Insecticidal Activity and Synergistic Combinations of Ten Different Bt Toxins against Mythimna separata (Walker)
Abstract
:1. Introduction
2. Results
2.1. Susceptibility of Mythimna separata to Bt Toxins
2.2. Effect of Bt Toxins Combinations against Mythimna separata
2.3. Determination of the Mortality Rate
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Insect Strains
5.2. Diet Formulation
5.3. Bt Toxins
5.4. Bioassays
5.4.1. Bt Toxin Bioassay
5.4.2. Assessment of Synergism between Bt Toxins
5.5. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their Biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.Z.; Hale, K.; Carta, L.; Platzer, E.; Wong, C.; Fang, S.C.; Aroian, R.V. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA 2003, 100, 2760–2765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iatsenko, I.; Nikolov, A.; Sommer, R.J. Identification of distinct Bacillus thuringiensis 4A4 nematicidal factors using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. Toxins 2014, 6, 2050–2063. [Google Scholar] [CrossRef] [PubMed]
- Hannay, C.L. Crystalline inclusions in aerobic sporeforming Bacteria. Nature 1953, 172, 1004. [Google Scholar] [CrossRef] [PubMed]
- Frankenhuyzen, K.V. Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J. Invertebr. Pathol. 2013, 114, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Schnepf, E.; Crickmore, N.; Rie, J.V.; Lereclus, D.; Baum, J.; Feitelson, J. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. 1998, 62, 775–806. [Google Scholar]
- James, C. Global Status of Commercialized Biotech/GM Crops in 2017: Biotech Crop Adoption Surges as Economic Benefits Accumulate in 22 Years; ISAAA Briefs 53; ISAAA: Manila, Philippines, 2017. [Google Scholar]
- ISAAA GM Approval Database. Available online: http://www.isaaa.org/gmapprovaldatabase/default.asp (accessed on 20 September 2018).
- Hernández-Martínez, P.; Hernández-Rodríguez, C.S.; Rie, J.V.; Escriche, B.; Ferré, J. Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. J. Invertebr. Pathol. 2013, 113, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Escudero, I.; Banyuls, N.; Bel, Y.; Maeztu, M.; Escriche, B.; Muñoz, D.; Caballero, P.; Ferré, J. A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. J. Invertebr. Pathol. 2014, 117, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Walters, F.S.; Stacy, C.M.; Lee, M.K.; Palekar, N.; Chen, J.S. An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against Western corn rootworm larvae. Appl. Environ. Microbiol. 2008, 74, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Walters, F.S.; de Fontes, C.M.; Hart, H.; Warren, G.W.; Chen, J.S. Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl. Environ. Microbiol. 2010, 76, 3082–3088. [Google Scholar] [CrossRef] [PubMed]
- Chakroun, M.; Banyuls, N.; Bel, Y.; Escriche, B.; Ferré, J. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 329–350. [Google Scholar] [CrossRef] [PubMed]
- Estruch, J.J.; Warren, G.W.; Mullins, M.A.; Nye, G.J.; Craig, J.A.; Koziel, M.G. Vip3A, A novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 1996, 93, 5389–5394. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 1994, 39, 47–49. [Google Scholar] [CrossRef]
- Ferré, J.; Rie, J.V. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2002, 47, 501–533. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, J.J.; Mahaffey, J.S. Efficacy of Vip3a and Cry1Ab transgenic traits in cotton against various lepidopteran pests. Fla. Entomol. 2008, 91, 570–575. [Google Scholar]
- Roush, R.T. Two-toxin strategies for management of insecticidal transgenic crops: Can pyramiding succeed where pesticide mixtures have not? Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1998, 353, 1777–1786. [Google Scholar] [CrossRef]
- Zhao, J.Z.; Cao, J.; Li, Y.X.; Collins, H.L.; Roush, R.T.; Earle, E.D.; Shelton, A.M. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat. Biotechnol. 2003, 21, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Carrière, Y.; Crickmore, N.; Tabashnik, B.E. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. Biotechnol. 2015, 33, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Carrière, Y.; Fabrick, J.A.; Tabashnik, B.E. Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol. 2016, 34, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Z.; Cao, J.; Collins, H.L.; Bates, S.L.; Roush, R.T.; Earle, E.D. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc. Natl. Acad. Sci. USA 2005, 102, 8426–8430. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Unnithan, G.C.; Masson, L.; Crowder, D.W.; Li, X.C.; Carrière, Y. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc. Natl. Acad. Sci. USA 2009, 106, 11889–11894. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.E.; Bibilos, M.M.; Bulla, L.A. Protease activation of the entomocidal protoxin of Bacillus thuringiensis subsp. kurstaki. Appl. Environ. Microbiol. 1985, 50, 737–742. [Google Scholar] [PubMed]
