homing Endonucleases; Edgell, D.R., Ed.; Humana Press: New York, NY, USA, 2014; Volume 1123, pp. 77–86. [Google Scholar]
- Memon, A.R.; Herrin, D.L.; Thompson, G.A. Intracellular translocation of a 28 kDa GTP-binding protein during osmotic shock-induced cell volume regulation in Dunaliella salina. Biochim. Biophys. Acta 1993, 1179, 11–22. [Google Scholar] [CrossRef]
- Al-Yahyae, S.A.S.; Ellar, D.J. Maximal toxicity of cloned CytA delta-endotoxin from Bacillus thuringiensis subsp. israelensis requires proteolytic processing from both the N- and C-termini. Microbiology 1995, 141, 3141–3148. [Google Scholar] [CrossRef]
- Surzycki, R.; Cournac, L.; Peltier, G.; Rochaix, J.-D. Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc. Natl. Acad. Sci. USA 2007, 104, 17548–17553. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.; Elles, I.; Kortmann, J.; Piotrowski, M.; Nickelsen, J. Synthesis of the D2 protein of photosystem II in Chlamydomonas is controlled by a high molecular mass complex containing the RNA stabilization factor NAC2 and the translational activator RBP40. Plant Cell 2007, 19, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Vincken, J.-P.; Suurs, L.C.J.M.; Visser, R.G.F. Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. Plant Mol. Biol. 2003, 51, 789–801. [Google Scholar] [CrossRef] [PubMed]
Chlamydomonas Strain a | Larval Mortality | Pupae Formed | Adults Formed |
---|---|---|---|
No Cyt1A | 2/16 | 14/16 | 14/16 |
Cyt1A (Rev) | 7/16 | 9/16 | 9/16 |
Cyt1A (Fwd) | 5/16 | 11/16 | 9/16 |
Cry11Aa induced | 12/14 | 2/14 | 2/14 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Odom, O.W.; Malone, C.L.; Thangamani, S.; Herrin, D.L. Expression of a Synthetic Gene for the Major Cytotoxin (Cyt1Aa) of Bacillus thuringiensis subsp. israelensis in the Chloroplast of Wild-Type Chlamydomonas. Biology 2018, 7, 29. https://doi.org/10.3390/biology7020029
Kang S, Odom OW, Malone CL, Thangamani S, Herrin DL. Expression of a Synthetic Gene for the Major Cytotoxin (Cyt1Aa) of Bacillus thuringiensis subsp. israelensis in the Chloroplast of Wild-Type Chlamydomonas. Biology. 2018; 7(2):29. https://doi.org/10.3390/biology7020029
Chicago/Turabian StyleKang, Seongjoon, Obed W. Odom, Candice L. Malone, Saravanan Thangamani, and David L. Herrin. 2018. "Expression of a Synthetic Gene for the Major Cytotoxin (Cyt1Aa) of Bacillus thuringiensis subsp. israelensis in the Chloroplast of Wild-Type Chlamydomonas" Biology 7, no. 2: 29. https://doi.org/10.3390/biology7020029
APA StyleKang, S., Odom, O. W., Malone, C. L., Thangamani, S., & Herrin, D. L. (2018). Expression of a Synthetic Gene for the Major Cytotoxin (Cyt1Aa) of Bacillus thuringiensis subsp. israelensis in the Chloroplast of Wild-Type Chlamydomonas. Biology, 7(2), 29. https://doi.org/10.3390/biology7020029