Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = realistic noisy label

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 941 KiB  
Article
Physics-Informed Neural Networks for Enhanced State Estimation in Unbalanced Distribution Power Systems
by Petros Iliadis, Stefanos Petridis, Angelos Skembris, Dimitrios Rakopoulos and Elias Kosmatopoulos
Appl. Sci. 2025, 15(13), 7507; https://doi.org/10.3390/app15137507 - 3 Jul 2025
Viewed by 767
Abstract
State estimation in distribution power systems is increasingly challenged by the proliferation of distributed energy resources (DERs), bidirectional power flows, and the growing complexity of unbalanced network topologies. Physics-Informed Neural Networks (PINNs) offer a compelling solution by integrating machine learning with the physical [...] Read more.
State estimation in distribution power systems is increasingly challenged by the proliferation of distributed energy resources (DERs), bidirectional power flows, and the growing complexity of unbalanced network topologies. Physics-Informed Neural Networks (PINNs) offer a compelling solution by integrating machine learning with the physical laws that govern power system behavior. This paper introduces a PINN-based framework for state estimation in unbalanced distribution systems, leveraging available data and embedded physical knowledge to improve accuracy, computational efficiency, and robustness across diverse operating scenarios. The proposed method is evaluated on four IEEE test feeders—IEEE 13, 34, 37, and 123—using synthetic datasets generated via OpenDSS to emulate realistic operating scenarios, and demonstrates significant improvements over baseline models. Notably, the PINN achieves up to a 97% reduction in current estimation errors while maintaining high voltage prediction accuracy. Extensive simulations further assess model performance under noisy inputs and partial observability, where the PINN consistently outperforms conventional data-driven approaches. These results highlight the method’s ability to generalize under uncertainty, accelerate convergence, and preserve physical consistency in simulated real-world conditions without requiring large volumes of labeled training data. Full article
(This article belongs to the Special Issue Advanced Smart Grid Technologies, Applications and Challenges)
Show Figures

Figure 1

24 pages, 1667 KiB  
Article
Mitigating Class Imbalance Challenges in Fish Taxonomy: Quantifying Performance Gains Using Robust Asymmetric Loss Within an Optimized Mobile–Former Framework
by Yanhe Tao and Rui Zhong
Electronics 2025, 14(12), 2333; https://doi.org/10.3390/electronics14122333 - 7 Jun 2025
Viewed by 453
Abstract
Accurate fish species identification is crucial for marine biodiversity conservation, environmental monitoring, and sustainable fishery management, particularly as marine ecosystems face increasing pressures from human activities and climate change. Traditional morphological identification methods are inherently labor-intensive and resource-demanding, while contemporary automated approaches, particularly [...] Read more.
Accurate fish species identification is crucial for marine biodiversity conservation, environmental monitoring, and sustainable fishery management, particularly as marine ecosystems face increasing pressures from human activities and climate change. Traditional morphological identification methods are inherently labor-intensive and resource-demanding, while contemporary automated approaches, particularly deep learning models, often suffer from significant computational overhead and struggle with the pervasive issue of class imbalance inherent in ecological datasets. Addressing these limitations, this research introduces a novel computationally parsimonious fish classification framework leveraging the hybrid Mobile–Former neural network architecture. This architecture strategically combines the local feature extraction strengths of convolutional layers with the global context modeling capabilities of transformers, optimized for efficiency. To specifically mitigate the detrimental effects of the skewed data distributions frequently observed in real-world fish surveys, the framework incorporates a sophisticated robust asymmetric loss function designed to enhance model focus on under-represented categories and improve resilience against noisy labels. The proposed system was rigorously evaluated using the comprehensive FishNet dataset, comprising 74,935 images distributed across a detailed taxonomic hierarchy including eight classes, seventy-two orders, and three-hundred-forty-eight families, reflecting realistic ecological diversity. Our model demonstrates superior classification accuracy, achieving 93.97 percent at the class level, 88.28 percent at the order level, and 84.02 percent at the family level. Crucially, these high accuracies are attained with remarkable computational efficiency, requiring merely 508 million floating-point operations, significantly outperforming comparable state-of-the-art models in balancing performance and resource utilization. This advancement provides a streamlined, effective, and resource-conscious methodology for automated fish species identification, thereby strengthening ecological monitoring capabilities and contributing significantly to the informed conservation and management of vital marine ecosystems. Full article
(This article belongs to the Special Issue Advances in Machine Learning for Image Classification)
Show Figures