- Caccia, S.; Chakroun, M.; Vinokurov, K.; Ferré, J. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. J. Invertebr. Pathol. 2014, 67, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Knowles, B.H. Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv. Insect Physiol. 1994, 24, 275–308. [Google Scholar]
- Bravo, A.; Gómez, I.; Conde, J.; Munoz-Garay, C.; Sanchez, J.; Miranda, R.; Zhuang, M.; Gill, S.S.; Soberón, M. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim. Biophys. Acta 2004, 1667, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.; Pardo-López, L.; Muñoz-Garay, C.; Fernández, L.E.; Pérez, C.; Sénchez, J.; Soberón, M.; Bravo, A. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides 2007, 28, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Gomis-Cebolla, J.; Ruiz de Escudero, I.; Vera-Velasco, N.M.; Hernández-Martínez, P.; Hernández-Rodríguez, C.S.; Ceballos, T.; Palma, L.; Escriche, B.; Caballero, P.; Ferré, J. Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. J. Invertebr. Pathol. 2017, 142, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.G.; Mullins, M.A.; Warren, G.W.; Koziel, M.G.; Estruch, J.J. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl. Environ. Microbiol. 1997, 63, 532–536. [Google Scholar] [PubMed]
- Caccia, S.; Di Lelio, I.; La Storia, A.; Marinelli, A.; Varricchio, P.; Franzetti, E.; Banyuls, N.; Tettamanti, G.; Casartelli, M.; Giordana, B.; et al. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proc. Natl. Acad. Sci. USA 2016, 113, 9486–9491. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.L.; Miles, P.; Chen, J.S. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem. Biophy. Res. Commun. 2006, 339, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Sena, J.A.D.; Hernández-Rodríguez, C.S.; Ferré, J. Interaction of Bacillus thuringiensis Cry1 and Vip3Aa proteins with Spodoptera frugiperda midgut binding sites. Appl. Environ. Microbiol. 2009, 75, 2236–2237. [Google Scholar] [CrossRef] [PubMed]
- Abdelkefi-Mesrati, L.; Rouis, S.; Sellami, S.; Jaoua, S. Prays oleae midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3LB differs from that of Cry1Ac toxin. Mol. Biotechnol. 2009, 43, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Chakroun, M.; Ferré, J. In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by 125I radiolabeling. Appl. Environ. Microbiol. 2014, 80, 6258–6265. [Google Scholar] [CrossRef] [PubMed]
- Gouffon, C.; van Vliet, A.; van Rie, J.; Jansens, S.; Jurat-Fuentes, J.L. Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl. Environ. Microbiol. 2011, 77, 3182–3188. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.B.; Lu, G.Q.; Cheng, H.M.; Liu, C.X.; Xiao, Y.X.; Xu, C.; Shen, Z.C.; Wu, K.M. Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests. J. Invertebr. Pathol. 2017, 149, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Burgess, E.P.J. Population dynamics of Mythimna separata and its parasitoid, Cotesia ruficrus, on maize in New Zealand. N. Z. J. Agric. Res. 1987, 30, 203–208. [Google Scholar] [CrossRef]
- Drake, V.; Gatehouse, A. (Eds.) Insect migration in relation to weather and climates. In Insect Migration: Tracking Resources through Space and Time; Cambridge University Press: London, UK, 1995; pp. 93–150. [Google Scholar]
- Sharma, H.C.; Sullivan, D.J.; Bhatnagar, V.S. Population dynamics and natural mortality factors of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae), in South Central India. Crop. Prot. 2002, 21, 721–732. [Google Scholar] [CrossRef]
- Chang, X.Q.; Shu, Z.; Liang, L. Insight into the ultrastructure of antennal sensilla of Mythimna separata (Lepidoptera: Noctuidae). J. Insect Sci. 2015, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- EPPO Global Database. Available online: https://gd.eppo.int/taxon/PSEDSE/distribution (accessed on 20 August 2018).
