Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = real-time ethernet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2166 KB  
Article
Performance Analysis of Switch Buffer Management Policy for Mixed-Critical Traffic in Time-Sensitive Networks
by Ling Zheng, Yingge Feng, Weiqiang Wang and Qianxi Men
Mathematics 2025, 13(21), 3443; https://doi.org/10.3390/math13213443 - 29 Oct 2025
Abstract
Time-sensitive networking (TSN), a cutting-edge technology enabling efficient real-time communication and control, provides strong support for traditional Ethernet in terms of real-time performance, reliability, and deterministic transmission. In TSN systems, although time-triggered (TT) flows enjoy deterministic delay guarantees, audio video bridging (AVB) and [...] Read more.
Time-sensitive networking (TSN), a cutting-edge technology enabling efficient real-time communication and control, provides strong support for traditional Ethernet in terms of real-time performance, reliability, and deterministic transmission. In TSN systems, although time-triggered (TT) flows enjoy deterministic delay guarantees, audio video bridging (AVB) and best effort (BE) traffic still share link bandwidth through statistical multiplexing, a process that remains nondeterministic. This competition in shared memory switches adversely affects data transmission performance. In this paper, a priority queue threshold control policy is proposed and analyzed for mixed-critical traffic in time-sensitive networks. The core of this policy is to set independent queues for different types of traffic in the shared memory queuing system. To prevent low-priority traffic from monopolizing the shared buffer, its entry into the queue is blocked when buffer usage exceeds a preset threshold. A two-dimensional Markov chain is introduced to accurately construct the system’s queuing model. Through detailed analysis of the queuing model, the truncated chain method is used to decompose the two-dimensional state space into solvable one-dimensional sub-problems, and the approximate solution of the system’s steady-state distribution is derived. Based on this, the blocking probability, average queue length, and average queuing delay of different priority queues are accurately calculated. Finally, according to the optimization goal of the overall blocking probability of the system, the optimal threshold value is determined to achieve better system performance. Numerical results show that this strategy can effectively allocate the shared buffer space in multi-priority traffic scenarios. Compared with the conventional schemes, the queue blocking probability is reduced by approximately 40% to 60%. Full article
Show Figures

Figure 1

22 pages, 3837 KB  
Article
Enhancing Substation Protection Reliability Through Economical Redundancy Schemes
by Husam S. Samkari
Electronics 2025, 14(20), 4097; https://doi.org/10.3390/electronics14204097 - 19 Oct 2025
Viewed by 301
Abstract
This paper proposes an economical scheme to provide redundancy for protection in digital power sub-transmission and distribution substations. The scheme is based on Ethernet communication networks and uses the International Electrotechnical Commission (IEC) standard 61850 sampled values (SV). This redundancy scheme develops a [...] Read more.
This paper proposes an economical scheme to provide redundancy for protection in digital power sub-transmission and distribution substations. The scheme is based on Ethernet communication networks and uses the International Electrotechnical Commission (IEC) standard 61850 sampled values (SV). This redundancy scheme develops a method for alternative sources of the SV measurements for feeder and bus relays. The objective is to use the same number of intelligent electronic devices (IEDs), also referred to as merging units (MUs), while improving the overall reliability of substation protection. The multisource-based proposed scheme does not require two sets of MUs for redundancy. Instead, each MU is used to back up an adjacent MU. For instance, in a substation using IEC 61850, the protection relay can automatically switch to another available SV stream without interrupting the protection function if an MU fails. This dynamic reconfiguration capability, which ensures the system’s adaptability to changing conditions, is particularly valuable in maintaining system reliability during equipment failures. It allows for real-time adaptation to changing conditions within the substation. The paper evaluates the reliability of the proposed scheme using fault tree analysis (FTA). For demonstration, commercially available MUs and relays are connected to the Real-Time Digital Simulator (RTDS) for hardware-in-the-loop testing. Full article
(This article belongs to the Special Issue Advances in MIMO Communication)
Show Figures