Figure 1

23 pages, 7950 KiB  
Article
Tripartite: Tackling Realistic Noisy Labels with More Precise Partitions
by Lida Yu, Xuefeng Liang, Chang Cao, Longshan Yao and Xingyu Liu
Sensors 2025, 25(11), 3369; https://doi.org/10.3390/s25113369 - 27 May 2025
Viewed by 349
Abstract
Samples in large-scale datasets may be mislabeled for various reasons, and deep models are inclined to over-fit some noisy samples using conventional training procedures. The key solution is to alleviate the harm of these noisy labels. Many existing methods try to divide training [...] Read more.
Samples in large-scale datasets may be mislabeled for various reasons, and deep models are inclined to over-fit some noisy samples using conventional training procedures. The key solution is to alleviate the harm of these noisy labels. Many existing methods try to divide training data into clean and noisy subsets in terms of loss values. We observe that a reason hindering the better performance of deep models is the uncertain samples, which have relatively small losses and often appear in real-world datasets. Due to small losses, many uncertain noisy samples are divided into the clean subset and then degrade models’ performance. Instead, we propose a Tripartite solution to partition training data into three subsets, uncertain, clean and noisy according to the following criteria: the inconsistency of the predictions of two networks and the given labels. Tripartite considerably improves the quality of the clean subset. Moreover, to maximize the value of clean samples in the uncertain subset and minimize the harm of noisy labels, we apply low-weight learning and a semi-supervised learning, respectively. Extensive experiments demonstrate that Tripartite can filter out noisy samples more precisely and outperforms most state-of-the-art methods on four benchmark datasets and especially real-world datasets. Full article
(This article belongs to the Special Issue AI-Based Computer Vision Sensors & Systems)
Show Figures

Figure 1

18 pages, 487 KiB  
Article
NLOCL: Noise-Labeled Online Continual Learning
by Kan Cheng, Yongxin Ma, Guanglu Wang, Linlin Zong and Xinyue Liu
Electronics 2024, 13(13), 2560; https://doi.org/10.3390/electronics13132560 - 29 Jun 2024
Cited by 1 | Viewed by 1156
Abstract
Continual learning (CL) from infinite data streams has become a challenge for neural network models in real-world scenarios. Catastrophic forgetting of previous knowledge occurs in this learning setting, and existing supervised CL methods rely excessively on accurately labeled samples. However, the real-world data [...] Read more.
Continual learning (CL) from infinite data streams has become a challenge for neural network models in real-world scenarios. Catastrophic forgetting of previous knowledge occurs in this learning setting, and existing supervised CL methods rely excessively on accurately labeled samples. However, the real-world data labels are usually misled by noise, which influences the CL agents and aggravates forgetting. To address this problem, we propose a method named noise-labeled online continual learning (NLOCL), which implements the online CL model with noise-labeled data streams. NLOCL uses an empirical replay strategy to retain crucial examples, separates data streams by small-loss criteria, and includes semi-supervised fine-tuning for labeled and unlabeled samples. Besides, NLOCL combines small loss with class diversity measures and eliminates online memory partitioning. Furthermore, we optimized the experience replay stage to enhance the model performance by retaining significant clean-labeled examples and carefully selecting suitable samples. In the experiment, we designed noise-labeled data streams by injecting noisy labels into multiple datasets and partitioning tasks to simulate infinite data streams realistically. The experimental results demonstrate the superior performance and robust learning capabilities of our proposed method. Full article
(This article belongs to the Special Issue Emerging Theory and Applications in Natural Language Processing)
Show Figures