- Kouassi, L.N.; Tsuda, K.; Goto, C. Biological activity and identification of nucleopolyhedroviruses isolated from Mythimna separata and Spodoptera litura in Japan. Biol. Control 2009, 54, 537–548. [Google Scholar] [CrossRef]
- Sharma, H.C.; Davies, J.C. The Oriental Armyworm, Mythimna separata (Wal.) Distribution, Biology and Control: A Literature Review; Center for Oversea Pest Research, ODA Miscellaneous Report 59; Center for Oversea Pest: London, UK, 1983. [Google Scholar]
- Jiang, Y.Y.; Li, C.G.; Zen, J.; Liu, J. Population dynamics of the armyworm in China: A review of the past 60 years’ research. Chin. J. Appl. Entomol. 2014, 51, 890–898. [Google Scholar]
- Wang, J.D.; Chen, L.F.; Wang, Y.R.; Fu, H.Y.; Ali, A.; Xiao, D.; Wang, R.; Gao, S.J. Silence of ryanodine receptor gene decreases susceptibility to chlorantraniliprole in the oriental armyworm, Mythimna separata (walker). Pesticide Biochem. Physiol. 2018, 148, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, H.; Chen, Y.; Wang, S.; Sun, H. Cross-resistance and biochemical resistance mechanisms of emamectin benzoate resistant population of Mythimna separate. Chin. J. Pesticide Sci. 2017, 19, 18–24. [Google Scholar]
- González-Cabrera, J.; García, M.; Hernández-Crespo, P.; Farinós, G.P.; Ortego, F.; Castañera, P. Resistance to Bt maize in Mythimna unipuncta (lepidoptera: Noctuidae) is mediated by alteration in Cry1Ab protein activation. Insect Biochem. Mol. Biol. 2013, 43, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Buntin, G.D.; Lee, R.D.; Wilson, D.M.; Mcpherson, R.M. Evaluation of yieldgard transgenic resistance for control of fall armyworm and corn earworm (Lepidoptera: Noctuidae) on corn. Fla. Entomol. 2001, 81, 37–42. [Google Scholar] [CrossRef]
- Storer, N.P.; Babcock, J.M.; Schlenz, M.; Meade, T.; Thompson, G.D.; Bing, J.W.; Huckaba, R.M. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 2010, 103, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Monnerat, R.; Martins, E.; Macedo, C.; Queiroz, P.; Praça, L.; Soares, C.M.; Moreira, H.; Grisi, I.; Sila, J.; Soberón, M. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS ONE 2015, 10, e0119544. [Google Scholar] [CrossRef] [PubMed]
- Omoto, C.; Bernardi, O.; Salmeron, E.; Sorgatto, R.J.; Dourado, P.M.; Crivellari, A.; Carvalho, R.A.; Willse, A.; Martinelli, S.; Head, G.P. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag. Sci. 2016, 72, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
- Ibargutxi, M.A.; Muñoz, D.; Escudero, I.R.D.; Caballero, P. Interactions between Cry1Ac, Cry2Ab, and Cry1Fa Bacillus thuringiensis toxins in the cotton pests Helicoverpa armigera (Hübner) and Earias insulana (Boisduval). Biol. Control 2008, 47, 89–96. [Google Scholar] [CrossRef]
- Granero, F.; Ballester, V.; Ferre, J. Bacillus thuringiensis crystal proteins Cry1Ab and Cry1Fa share a high affinity binding site in Plutella xylostella (L.). Biochem. Bioph. Res. Commun. 1996, 224, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Siebert, M.W.; Babock, J.M.; Nolting, A.; Santos, A.C.; Adamczyk, J.J.; Neese, P.A.; King, J.E.; Jenkins, J.N.; McCarty, J.; Lorenz, G.M.; et al. Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae). Fla. Entomol. 2008, 81, 555–565. [Google Scholar]
- Lemes, A.R.N.; Davolos, C.C.; Legori, P.C.B.C.; Fernandes, O.A.; Ferré, J.; Lemos, M.V.F.; Desiderio, J.A. Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. PLoS ONE 2014, 9, e107196. [Google Scholar] [CrossRef] [PubMed]