Figure 1

20 pages, 5904 KB  
Article
Integration of Machine Vision and PLC-Based Control for Scalable Quality Inspection in Industry 4.0
by Maksymilian Maślanka, Daniel Jancarczyk and Jacek Rysinski
Sensors 2025, 25(20), 6383; https://doi.org/10.3390/s25206383 - 16 Oct 2025
Viewed by 539
Abstract
The integration of machine vision systems with programmable logic controllers (PLCs) is increasingly crucial for automated quality assurance in Industry 4.0 environments. This paper presents an applied case study of vision–PLC integration, focusing on real-time synchronization, deterministic communication, and practical industrial deployment. The [...] Read more.
The integration of machine vision systems with programmable logic controllers (PLCs) is increasingly crucial for automated quality assurance in Industry 4.0 environments. This paper presents an applied case study of vision–PLC integration, focusing on real-time synchronization, deterministic communication, and practical industrial deployment. The proposed platform combines a Cognex In-Sight 2802C smart camera (Cognex Corporation, Natick, MA, USA) with an Allen-Bradley Compact GuardLogix PLC through Ethernet/IP implicit cyclic exchange. Three representative case studies were investigated: 3D-printed prototypes with controlled defects, automotive electrical connectors inspected using Cognex ViDi supervised learning tools, and fiber optic tubes evaluated via a custom fixture-based heuristic method. Across all scenarios, detection accuracy exceeded 95%, while PLC-level triple verification reduced false classifications by 28% compared to camera-only operation. The work highlights the benefits of PLC-driven inspection, including robustness, real-time performance, and dynamic tolerance adjustment via HMI interfaces. At the same time, several limitations were identified, including sensitivity to lighting variations, limited dataset size, and challenges in scaling to full production environments. These findings demonstrate a replicable integration framework that supports intelligent manufacturing. Future research will focus on hybrid AI–PLC architectures, extended validation on industrial production lines, and predictive maintenance enabled by edge computing. Full article
(This article belongs to the Special Issue Computer Vision and Sensors-Based Application for Intelligent Systems)
Show Figures

Figure 1

28 pages, 13934 KB  
Article
Integration of Industrial Internet of Things (IIoT) and Digital Twin Technology for Intelligent Multi-Loop Oil-and-Gas Process Control
by Ali Saleh Allahloh, Mohammad Sarfraz, Atef M. Ghaleb, Abdulmajeed Dabwan, Adeeb A. Ahmed and Adel Al-Shayea
Machines 2025, 13(10), 940; https://doi.org/10.3390/machines13100940 - 13 Oct 2025
Viewed by 597
Abstract
The convergence of Industrial Internet of Things (IIoT) and digital twin technology offers new paradigms for process automation and control. This paper presents an integrated IIoT and digital twin framework for intelligent control of a gas–liquid separation unit with interacting flow, pressure, and [...] Read more.
The convergence of Industrial Internet of Things (IIoT) and digital twin technology offers new paradigms for process automation and control. This paper presents an integrated IIoT and digital twin framework for intelligent control of a gas–liquid separation unit with interacting flow, pressure, and differential pressure loops. A comprehensive dynamic model of the three-loop separator process is developed, linearized, and validated. Classical stability analyses using the Routh–Hurwitz criterion and Nyquist plots are employed to ensure stability of the control system. Decentralized multi-loop proportional–integral–derivative (PID) controllers are designed and optimized using the Integral Absolute Error (IAE) performance index. A digital twin of the separator is implemented to run in parallel with the physical process, synchronized via a Kalman filter to real-time sensor data for state estimation and anomaly detection. The digital twin also incorporates structured singular value (μ) analysis to assess robust stability under model uncertainties. The system architecture is realized with low-cost hardware (Arduino Mega 2560, MicroMotion Coriolis flowmeter, pneumatic control valves, DAC104S085 digital-to-analog converter, and ENC28J60 Ethernet module) and software tools (Proteus VSM 8.4 for simulation, VB.Net 2022 version based human–machine interface, and ML.Net 2022 version for predictive analytics). Experimental results demonstrate improved control performance with reduced overshoot and faster settling times, confirming the effectiveness of the IIoT–digital twin integration in handling loop interactions and disturbances. The discussion includes a comparative analysis with conventional control and outlines how advanced strategies such as model predictive control (MPC) can further augment the proposed approach. This work provides a practical pathway for applying IIoT and digital twins to industrial process control, with implications for enhanced autonomy, reliability, and efficiency in oil and gas operations. Full article
(This article belongs to the Special Issue Digital Twins Applications in Manufacturing Optimization)
Show Figures

Figure 1

17 pages, 2322 KB  
Article
Design of an Embedded Simulation Controller for a Model-Based Diesel Engine Parallel Power Unit
by Huan Liu, Pan Su, Jiechang Wu and Guanghui Chang
Processes 2025, 13(10), 3196; https://doi.org/10.3390/pr13103196 - 8 Oct 2025
Viewed by 332
Abstract
To address the limitations inherent in traditional simulation control schemes for dual-engine parallel operation systems in diesel engines—such as protracted development cycles, suboptimal interface compatibility, insufficient real-time performance, and inadequate support for dynamic condition simulation in applications like marine power systems—this paper proposes [...] Read more.
To address the limitations inherent in traditional simulation control schemes for dual-engine parallel operation systems in diesel engines—such as protracted development cycles, suboptimal interface compatibility, insufficient real-time performance, and inadequate support for dynamic condition simulation in applications like marine power systems—this paper proposes an embedded real-time controller based on model-based design. This methodology facilitates efficient development and high-precision real-time control of parallel operation systems. A multi-domain coupled simulation model integrating diesel power and parallel control algorithms is built in MATLAB/Simulink, with optimized C code auto-generated via Embedded Coder. Hardware centers on STM32F407VE, enabling 4–20 mA speed acquisition, CAN communication, and Ethernet transmission. Experimental results indicate that the architecture shortens development cycles from 8 to 3 weeks, with 895 microseconds of simulation steps meeting 1-millisecond real-time requirements. Vessel tests achieve ±1.8 r/min synchronization error and ±1.2% load distribution error at low cost. It adapts to varied diesel power via modular substitution and supports RS485/CAN-FD. In conclusion, the controller effectively handles real-time simulated diesel engine parallel systems and excels in efficiency, compatibility, and cost, offering a viable technical pathway for modernizing parallel power systems in applications such as marine vessels and power generation. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

27 pages, 12819 KB  
Article
A CPS-Based Architecture for Mobile Robotics: Design, Integration, and Localisation Experiments
by Dominika Líšková, Anna Jadlovská and Filip Pazdič
Sensors 2025, 25(18), 5715; https://doi.org/10.3390/s25185715 - 12 Sep 2025
Viewed by 705
Abstract
This paper presents the design and implementation of a mobile robotic platform modelled as a layered Cyber–Physical System (CPS). Inspired by architectures commonly used in industrial Distributed Control Systems (DCSs) and large-scale scientific infrastructures, the proposed system incorporates modular hardware, distributed embedded control, [...] Read more.
This paper presents the design and implementation of a mobile robotic platform modelled as a layered Cyber–Physical System (CPS). Inspired by architectures commonly used in industrial Distributed Control Systems (DCSs) and large-scale scientific infrastructures, the proposed system incorporates modular hardware, distributed embedded control, and multi-level coordination. The robotic platform, named MapBot, is structured according to a five-layer CPS model encompassing component, control, coordination, supervisory, and management layers. This structure facilitates modular development, system scalability, and integration of advanced features such as a digital twin. The platform is implemented using embedded computing elements, diverse sensors, and communication protocols including Ethernet and I2C. The system operates within the ROS2 framework, supporting flexible task distribution across processing nodes. As a use case, two localization techniques—Adaptive Monte Carlo Localization (AMCL) and pose graph SLAM—are deployed and evaluated, highlighting the performance trade-offs in map quality, update frequency, and computational load. The results demonstrate that CPS-based design principles offer clear advantages for robotic platforms in terms of modularity, maintainability, and real-time integration. The proposed approach can be generalised for other robotic or mechatronic systems requiring structured, layered control and embedded intelligence. Full article
Show Figures

Figure 1

27 pages, 4676 KB  
Article
Online Traffic Obfuscation Experimental Framework for the Smart Home Privacy Protection
by Shuping Huang, Jianyu Cao, Ziyi Chen, Qi Zhong and Minghe Zhang
Electronics 2025, 14(16), 3294; https://doi.org/10.3390/electronics14163294 - 19 Aug 2025
Viewed by 819
Abstract
Attackers can use Ethernet or WiFi sniffers to capture smart home device traffic and identify device events based on packet length and timing characteristics, thereby inferring users’ home behaviors. To address this issue, traffic obfuscation techniques have been extensively studied, with common methods [...] Read more.
Attackers can use Ethernet or WiFi sniffers to capture smart home device traffic and identify device events based on packet length and timing characteristics, thereby inferring users’ home behaviors. To address this issue, traffic obfuscation techniques have been extensively studied, with common methods including packet padding, packet segmentation, and fake traffic injection. However, existing research predominantly utilizes non-real-time traffic to verify whether traffic obfuscation techniques can effectively reduce the recognition rate of traffic analysis attacks on smart home devices. It often overlooks the potential impact of obfuscation operations on device connectivity and functional integrity in real network environments. To address this limitation, an online experimental framework for three fundamental traffic obfuscation techniques is proposed: packet padding, packet segmentation, and fake traffic injection. Experimental results demonstrate that the proposed framework maintains the continuous connectivity and functional integrity of smart home devices with a low system overhead, achieving an average CPU usage rate of less than 0.4% and an average memory occupancy rate of less than 2%. Evaluation results based on the random forest classification method show that the device event recognition accuracy for injected fake traffic exceeds 89%. In this context, a higher recognition accuracy indicates that attackers are more effectively deceived by the injected fake traffic. Conversely, the recognition accuracy for packet padding and packet segmentation methods is nearly zero, and a lower recognition accuracy in these cases implies a more effective implementation of those obfuscation techniques. Further evaluation results based on the deep learning classification method reveal that the packet segmentation approach significantly reduces device recognition accuracy for certain devices to below 5%, while simultaneously increasing the false recognition rate for other devices to over 95%. In contrast, fake traffic injection achieves a device recognition accuracy exceeding 90%. Moreover, the obfuscation effect of the packet padding method is found to be suboptimal, a finding consistent with existing literature suggesting that no single obfuscation technique can effectively withstand all types of traffic analysis attacks. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

30 pages, 4817 KB  
Article
A Robust Multi-Port Network Interface Architecture with Real-Time CRC-Based Fault Recovery for In-Vehicle Communication Networks
by Sungju Lee, Sungwook Yu and Taikyeong Jeong
Actuators 2025, 14(8), 391; https://doi.org/10.3390/act14080391 - 7 Aug 2025
Viewed by 670
Abstract
As the automotive industry continues to evolve rapidly, there is a growing demand for high-throughput reliable communication systems within vehicles. This paper presents the implementation and verification of a fault-tolerant Ethernet-based communication protocol tailored for automotive applications operating at 1 Gbps and above. [...] Read more.
As the automotive industry continues to evolve rapidly, there is a growing demand for high-throughput reliable communication systems within vehicles. This paper presents the implementation and verification of a fault-tolerant Ethernet-based communication protocol tailored for automotive applications operating at 1 Gbps and above. The proposed system introduces a multi-port Network Interface Controller (NIC) architecture that supports real-time communication and robust fault handling. To ensure adaptability across various in-vehicle network (IVN) scenarios, the system allows for configurable packet sizes and transmission rates and supports diverse data formats. The architecture integrates cyclic redundancy check (CRC)-based error detection, real-time recovery mechanisms, and file-driven data injection techniques. Functional validation is performed using Verilog HDL simulations, demonstrating deterministic timing behavior, modular scalability, and resilience under fault injection. This paper presents a fault-tolerant Network Interface Controller (NIC), architecture incorporating CRC-based error detection, real-time recovery logic, and file-driven data injection. The system is verified through Verilog HDL simulation, demonstrating correct timing behavior, modular scalability, and robustness against injected transmission faults. Compared to conventional dual-port NICs, the proposed quad-port architecture demonstrates superior scalability and error tolerance under injected fault conditions. Experimental results confirm that the proposed NIC architecture achieves stable multi-port communication under embedded automotive environments. This study further introduces a novel quad-port NIC with an integrated fault injection algorithm and evaluates its performance in terms of error tolerance. Full article
Show Figures

Figure 1

31 pages, 11649 KB  
Article
Development of Shunt Connection Communication and Bimanual Coordination-Based Smart Orchard Robot
by Bin Yan and Xiameng Li
Agronomy 2025, 15(8), 1801; https://doi.org/10.3390/agronomy15081801 - 25 Jul 2025
Viewed by 536
Abstract
This research addresses the enhancement of operational efficiency in apple-picking robots through the design of a bimanual spatial configuration enabling obstacle avoidance in contemporary orchard environments. A parallel coordinated harvesting paradigm for dual-arm systems was introduced, leading to the construction and validation of [...] Read more.
This research addresses the enhancement of operational efficiency in apple-picking robots through the design of a bimanual spatial configuration enabling obstacle avoidance in contemporary orchard environments. A parallel coordinated harvesting paradigm for dual-arm systems was introduced, leading to the construction and validation of a six-degree-of-freedom bimanual apple-harvesting robot. Leveraging the kinematic architecture of the AUBO-i5 manipulator, three spatial layout configurations for dual-arm systems were evaluated, culminating in the adoption of a “workspace-overlapping Type B” arrangement. A functional prototype of the bimanual apple-harvesting system was subsequently fabricated. The study further involved developing control architectures for two end-effector types: a compliant gripper and a vacuum-based suction mechanism, with corresponding operational protocols established. A networked communication framework for parallel arm coordination was implemented via Ethernet switching technology, enabling both independent and synchronized bimanual operation. Additionally, an intersystem communication protocol was formulated to integrate the robotic vision system with the dual-arm control architecture, establishing a modular parallel execution model between visual perception and motion control modules. A coordinated bimanual harvesting strategy was formulated, incorporating real-time trajectory and pose monitoring of the manipulators. Kinematic simulations were executed to validate the feasibility of this strategy. Field evaluations in modern Red Fuji apple orchards assessed multidimensional harvesting performance, revealing 85.6% and 80% success rates for the suction and gripper-based arms, respectively. Single-fruit retrieval averaged 7.5 s per arm, yielding an overall system efficiency of 3.75 s per fruit. These findings advance the technological foundation for intelligent apple-harvesting systems, offering methodologies for the evolution of precision agronomic automation. Full article
(This article belongs to the Special Issue Smart Farming: Advancing Techniques for High-Value Crops)
Show Figures

Figure 1

25 pages, 22731 KB  
Article
Scalable and Efficient GCL Scheduling for Time-Aware Shaping in Autonomous and Cyber-Physical Systems
by Chengwei Zhang and Yun Wang
Future Internet 2025, 17(8), 321; https://doi.org/10.3390/fi17080321 - 22 Jul 2025
Viewed by 572
Abstract
The evolution of the internet towards supporting time-critical applications, such as industrial cyber-physical systems (CPSs) and autonomous systems, has created an urgent demand for networks capable of providing deterministic, low-latency communication. Autonomous vehicles represent a particularly challenging use case within this domain, requiring [...] Read more.
The evolution of the internet towards supporting time-critical applications, such as industrial cyber-physical systems (CPSs) and autonomous systems, has created an urgent demand for networks capable of providing deterministic, low-latency communication. Autonomous vehicles represent a particularly challenging use case within this domain, requiring both reliability and determinism for massive data streams—a requirement that traditional Ethernet technologies cannot satisfy. This paper addresses this critical gap by proposing a comprehensive scheduling framework based on Time-Aware Shaping (TAS) within the Time-Sensitive Networking (TSN) standard. The framework features two key contributions: (1) a novel baseline scheduling algorithm that incorporates a sub-flow division mechanism to enhance schedulability for high-bandwidth streams, computing Gate Control Lists (GCLs) via an iterative SMT-based method; (2) a separate heuristic-based computation acceleration algorithm to enable fast, scalable GCL generation for large-scale networks. Through extensive simulations, the proposed baseline algorithm demonstrates a reduction in end-to-end latency of up to 59% compared to standard methods, with jitter controlled at the nanosecond level. The acceleration algorithm is shown to compute schedules for 200 data streams in approximately one second. The framework’s effectiveness is further validated on a real-world TSN hardware testbed, confirming its capability to achieve deterministic transmission with low latency and jitter in a physical environment. This work provides a practical and scalable solution for deploying deterministic communication in complex autonomous and cyber-physical systems. Full article
Show Figures

Figure 1

28 pages, 1293 KB  
Article
Research on Multi-Agent Collaborative Scheduling Planning Method for Time-Triggered Networks
by Changsheng Chen, Anrong Zhao, Zhihao Zhang, Tao Zhang and Chao Fan
Electronics 2025, 14(13), 2575; https://doi.org/10.3390/electronics14132575 - 26 Jun 2025
Cited by 1 | Viewed by 751
Abstract
Time-triggered Ethernet combines time-triggered and event-triggered communication, and is suitable for fields with high real-time requirements. Aiming at the problem that the traditional scheduling algorithm is not effective in scheduling event-triggered messages, a message scheduling algorithm based on multi-agent reinforcement learning (MADDPG, Multi-Agent [...] Read more.
Time-triggered Ethernet combines time-triggered and event-triggered communication, and is suitable for fields with high real-time requirements. Aiming at the problem that the traditional scheduling algorithm is not effective in scheduling event-triggered messages, a message scheduling algorithm based on multi-agent reinforcement learning (MADDPG, Multi-Agent Deep Deterministic Policy Gradient) and a hybrid algorithm combining SMT (Satisfiability Modulo Theories) solver and MADDPG are proposed. This method aims to optimize the scheduling of event-triggered messages while maintaining the uniformity of time-triggered message scheduling, providing more time slots for event-triggered messages, and reducing their waiting time and end-to-end delay. Through the designed scheduling software, in the experiment, compared with the SMT-based algorithm and the traditional DQN (Deep Q-Network) algorithm, the new method shows better load balance and lower message jitter, and it is verified in the OPNET simulation environment that it can effectively reduce the delay of event-triggered messages. Full article
(This article belongs to the Special Issue Advanced Techniques for Multi-Agent Systems)
Show Figures

Figure 1

29 pages, 5553 KB  
Article
Data-Driven Multi-Scale Channel-Aligned Transformer for Low-Carbon Autonomous Vessel Operations: Enhancing CO2 Emission Prediction and Green Autonomous Shipping Efficiency
by Jiahao Ni, Hongjun Tian, Kaijie Zhang, Yihong Xue and Yang Xiong
J. Mar. Sci. Eng. 2025, 13(6), 1143; https://doi.org/10.3390/jmse13061143 - 9 Jun 2025
Viewed by 836
Abstract
The accurate prediction of autonomous vessel CO2 emissions is critical for achieving IMO 2050 carbon neutrality and optimizing low-carbon maritime operations. Traditional models face limitations in real-time multi-source data analysis and dynamic cross-variable dependency modeling, hindering data-driven decision-making for sustainable autonomous shipping. [...] Read more.
The accurate prediction of autonomous vessel CO2 emissions is critical for achieving IMO 2050 carbon neutrality and optimizing low-carbon maritime operations. Traditional models face limitations in real-time multi-source data analysis and dynamic cross-variable dependency modeling, hindering data-driven decision-making for sustainable autonomous shipping. This study proposes a Multi-scale Channel-aligned Transformer (MCAT) model, integrated with a 5G–satellite–IoT communication architecture, to address these challenges. The MCAT model employs multi-scale token reconstruction and a dual-level attention mechanism, effectively capturing spatiotemporal dependencies in heterogeneous data streams (AIS, sensors, weather) while suppressing high-frequency noise. To enable seamless data collaboration, a hybrid transmission framework combining satellite (Inmarsat/Iridium), 5G URLLC slicing, and industrial Ethernet is designed, achieving ultra-low latency (10 ms) and nanosecond-level synchronization via IEEE 1588v2. Validated on a 22-dimensional real autonomous vessel dataset, MCAT reduces prediction errors by 12.5% MAE and 24% MSE compared to state-of-the-art methods, demonstrating superior robustness under noisy scenarios. Furthermore, the proposed architecture supports smart autonomous shipping solutions by providing demonstrably interpretable emission insights through its dual-level attention mechanism (visualized via attention maps) for route optimization, fuel efficiency enhancement, and compliance with CII regulations. This research bridges AI-driven predictive analytics with green autonomous shipping technologies, offering a scalable framework for digitalized and sustainable maritime operations. Full article
(This article belongs to the Special Issue Sustainable Maritime Transport and Port Intelligence)
Show Figures

Figure 1

18 pages, 2424 KB  
Article
Study of In-Vehicle Ethernet Message Scheduling Based on the Adaptive Frame Segmentation Algorithm
by Jiaoyue Chen, Yujing Wu, Yihu Xu, Kaihang Zhang and Yinan Xu
Sensors 2025, 25(8), 2522; https://doi.org/10.3390/s25082522 - 17 Apr 2025
Viewed by 607
Abstract
With the rapid development of intelligent driving technology, in-vehicle bus networks face increasingly stringent requirements for real-time performance and data transmission. Traditional bus network technologies such as LIN, CAN, and FlexRay are showing significant limitations in terms of bandwidth and response speed. In-Vehicle [...] Read more.
With the rapid development of intelligent driving technology, in-vehicle bus networks face increasingly stringent requirements for real-time performance and data transmission. Traditional bus network technologies such as LIN, CAN, and FlexRay are showing significant limitations in terms of bandwidth and response speed. In-Vehicle Ethernet, with its advantages of high bandwidth, low latency, and high reliability, has become the core technology for next-generation in-vehicle communication networks. This study focuses on bandwidth waste caused by guard bands and the limitations of Frame Pre-Emption in fully utilizing available bandwidth in In-Vehicle Ethernet. It aims to optimize TSN scheduling mechanisms by enhancing scheduling flexibility and bandwidth utilization, rather than modeling system-level vehicle functions. Based on the Time-Sensitive Networking (TSN) protocol, this paper proposes an innovative Adaptive Frame Segmentation (AFS) algorithm. The AFS algorithm enhances the performance of In-Vehicle Ethernet message transmission through flexible frame segmentation and efficient message scheduling. Experimental results indicate that the AFS algorithm achieves an average local bandwidth utilization of 94.16%, improving by 4.35%, 5.65%, and 30.48% over Frame Pre-Emption, Packet-Size Aware Scheduling (PAS), and Improved Qbv algorithms, respectively. The AFS algorithm demonstrates stability and efficiency in complex network traffic scenarios, reducing bandwidth waste and improving In-Vehicle Ethernet’s real-time performance and responsiveness. This study provides critical technical support for efficient communication in intelligent connected vehicles, further advancing the development and application of In-Vehicle Ethernet technology. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

19 pages, 9209 KB  
Article
Optimizing Energy and Air Consumption in Smart Manufacturing: An Industrial Internet of Things-Based Monitoring and Efficiency Enhancement Solution
by Shahram Hanifi, Babakalli Alkali, Gordon Lindsay and Don McGlinchey
Appl. Sci. 2025, 15(6), 3222; https://doi.org/10.3390/app15063222 - 15 Mar 2025
Cited by 3 | Viewed by 2651
Abstract
The rising cost of energy and the urgent need for sustainability have driven industries to adopt smarter solutions for monitoring and optimizing resource consumption. In this study, we present an Industrial Internet of Things (IIoT)-based approach for real-time energy and air consumption monitoring [...] Read more.
The rising cost of energy and the urgent need for sustainability have driven industries to adopt smarter solutions for monitoring and optimizing resource consumption. In this study, we present an Industrial Internet of Things (IIoT)-based approach for real-time energy and air consumption monitoring in manufacturing, focusing on a legacy Turret Punch Press (TPP) at Mitsubishi Electric Air Conditioning Systems Europe Ltd. (M-ACE). Due to its age and lack of modern monitoring capabilities, the machine was suspected to be inefficient, requiring a retrofitting strategy for improved transparency and optimization. To address these challenges, a structured IIoT-enabled monitoring system was deployed, integrating KEYENCE MP-F series sensors, an energy monitoring module, and Ethernet communication via Modbus TCP/IP. A comprehensive dashboarding system was developed for real-time visualization and analysis of energy consumption trends, identifying inefficiencies and optimizing machine usage. The data-driven approach revealed significant energy savings of up to 56% and uncovered hidden inefficiencies, including a persistent air leak. By implementing a smart shut-off valve triggered by real-time power consumption data, unnecessary air leakage was eliminated, reducing compressed air waste and overall energy costs. The results demonstrate the effectiveness of IIoT-based retrofitting for industrial energy efficiency, showcasing a scalable framework that can be applied across various machines and production environments. This study highlights the importance of data-driven decision-making in smart manufacturing, contributing to both cost reduction and sustainability goals in industrial settings. Full article
(This article belongs to the Special Issue Intelligent Robotics in the Era of Industry 5.0)
Show Figures

Figure 1

19 pages, 1936 KB  
Article
OpenSync: Enabling Software-Defined Clock Synchronization in Deterministic Ethernet
by Yinhan Sun, Jinli Yan, Zheng Wang and Zhigang Sun
Electronics 2025, 14(6), 1145; https://doi.org/10.3390/electronics14061145 - 14 Mar 2025
Cited by 1 | Viewed by 1008
Abstract
Deterministic Ethernet (DetEth) is widely used in real-time distributed systems, such as avionics and in-vehicle control. Clock synchronization protocols (CSPs) establish global time, which is a critical foundation for deterministic communication in DetEth. However, existing protocols often lack flexibility, making customization and adaptation [...] Read more.
Deterministic Ethernet (DetEth) is widely used in real-time distributed systems, such as avionics and in-vehicle control. Clock synchronization protocols (CSPs) establish global time, which is a critical foundation for deterministic communication in DetEth. However, existing protocols often lack flexibility, making customization and adaptation to specific scenarios difficult and time consuming. We propose OpenSync, which is a software-defined clock synchronization architecture that decouples the synchronization control plane from the data plane. OpenSync includes a programmable time data injector and a fine-grained calibrated timer in the data plane, enabling easy implementation with standard DetEth hardware and support for various CSPs. The control plane provides a synchronization library to configure local clocks and retrieve accurate time data for different methods. To validate OpenSync’s generality and efficiency, we develop an FPGA-based prototype and implement three CSPs through software programming. A fully functional testbed demonstrates that these CSPs meet the accuracy and protocol consistency requirements of their respective application scenarios. Full article
Show Figures

Figure 1

Back to TopTop