Figure 1

19 pages, 10525 KiB  
Article
Boosting Noise Reduction Effect via Unsupervised Fine-Tuning Strategy
by Xinyi Jiang, Shaoping Xu, Junyun Wu, Changfei Zhou and Shuichen Ji
Appl. Sci. 2024, 14(5), 1742; https://doi.org/10.3390/app14051742 - 21 Feb 2024
Cited by 2 | Viewed by 1835
Abstract
Over the last decade, supervised denoising models, trained on extensive datasets, have exhibited remarkable performance in image denoising, owing to their superior denoising effects. However, these models exhibit limited flexibility and manifest varying degrees of degradation in noise reduction capability when applied in [...] Read more.
Over the last decade, supervised denoising models, trained on extensive datasets, have exhibited remarkable performance in image denoising, owing to their superior denoising effects. However, these models exhibit limited flexibility and manifest varying degrees of degradation in noise reduction capability when applied in practical scenarios, particularly when the noise distribution of a given noisy image deviates from that of the training images. To tackle this problem, we put forward a two-stage denoising model that is actualized by attaching an unsupervised fine-tuning phase after a supervised denoising model processes the input noisy image and secures a denoised image (regarded as a preprocessed image). More specifically, in the first stage we replace the convolution block adopted by the U-shaped network framework (utilized in the deep image prior method) with the Transformer module, and the resultant model is referred to as a U-Transformer. The U-Transformer model is trained to preprocess the input noisy images using noisy images and their labels. As for the second stage, we condense the supervised U-Transformer model into a simplified version, incorporating only one Transformer module with fewer parameters. Additionally, we shift its training mode to unsupervised training, following a similar approach as employed in the deep image prior method. This stage aims to further eliminate minor residual noise and artifacts present in the preprocessed image, resulting in clearer and more realistic output images. Experimental results illustrate that the proposed method achieves significant noise reduction in both synthetic and real images, surpassing state-of-the-art methods. This superiority stems from the supervised model’s ability to rapidly process given noisy images, while the unsupervised model leverages its flexibility to generate a fine-tuned network, enhancing noise reduction capability. Moreover, with support from the supervised model providing higher-quality preprocessed images, the proposed unsupervised fine-tuning model requires fewer parameters, facilitating rapid training and convergence, resulting in overall high execution efficiency. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

19 pages, 582 KiB  
Article
Electrical Power Edge-End Interaction Modeling with Time Series Label Noise Learning
by Zhenshang Wang, Mi Zhou, Yuming Zhao, Fan Zhang, Jing Wang, Bin Qian, Zhen Liu, Peitian Ma and Qianli Ma
Electronics 2023, 12(18), 3987; https://doi.org/10.3390/electronics12183987 - 21 Sep 2023
Cited by 3 | Viewed by 1412
Abstract
In the context of electrical power systems, modeling the edge-end interaction involves understanding the dynamic relationship between different components and endpoints of the system. However, the time series of electrical power obtained by user terminals often suffer from low-quality issues such as missing [...] Read more.
In the context of electrical power systems, modeling the edge-end interaction involves understanding the dynamic relationship between different components and endpoints of the system. However, the time series of electrical power obtained by user terminals often suffer from low-quality issues such as missing values, numerical anomalies, and noisy labels. These issues can easily reduce the robustness of data mining results for edge-end interaction models. Therefore, this paper proposes a time–frequency noisy label classification (TF-NLC) model, which improves the robustness of edge-end interaction models in dealing with low-quality issues. Specifically, we employ two deep neural networks that are trained concurrently, utilizing both the time and frequency domains. The two networks mutually guide each other’s classification training by selecting clean labels from batches within small loss data. To further improve the robustness of the classification of time and frequency domain feature representations, we introduce a time–frequency domain consistency contrastive learning module. By classifying the selection of clean labels based on time–frequency representations for mutually guided training, TF-NLC can effectively mitigate the negative impact of noisy labels on model training. Extensive experiments on eight electrical power and ten other different realistic scenario time series datasets show that our proposed TF-NLC achieves advanced classification performance under different noisy label scenarios. Also, the ablation and visualization experiments further demonstrate the robustness of our proposed method. Full article
(This article belongs to the Special Issue Knowledge Engineering and Data Mining Volume II)
Show Figures