- Gomis-Cebolla, J.; Wang, Y.; Quan, Y.; He, K.; Walsh, T.; James, B.; Downes, S.; Kain, W.; Wang, P.; Leonard, K.; et al. Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins. J. Invertebr. Pathol. 2018, 155, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Graser, G.; Walters, F.S.; Burns, A.; Sauve, A.; Raybould, A. A general approach to test for interaction among mixtures of insecticidal proteins which target different orders of insect pests. J. Insect Sci. 2017, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bergamasco, V.B.; Mendes, D.R.P.; Fernandes, A.O.; Desidério, J.A.; Lemos, M.V.F. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). J. Invertebr. Pathol. 2013, 112, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Iatsenko, I.; Boichenko, I.; Somme, R.J. Bacillus thuringiensis DB27 produces two novel Protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Appl. Environ. Microbiol. 2014, 80, 3266–3275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, L.; Zhou, Z.; Pacheco, S.; Gómez, I.; Song, F.; Bravo, A. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis). J. Biol. Chem. 2018, 293, 11447–11458. [Google Scholar] [CrossRef] [PubMed]
- Song, F.P.; Zhang, J.; Gu, A.X.; Wu, Y.; Han, L.L.; He, K.L.; Chen, Z.Y.; Yao, J.; Hu, Y.Q.; Li, G.X.; et al. Identification of cry1I-Type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene. Appl. Environ. Microbiol. 2003, 69, 5207–5211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Liu, Y.J.; Ren, Y.; Liu, Y.; Liang, G.M.; Song, F.P.; Bai, S.X.; Wang, J.H.; Wang, G.Y. Overexpression of a novel Cry1Ie gene confers resistance to Cry1Ac-resistant cotton bollworm in transgenic lines of maize. Plant Cell Tissue Organ. Cult. 2013, 115, 151–158. [Google Scholar] [CrossRef]
- Siegfried, B.D.; Spencer, T.; Crespo, A.; Pereira, E.; Marcon, P. Ten years of Bt resistance monitoring in the European corn borer: What we know, what we don’t know, and what we can do better. Am. Entomol. 2006, 53, 208–214. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, Z.; Bravo, A.; Soberón, M.; He, K. Genetic basis of Cry1F-resistance in a laboratory selected Asian corn borer strain and its cross-resistance to other Bacillus thuringiensis toxins. PLoS ONE 2016, 11, e0161189. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E. Evaluation of synergism among Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 1992, 58, 3343–3346. [Google Scholar] [PubMed]
- Liao, C.; Heckel, D.G.; Akhurst, R. Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. J. Invertebr. Pathol. 2002, 80, 55–63. [Google Scholar] [CrossRef]
- Wang, Y.N. Manual of Artificial Insect Diet; Shanghai Scientific and Technical Publishers: Shanghai, China, 1984; pp. 44–47. [Google Scholar]
- Shabbir, M.Z.; Quan, Y.; Wang, Z. Characterization of the Cry1Ah resistance in Asian corn Borer and its cross-resistance to other Bacillus thuringiensis toxins. Sci. Rep. 2018, 8, 234. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.W.; Park, R.M.; Bailer, A.J. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem. 2006, 25, 1441–1444. [Google Scholar] [CrossRef] [PubMed]
Toxin | n | LC50 (95%FL) μg/g * | LC95 (95%FL) μg/g * | Slope ± SE * | χ2 | df (χ2) |
---|---|---|---|---|---|---|
Cry1Ab | 480 | 6.4 (4.2, 9.0) c | 326.5 (158.3, 1034.2) a | 0.96 ± 0.12 bc | 3.3 | 5 |
Cry1Ac | 480 | 3.7 (2.1, 5.7) cd | 255.0 (121.0, 893.7) a | 0.89 ± 0.12 bc | 1.6 | 5 |
Cry2Aa | 528 | 6.2 (3.9, 9.8) c | 725.6 (229.7, 5792.6) a | 0.80 ± 0.12 c | 4.2 | 6 |
Cry2Ab | 768 | 22.3 (15.3, 32.3) b | >1000 | 0.82 ± 0.06 c | 20.8 | 14 |
Cry1Fa | 672 | 14.4 (5.7, 24.6) b | >1000 | 0.22 ± 0.04 c | 12.8 | 10 |
Cry1Ie | 672 | 78.6 (47.3, 160.3) a | >1000 | 0.86 ± 0.11 c | 13.7 | 9 |
Cry1Ah | 576 | 18.7 (13.1, 25.9) b | >1000 | 0.26 ± 0.03 c | 9.9 | 8 |
Vip3Aa16 | 528 | 7.4 (2.7, 19.3) c | 351.8 (74.4, 939.9) a | 0.98 ± 0.14 bc | 17.5 | 6 |
Vip3Aa19 | 384 | 1.6 (0.55, 3.53) d | 35.0 (17.0, 148.0) b | 1.24 ± 0.15 b | 11.2 | 6 |
Vip3Ca | 480 | 3.4 (2.5, 4.6) cd | 27.1 (17.4, 54.9) b | 1.83 ± 0.19 a | 5.2 | 5 |
Toxins | Ratio | n | Slope ± SE | LC50 (95%FL) μg/g | χ2 | df (χ2) | SF | p | |
---|---|---|---|---|---|---|---|---|---|
Observed | Expected | ||||||||
Cry1Ab/Vip3Aa16 | 0.71:0.29 | 480 | 0.9 ± 0.1 | 3.1 (1.8, 4.5) | 6.6 (3.6, 10.7) | 2.8 | 5 | 2.2 | 0.03 |
Cry1Ab/Vip3Ca | 0.71:0.29 | 480 | 1.0 ± 0.1 | 2.6 (0.4, 5.5) | 5.1 (3.5, 7.1) | 15.1 | 5 | 2.0 | 0.29 |
Cry1Fa/Vip3Aa16 | 0.71:0.29 | 480 | 1.0 ± 0.1 | 1.8 (0.3, 3.9) | 11.3 (4.3, 22.8) | 9.1 | 5 | 6.3 | 0.01 |
Cry1Fa/Vip3Ca | 0.71:0.29 | 480 | 1.2 ± 0.1 | 11.7 (5.7, 21.8) | 7.5 (4.1, 10.9) | 11.3 | 5 | 0.6 | 0.29 |
Cry1Ie/Vip3Aa16 | 0.67:0.33 | 480 | 0.6 ± 0.1 | 2.0 (0.57, 3.9) | 18.6 (7.2, 46.7) | 1.3 | 5 | 9.2 | <0.01 |
Cry1Ie/Vip3Ca | 0.67:0.33 | 480 | 0.9 ± 0.1 | 6.20 (1.4, 13.9) | 9.5 (6.7, 12.9) | 13.6 | 5 | 1.5 | 0.48 |
Cry1Ah/Vip3Aa16 | 0.68:0.32 | 480 | 1.5 ± 0.1 | 5.12 (3.4, 7.1) | 12.6 (5.9, 23.4) | 1.7 | 5 | 2.5 | 0.02 |
Cry1Ah/Vip3Ca | 0.68:0.32 | 480 | 1.6 ± 0.2 | 8.12 (5.7, 10.7) | 7.8 (5.5, 10.4) | 0.9 | 4 | 1.0 | 0.84 |
Cry2Aa/Vip3Ca | 0.50:0.50 | 480 | 1.4 ± 0.2 | 4.07 (2.4, 6.2) | 4.4 (3.0, 6.2) | 7.8 | 5 | 1.1 | 0.78 |
Toxins | Proportion | Concentration (μg/g) | n | Mortality ± SE (%) | p | |
---|---|---|---|---|---|---|
Observed | Expected | |||||
Cry1Ac/Vip3Aa16 | 0.56/0.44 | 2.5 | 144 | 55.6 ± 0.9 | 50 | 0.69 |
Cry1Ac/Vip3Ca | 0.56/0.44 | 1.8 | 144 | 48.3 ± 0.2 | 50 | 0.83 |
Cry2Aa/Vip3Aa16 | 0.50/0.50 | 3.4 | 144 | 57.8 ± 0.1 | 50 | 0.35 |
Cry2Aa/Vip3Ca | 0.50/0.50 | 2.2 | 144 | 69.8 ± 0.3 | 50 | 0.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Quan, Y.; Sivaprasath, P.; Shabbir, M.Z.; Wang, Z.; Ferré, J.; He, K. Insecticidal Activity and Synergistic Combinations of Ten Different Bt Toxins against Mythimna separata (Walker). Toxins 2018, 10, 454. https://doi.org/10.3390/toxins10110454
Yang J, Quan Y, Sivaprasath P, Shabbir MZ, Wang Z, Ferré J, He K. Insecticidal Activity and Synergistic Combinations of Ten Different Bt Toxins against Mythimna separata (Walker). Toxins. 2018; 10(11):454. https://doi.org/10.3390/toxins10110454
Chicago/Turabian StyleYang, Jing, Yudong Quan, Prabu Sivaprasath, Muhammad Zeeshan Shabbir, Zhenying Wang, Juan Ferré, and Kanglai He. 2018. "Insecticidal Activity and Synergistic Combinations of Ten Different Bt Toxins against Mythimna separata (Walker)" Toxins 10, no. 11: 454. https://doi.org/10.3390/toxins10110454
APA StyleYang, J., Quan, Y., Sivaprasath, P., Shabbir, M. Z., Wang, Z., Ferré, J., & He, K. (2018). Insecticidal Activity and Synergistic Combinations of Ten Different Bt Toxins against Mythimna separata (Walker). Toxins, 10(11), 454. https://doi.org/10.3390/toxins10110454