Figure 1

24 pages, 1957 KiB  
Article
Domain Adaptation Methods for Lab-to-Field Human Context Recognition
by Abdulaziz Alajaji, Walter Gerych, Luke Buquicchio, Kavin Chandrasekaran, Hamid Mansoor, Emmanuel Agu and Elke Rundensteiner
Sensors 2023, 23(6), 3081; https://doi.org/10.3390/s23063081 - 13 Mar 2023
Cited by 4 | Viewed by 2321
Abstract
Human context recognition (HCR) using sensor data is a crucial task in Context-Aware (CA) applications in domains such as healthcare and security. Supervised machine learning HCR models are trained using smartphone HCR datasets that are scripted or gathered in-the-wild. Scripted datasets are most [...] Read more.
Human context recognition (HCR) using sensor data is a crucial task in Context-Aware (CA) applications in domains such as healthcare and security. Supervised machine learning HCR models are trained using smartphone HCR datasets that are scripted or gathered in-the-wild. Scripted datasets are most accurate because of their consistent visit patterns. Supervised machine learning HCR models perform well on scripted datasets but poorly on realistic data. In-the-wild datasets are more realistic, but cause HCR models to perform worse due to data imbalance, missing or incorrect labels, and a wide variety of phone placements and device types. Lab-to-field approaches learn a robust data representation from a scripted, high-fidelity dataset, which is then used for enhancing performance on a noisy, in-the-wild dataset with similar labels. This research introduces Triplet-based Domain Adaptation for Context REcognition (Triple-DARE), a lab-to-field neural network method that combines three unique loss functions to enhance intra-class compactness and inter-class separation within the embedding space of multi-labeled datasets: (1) domain alignment loss in order to learn domain-invariant embeddings; (2) classification loss to preserve task-discriminative features; and (3) joint fusion triplet loss. Rigorous evaluations showed that Triple-DARE achieved 6.3% and 4.5% higher F1-score and classification, respectively, than state-of-the-art HCR baselines and outperformed non-adaptive HCR models by 44.6% and 10.7%, respectively. Full article
(This article belongs to the Special Issue Vision and Sensor-Based Sensing in Human Action Recognition)
Show Figures

Figure 1

20 pages, 585 KiB  
Article
Synthesizing and Reconstructing Missing Sensory Modalities in Behavioral Context Recognition
by Aaqib Saeed, Tanir Ozcelebi and Johan Lukkien
Sensors 2018, 18(9), 2967; https://doi.org/10.3390/s18092967 - 6 Sep 2018
Cited by 19 | Viewed by 4769
Abstract
Detection of human activities along with the associated context is of key importance for various application areas, including assisted living and well-being. To predict a user’s context in the daily-life situation a system needs to learn from multimodal data that are often imbalanced, [...] Read more.
Detection of human activities along with the associated context is of key importance for various application areas, including assisted living and well-being. To predict a user’s context in the daily-life situation a system needs to learn from multimodal data that are often imbalanced, and noisy with missing values. The model is likely to encounter missing sensors in real-life conditions as well (such as a user not wearing a smartwatch) and it fails to infer the context if any of the modalities used for training are missing. In this paper, we propose a method based on an adversarial autoencoder for handling missing sensory features and synthesizing realistic samples. We empirically demonstrate the capability of our method in comparison with classical approaches for filling in missing values on a large-scale activity recognition dataset collected in-the-wild. We develop a fully-connected classification network by extending an encoder and systematically evaluate its multi-label classification performance when several modalities are missing. Furthermore, we show class-conditional artificial data generation and its visual and quantitative analysis on context classification task; representing a strong generative power of adversarial autoencoders. Full article
(This article belongs to the Special Issue Pervasive Intelligence and Computing)
Show Figures

Figure 1

27 pages, 6808 KiB  
Article
Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data
by Jaewook Jung, Yoonseok Jwa and Gunho Sohn
Sensors 2017, 17(3), 621; https://doi.org/10.3390/s17030621 - 19 Mar 2017
Cited by 41 | Viewed by 8598
Abstract
With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from [...] Read more.
With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models. Full article
Show Figures

Graphical abstract

20 pages, 10155 KiB  
Article
Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network
by Yongjia Zhao and Suiping Zhou
Sensors 2017, 17(3), 478; https://doi.org/10.3390/s17030478 - 28 Feb 2017
Cited by 56 | Viewed by 8720
Abstract
The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for [...] Read more.
The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. Full article
(This article belongs to the Special Issue Wearable Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop