Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = rare-metal pegmatites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5490 KiB  
Review
Extraction of Rubidium and Cesium from a Variety of Resources: A Review
by Heyue Niu, Mingming Yu, Yusufujiang Mubula, Ling Zeng, Kun Xu, Zhehan Zhu and Guichun He
Materials 2025, 18(14), 3378; https://doi.org/10.3390/ma18143378 - 18 Jul 2025
Viewed by 367
Abstract
In recent years, with the development of science and technology and the transformation of economic structures, rubidium and cesium have gradually become indispensable rare metal resources as important materials for high-tech industries. However, the relationship between supply and demand of resources is unbalanced, [...] Read more.
In recent years, with the development of science and technology and the transformation of economic structures, rubidium and cesium have gradually become indispensable rare metal resources as important materials for high-tech industries. However, the relationship between supply and demand of resources is unbalanced, industrial demand is much higher than production, and the rubidium and cesium resources in hard rock minerals such as traditional pegmatite minerals are no longer enough to support global scientific and technological upgrading. There is therefore an urgent need to expand sources of resource extraction and recovery to meet market demand. This paper summarizes the current feasible technologies for extracting rubidium and cesium from pegmatite minerals, silicate minerals, salt lake brines and other potential resources. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

18 pages, 12550 KiB  
Article
Rare Metal (Li–Ta–Nb) Mineralization and Age of the Kvartsevoye Pegmatite Deposit (Eastern Kazakhstan)
by Tatyana A. Oitseva, Sergey V. Khromykh, Anna V. Naryzhnova, Pavel D. Kotler, Marina A. Mizernaya, Oxana N. Kuzmina and Artem K. Dremov
Minerals 2025, 15(7), 737; https://doi.org/10.3390/min15070737 - 15 Jul 2025
Viewed by 275
Abstract
The Kalba–Narym metallogenic belt is located in East Kazakhstan, which displays rare metal mineralization. The Kvartsevoye rare metal Li–Ta–Nb deposit is located in the north-western ore district. This study presents the results of geological, mineralogical, geochemical, and geochronological analyses of rare metal granite [...] Read more.
The Kalba–Narym metallogenic belt is located in East Kazakhstan, which displays rare metal mineralization. The Kvartsevoye rare metal Li–Ta–Nb deposit is located in the north-western ore district. This study presents the results of geological, mineralogical, geochemical, and geochronological analyses of rare metal granite pegmatites. Rare metal mineralization belongs to a field of variably differentiated pegmatites, including barren, quartz–albite–muscovite, muscovite, and muscovite–quartz–albite microcline mineral associations. This study established that the rare metal mineralization is localized in the quartz–albite–muscovite zone. The main concentrator minerals of rare metals are spodumene for Li and tantalite–columbite for Ta and Nb. Ar/Ar dating of the muscovite allowed us to establish the age of mineralization during the period of 288–285 Ma. The present study enabled the linkage of rare metal mineralization with the differentiation processes of the granites of the Kalba complex. Full article
Show Figures

Figure 1

21 pages, 52990 KiB  
Article
Identification of Alteration Minerals and Lithium-Bearing Pegmatite Deposits Using Remote Sensing Satellite Data in Dahongliutan Area, Western Kunlun, NW China
by Yong Bai, Jinlin Wang, Guo Jiang, Kefa Zhou, Shuguang Zhou, Wentian Mi and Yu An
Minerals 2025, 15(7), 671; https://doi.org/10.3390/min15070671 - 22 Jun 2025
Viewed by 507
Abstract
Remote sensing technology has significant technical advantages over traditional geological methods in geological mapping and mineral resource exploration, especially in high-altitude and steep topography areas. Geochemical sampling and geological mapping methods in these areas are difficult to use directly in mountainous regions such [...] Read more.
Remote sensing technology has significant technical advantages over traditional geological methods in geological mapping and mineral resource exploration, especially in high-altitude and steep topography areas. Geochemical sampling and geological mapping methods in these areas are difficult to use directly in mountainous regions such as West Kunlun. Therefore, in the face of Li-Be-Nb-Ta mineralization of the Dahongliutan rare-metal pegmatite deposit in West Kunlun, remote sensing has become an effective means to identify areas of interest for exploration in the early stage of the exploration campaigns. Several methods have been developed to detect pegmatites. Still, in this study, this methodology is based on spectral analysis to select bands of the ASTER and Landsat-8 OLI satellites, and methods, such as principal component analysis (PCA) and mixture tuned matched filtering (MTMF), to delineate the prospective areas of pegmatite. The results proved that PCA could map the hydrothermal alteration and structure information for pegmatites. To define new locations of interest for exploration, we introduced the spectra of spodumene-bearing pegmatites and tourmaline-bearing pegmatites as endmembers for the MTMF approach. The results indicate that the location of pegmatite areas on the ASTER and Landsat-8 OLI images overlaps with the ore deposits, and the location of potential ore-bearing pegmatites is delineated using remote sensing and geological sampling. Although this does not guarantee that all prospective areas have the mining value of ore-bearing pegmatites, it can provide basic data and technical references for early exploration of Li. Full article
Show Figures

Figure 1

53 pages, 7076 KiB  
Article
The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition
by Ingrid W. Hadlich, Artur C. Bastos Neto, Vitor P. Pereira, Harald G. Dill and Nilson F. Botelho
Minerals 2025, 15(6), 559; https://doi.org/10.3390/min15060559 - 23 May 2025
Viewed by 993
Abstract
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched [...] Read more.
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched granite, miarolitic pegmatite, and pegmatite veins. The host rock itself has served as the source for the fluids that gave rise to all these pegmatites. Their mineral assemblages mirror the rare-metal-rich paragenesis of the host rock, including pyrochlore, cassiterite, riebeckite, polylithionite, zircon, thorite, xenotime, gagarinite-(Y), genthelvite, and cryolite. These pegmatites formed at the same crustal level as the host granite and record a progressive magmatic–hydrothermal evolution driven by various physicochemical processes, including tectonic decompressing, extreme fractionation, melt–melt immiscibility, and internal fluid exsolution. Border pegmatites crystallized early from a F-poor, K-Ca-Sr-Zr-Y-HREE-rich fluid exsolved during solidification of the pluton’s border and were emplaced in contraction fractures between the pluton and country rocks. Continued crystallization toward the pluton’s core produced a highly fractionated melt enriched in Sn, Nb, Ta, Rb, HREE, U, Th, and other HFSE, forming pegmatitic albite-enriched granite within centimetric fractures. A subsequent pressure quench—likely induced by reverse faulting—triggered the separation of a supercritical melt, further enriched in rare metals, which migrated into fractures and cavities to form amphibole-rich pegmatite veins and miarolitic pegmatites. A key process in this evolution was melt–melt immiscibility, which led to the partitioning of alkalis between two phases: a K-F-rich aluminosilicate melt (low in H2O), enriched in Y, Li, Be, and Zn; and a Na-F-rich aqueous melt (low in SiO2). These immiscible melts crystallized polylithionite-rich and cryolite-rich pegmatite veins, respectively. The magmatic–hydrothermal transition occurred independently in each pegmatite body upon H2O saturation, with the hydrothermal fluid composition controlled by the local degree of melt fractionation. These highly F-rich exsolved fluids caused intense autometasomatic alteration and secondary mineralization. The exceptional F content (up to 35 wt.% F in pegmatite veins), played a central role in concentrating strategic and critical metals such as Nb, Ta, REEs (notably HREE), Li, and Be. These findings establish the Madeira system as a reference for rare-metal magmatic–hydrothermal evolution in peralkaline granites. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

36 pages, 14723 KiB  
Article
Late Neoproterozoic Rare-Metal Pegmatites with Mixed NYF-LCT Features: A Case Study from the Egyptian Nubian Shield
by Mustafa A. Elsagheer, Mokhles K. Azer, Hilmy E. Moussa, Ayman E. Maurice, Mabrouk Sami, Moustafa A. Abou El Maaty, Adel I. M. Akarish, Mohamed Th. S. Heikal, Mohamed Z. Khedr, Ahmed A. Elnazer, Heba S. Mubarak, Amany M. A. Seddik, Mohamed O. Ibrahim and Hadeer Sobhy
Minerals 2025, 15(5), 495; https://doi.org/10.3390/min15050495 - 7 May 2025
Viewed by 743
Abstract
The current work records for the first time the rare-metal pegmatites with mixed NYF-LCT located at Wadi Sikait, south Eastern Desert of the Egyptian Nubian Shield. Most of the Sikait pegmatites are associated with sheared granite and are surrounded by an alteration zone [...] Read more.
The current work records for the first time the rare-metal pegmatites with mixed NYF-LCT located at Wadi Sikait, south Eastern Desert of the Egyptian Nubian Shield. Most of the Sikait pegmatites are associated with sheared granite and are surrounded by an alteration zone cross-cutting through greisen bodies. Sikait pegmatites show zoned and complex types, where the outer wall zones are highly mineralized (Nb, Ta, Y, Th, Hf, REE, U) than the barren cores. They consist essentially of K-feldspar, quartz, micas (muscovite, lepidolite, and zinnwaldite), and less albite. They contain a wide range of accessory minerals, including garnet, columbite, fergusonite-(Y), cassiterite, allanite, monazite, bastnaesite (Y, Ce, Nd), thorite, zircon, beryl, topaz, apatite, and Fe-Ti oxides. In the present work, the discovery of Li-bearing minerals for the first time in the Wadi Sikait pegmatite is highly significant. Sikait pegmatites are highly mineralized and yield higher maximum concentrations of several metals than the associated sheared granite. They are strongly enriched in Li (900–1791 ppm), Nb (1181–1771 ppm), Ta (138–191 ppm), Y (626–998 ppm), Hf (201–303 ppm), Th (413–685 ppm), Zr (2592–4429 ppm), U (224–699 ppm), and ∑REE (830–1711 ppm). The pegmatites and associated sheared granite represent highly differentiated peraluminous rocks that are typical of post-collisional rare-metal bearing granites. They show parallel chondrite-normalized REE patterns, enriched in HREE relative to LREE [(La/Lu)n = 0.04–0.12] and strongly negative Eu anomalies [(Eu/Eu*) = 0.03–0.10]. The REE patterns show an M-type tetrad effect, usually observed in granites that are strongly differentiated and ascribed to hydrothermal fluid exchange. The pegmatite has mineralogical and geochemical characteristics of the mixed NYF-LCT family and shows non-CHARAC behavior due to a hydrothermal effect. Late-stage metasomatism processes caused redistribution, concentrated on the primary rare metals, and drove the development of greisen and quartz veins along the fracture systems. The genetic relationship between the Sikait pegmatite and the surrounding sheared granite was demonstrated by the similarities in their geochemical properties. The source magmas were mostly derived from the juvenile continental crust of the Nubian Shield through partial melting and subsequently subjected to a high fractional crystallization degree. During the late hydrothermal stage, the exsolution of F-rich fluids transported some elements and locally increased their concentrations to the economic grades. The investigated pegmatite and sheared granite should be considered as a potential resource to warrant exploration for REEs and other rare metals. Full article
Show Figures

Figure 1

31 pages, 10269 KiB  
Article
Geologic Characteristics and Age of Beryllium Mineralization in the Jiulong Area, the Southeast Edge of the Western Kunlun–Songpan–Ganzi Rare Metal Metallogenic Belt
by Junliang Hu, Jiayun Zhou, Hongqi Tan, Zhiyao Ni, Zhimin Zhu, Teng Niu and Yingdong Liu
Minerals 2025, 15(3), 253; https://doi.org/10.3390/min15030253 - 28 Feb 2025
Viewed by 569
Abstract
Rare metals such as lithium and beryllium are strategic mineral resources that play a highly significant role in the national aerospace, defense, and new energy industries. The western Kunlun–Songpan–Ganzi metallogenic belt is an important rare metal metallogenic belt in China that mainly consists [...] Read more.
Rare metals such as lithium and beryllium are strategic mineral resources that play a highly significant role in the national aerospace, defense, and new energy industries. The western Kunlun–Songpan–Ganzi metallogenic belt is an important rare metal metallogenic belt in China that mainly consists of granite–pegmatite-type lithium–beryllium deposits with uncommon beryllium-only deposits. In the Jiulong area on the southeastern edge of this metallogenic belt, several deposits, including the Daqianggou lithium–beryllium, Luomo beryllium, Baitai beryllium, and Shangjigong beryllium deposits, have been identified. Unlike the northern areas of Jiajika, Ke’eryin, Zawulong, and the western regions of Dahongliutan and Bailongshan, this area contains beryllium-only deposits. In this paper, we examine representative beryllium deposits in the Jiulong area, including detailed petrographic observations and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb isotope dating of cassiterite and columbite–tantalite, to define the metallogenic age and summarize the spatiotemporal characteristics of the beryllium mineralization in this area. The research results show that the Daqianggou lithium–beryllium deposit is dominated by spodumene and beryl mineralization, while the Luomo and Baitai beryllium deposits primarily feature beryl mineralization. The dating results indicate that the U-Pb ages of the cassiterite and columbite–tantalite in the Daqianggou lithium–beryllium deposit are 157.3 ± 1.7 Ma and 164.1 ± 0.8 Ma, respectively. For the Luomo beryllium deposit, the U-Pb ages of the cassiterite and columbite–tantalite are 156.1 ± 1.5 Ma and 163.3 ± 0.8 Ma, respectively. For the Baitai beryllium deposit, the U-Pb age of the columbite–tantalite is 188.8 ± 1.1 Ma. Therefore, the Jiulong area experienced two pegmatite-type rare metal metallogenic events: a beryllium–niobium–tantalum–molybdenum event at 197~189 Ma and a lithium–beryllium–niobium–tantalum–rubidium event at 164~156 Ma. Based on the reported metallogenic ages, we suggest that the western Kunlun–Songpan–Ganzi rare metal metallogenic belt experienced three rare metal metallogenic events at 210~200 Ma, 200~180 Ma, and 170~150 Ma. Regarding exploration directions, early Yanshanian beryllium mineralization predominates in the Jiulong area along the southeastern edge of the belt, and deep exploration of the early Yanshanian rare metal mineralization within this belt should be strengthened to facilitate new breakthroughs. Full article
Show Figures

Figure 1

26 pages, 22213 KiB  
Article
Geochronology and Geochemistry of Granitic Pegmatites from Tashidaban Li Deposit in the Central Altun Tagh, Northwest China
by Kai Kang, Yince Ma, Peng Zhang, Hang Li, Xuehai Wang, Zhaoxia Liao, Lei Niu, Jianzhong Chen, Xingzhong Liu and Xingwang Xu
Minerals 2024, 14(6), 542; https://doi.org/10.3390/min14060542 - 24 May 2024
Cited by 4 | Viewed by 1774
Abstract
The Central Altun orogenic system is a result of the amalgamation of multiple micro-continental blocks and island arcs. This complex system originated from subduction–accretion–collision processes in the Proto-Tethys Ocean during the Early Paleozoic. Research has reported the discovery of several Li-Be granitic pegmatite [...] Read more.
The Central Altun orogenic system is a result of the amalgamation of multiple micro-continental blocks and island arcs. This complex system originated from subduction–accretion–collision processes in the Proto-Tethys Ocean during the Early Paleozoic. Research has reported the discovery of several Li-Be granitic pegmatite deposits in the Central Altun Block, including the North Tugeman granitic pegmatite Li-Be deposit, Tugeman granitic pegmatite Be deposit, Tashisayi granitic pegmatite Li deposit, South Washixia granitic pegmatite Li deposit, and Tamuqie granitic pegmatite Li deposit. The Tashidaban granitic pegmatite Li deposit has been newly discovered along the northern margin of the Central Altun Block. Field and geochemical studies of the Tashidaban granitic pegmatite Li deposit indicate: (1) Spodumene pegmatites and elbaite pegmatites, as Li-bearing granitic pegmatites that form the Tashidaban granitic pegmatite Li deposit, intrude into the two-mica schist, and marble of the Muzisayi Formation of the Tashidaban Group. (2) Columbite–tantalite group minerals and zircon U-Pb dating results indicate that the mineralization age of Tashidaban Li granitic pegmatites is 450.2 ± 2.4 Ma with a superimposed magmatic event at around 418–422 Ma later. (3) Whole-rock geochemical results indicate that the Kumudaban rock sequence belongs to the S-type high-K to calc-alkaline granites and the Tashidaban Li granitic pegmatites originated from the extreme differentiation by fractional crystallization of the Kumdaban granite pluton. Full article
Show Figures

Figure 1

34 pages, 14138 KiB  
Article
The Geochemistry, Petrogenesis, and Rare-Metal Mineralization of the Peralkaline Granites and Related Pegmatites in the Arabian Shield: A Case Study of the Jabal Sayid and Dayheen Ring Complexes, Central Saudi Arabia
by Hamdy H. Abd El-Naby and Yehia H. Dawood
Appl. Sci. 2024, 14(7), 2814; https://doi.org/10.3390/app14072814 - 27 Mar 2024
Cited by 3 | Viewed by 2432
Abstract
The Neoproterozoic period in the Jabal Sayid and Dayheen areas is characterized by three distinct magmatic phases: an early magmatic phase of granodiorite–diorite association, a transitional magmatic phase of monzogranites, and a highly evolved magmatic phase of peralkaline granites and associated pegmatites. The [...] Read more.
The Neoproterozoic period in the Jabal Sayid and Dayheen areas is characterized by three distinct magmatic phases: an early magmatic phase of granodiorite–diorite association, a transitional magmatic phase of monzogranites, and a highly evolved magmatic phase of peralkaline granites and associated pegmatites. The presence of various accessory minerals in the peralkaline granites and pegmatites, such as synchysite, bastnaesite, xenotime, monazite, allanite, pyrochlore, samarskite, and zircon, plays an important role as contributors of REEs, Zr, Y, Nb, Th, and U. The geochemical characteristics indicate that the concentration of these elements occurred primarily during the crystallization and differentiation of the parent magma, with no significant contributions from post-magmatic hydrothermal processes. The obtained geochemical data shed light on the changing nature of magmas during the orogenic cycle, transitioning from subduction-related granodiorite–diorite compositions to collision-related monzogranites and post-collisional peralkaline suites. The granodiorite–diorite association is thought to be derived from the partial melting of predominantly metabasaltic sources, whereas the monzogranites are derived from metatonalite and metagraywacke sources. The peralkaline granites and associated pegmatites are thought to originate from the continental crust. It is assumed that these rocks are formed by the partial melting of metapelitic rocks that are enriched with rare metals. The final peralkaline phase of magmatic evolution is characterized by the enrichment of the residual melt with alkalis (such as sodium and potassium), silica, water, and fluorine. The presence of liquid-saturated melt plays a decisive role in the formation of pegmatites. Full article
(This article belongs to the Special Issue New Advances, Challenges, and Illustrations in Applied Geochemistry)
Show Figures

Figure 1

20 pages, 4104 KiB  
Review
Research Status and Challenges of High-Purity Quartz Processing Technology from a Mineralogical Perspective in China
by Ruiyang Zhang, Chunhua Tang, Wen Ni, Jing Yuan, Yu Zhou and Xiaolong Liu
Minerals 2023, 13(12), 1505; https://doi.org/10.3390/min13121505 - 30 Nov 2023
Cited by 14 | Viewed by 13742
Abstract
Quartz deposits are widely dispersed in nature, but the presence of ore bodies capable of yielding high-purity quartz is exceedingly rare. As a result, the effective purification and processing of high-purity quartz from natural siliceous materials has emerged as a prominent area of [...] Read more.
Quartz deposits are widely dispersed in nature, but the presence of ore bodies capable of yielding high-purity quartz is exceedingly rare. As a result, the effective purification and processing of high-purity quartz from natural siliceous materials has emerged as a prominent area of research within the non-metallic mineral processing field. This article offers an overview of the current state of research and its limitations in quartz purification and processing technology in China, including the characteristics of quartz mineral resources, the geological origins of ore deposits, impurity forms in ores, and purification techniques. Drawing from examples of five distinct types of quartz ores—vein quartz, powder quartz, quartzite, granitic pegmatite, and pegmatitic granite—we delve into the inherent properties of quartz deposits, ores, and minerals from a mineralogical perspective, establishing their link to purification and processing methodologies. A fundamental challenge restraining the advancement of the high-purity quartz industry is the absence of criteria for evaluating and selecting high-purity quartz raw materials. Existing purification technologies grapple with issues such as intricate single mineral liberation, substantial acid consumption, high energy requirements, and protracted processing procedures. The lack of mineralogically based deep purification techniques presents a hurdle to the development of the high-purity quartz industry. Given the diversity of ore types, the pursuit of knowledge-driven design and the development of economically efficient, environmentally friendly, and streamlined new technologies for tackling the complexities of the purification process may constitute the future direction of our endeavors. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

27 pages, 20880 KiB  
Article
Geochemical Evidence for Genesis of Nb–Ta–Be Rare Metal Mineralization in Highly Fractionated Leucogranites at the Lalong Dome, Tethyan Himalaya, China
by Jiangang Fu, Guangming Li, Genhou Wang, Weikang Guo, Suiliang Dong, Yingxu Li, Hai Zhang, Wei Liang and Yanjie Jiao
Minerals 2023, 13(11), 1456; https://doi.org/10.3390/min13111456 - 19 Nov 2023
Cited by 6 | Viewed by 2081
Abstract
Leucogranites in the Lalong Dome are composed of two-mica granite, muscovite granite, albite granite, and pegmatite from core to rim. Albite granite-type Be–Nb–Ta rare metal ore bodies are hosted by albite granite and pegmatite. Based on field and petrographic observations and whole-rock geochemical [...] Read more.
Leucogranites in the Lalong Dome are composed of two-mica granite, muscovite granite, albite granite, and pegmatite from core to rim. Albite granite-type Be–Nb–Ta rare metal ore bodies are hosted by albite granite and pegmatite. Based on field and petrographic observations and whole-rock geochemical data, highly differentiated leucogranites have been identified in the Lalong Dome. Two-mica granites, albite granites, and pegmatites yielded monazite ages of 23.6 Ma, 21.9 Ma, and 20.6 Ma, respectively. The timing of rare metal mineralization is 20.9 Ma using U–Pb columbite dating. Leucogranites have the following characteristics: high SiO2 content (>73 wt.%); peraluminosity with high Al2O3 content (13.6–15.2 wt.%) and A/CNK (mostly > 1.1); low TiO2, CaO, and MgO content; enrichment of Rb, Th, and U; depletion of Ba, Nb, Zr, Sr, and Ti; strong negative Eu anomalies; low εNd(t) values ranging from −12.7 to −9.77. These features show that the leucogranites are crust-derived high-potassium calc-alkaline and peraluminous S-type granites derived from muscovite dehydration melting under the water-absent condition, which possibly resulted from structural decompression responding to the activity of the South Tibetan detachment system (STDS). Geochemical data imply a continuous magma fractional crystallization process from two-mica granites through muscovite granites to albite granites and pegmatites. The differentiation index (Di) gradually strengthens from two-mica granite, muscovite granite, and albite granite to pegmatite, in which albite granite and pegmatite are highest (Di = 94). The Nb/Ta and Zr/Hf ratios of albite granite and pegmatite were less than 5 and 18, respectively, which suggests that albite granite and pegmatite belong to rare metal granites and have excellent potential for rare metal mineralization. Full article
Show Figures

Figure 1

30 pages, 4540 KiB  
Article
Petrogenesis of Devonian and Permian Pegmatites in the Chinese Altay: Insights into the Closure of the Irtysh–Zaisan Ocean
by Mengtao Wang and Xin Zhang
Minerals 2023, 13(9), 1127; https://doi.org/10.3390/min13091127 - 25 Aug 2023
Cited by 1 | Viewed by 1617
Abstract
Owing to tectonic, magmatic, and metamorphic controls, pegmatites associated with different spatiotemporal distributions exhibit varying mineralisation characteristics. The petrogenesis of pegmatites containing rare metals can improve the understanding of geodynamic processes in the deep subsurface. In order to understand the difference of petrogenesis [...] Read more.
Owing to tectonic, magmatic, and metamorphic controls, pegmatites associated with different spatiotemporal distributions exhibit varying mineralisation characteristics. The petrogenesis of pegmatites containing rare metals can improve the understanding of geodynamic processes in the deep subsurface. In order to understand the difference of petrogenesis between Devonian and Permian pegmatites, zircon U-Pb geochronological and Hf-O isotope analyses were performed on samples of the Jiamanhaba, Amulagong, and Tiemulete pegmatites from the Chinese Altay. According to the results obtained, the Amulagong and Tiemulete pegmatites were formed during the Devonian, and samples that were analysed yielded zircon U-Pb ages of 373.0 ± 7.8 and 360 ± 5.2 Ma, respectively. Samples from these pegmatites produced εHf(t) values of 2.87–7.39, two-stage model ages of 900–1171 Ma and δ18O values of 9.55‰–15.86‰. These results suggest that the pegmatites were formed via an anatexis of mature sedimentary rocks deep in the crust. In contrast, the Jiamanhaba pegmatite was formed during the Permian, and its samples produced εHf(t) and δ18O values of 2.87–4.94 and 6.05‰–7.32‰, respectively, which indicate that the associated magma contained minor amounts of mantle/juvenile materials. The petrogenesis of pegmatites containing rare metals can reveal tectonic settings of their formation. A combination of data that were generated in the present study and existing geochronological and Hf-O isotope data for felsic igneous and sedimentary rocks in the Chinese Altay shows that the εHf(t) sharply increased while the δ18O suddenly decreased between Late Carboniferous and Early Permian. These changes highlight a tectonic transformation event during this critical period. This tectonic event promoted mantle–crustal interactions, and thus, it was probably linked to assemblages of the Altay orogen and the Junggar Block. The present study provides evidence that the Irtysh–Zaisan Ocean probably closed during the Late Carboniferous (~300 Ma). Full article
Show Figures

Figure 1

20 pages, 80951 KiB  
Article
Lithium-Rich Pegmatite Detection Integrating High-Resolution and Hyperspectral Satellite Data in Zhawulong Area, Western Sichuan, China
by Wenqing Ding, Lin Ding, Qingting Li, Jinxiang Li and Liyun Zhang
Remote Sens. 2023, 15(16), 3969; https://doi.org/10.3390/rs15163969 - 10 Aug 2023
Cited by 10 | Viewed by 6179
Abstract
Lithium (Li) has grown to be a strategic key metal due to the enormous demand for the development of new energy industries over the world. As one of the most significant sources of Li resources, pegmatite-type Li deposits hold a large share of [...] Read more.
Lithium (Li) has grown to be a strategic key metal due to the enormous demand for the development of new energy industries over the world. As one of the most significant sources of Li resources, pegmatite-type Li deposits hold a large share of the mining market. In recent years, several large and super-large spodumene (Spd)-rich pegmatite deposits have been discovered successively in the Hoh-Xil–Songpan-Garzê (HXSG) orogenic belt of the northern Tibetan Plateau, indicative of the great Li prospecting potential of this belt. Hyperspectral remote sensing (HRS), as a rapidly developing exploration technology, is especially sensitive to the identification of alteration minerals, and has made important breakthroughs in porphyry copper deposit exploration. However, due to the small width of the pegmatite dykes and the lack of typical alteration zones, the ability of HRS in the exploration of Li-rich pegmatite deposits remains to be explored. In this study, Li-rich pegmatite anomalies were directly extracted from ZY1-02D hyperspectral imagery in the Zhawulong (ZWL) area of western Sichuan, China, using target detection techniques including Adaptive Cosine Estimator (ACE), Constrained Energy Minimization (CEM), Spectral Angle Mapper (SAM), and SAM with BandMax (SAMBM). Further, the Li-rich anomalies were superimposed with the distribution of pegmatite dykes delineated based on GF-2 high-resolution imagery. Our final results accurately identified the known range of Spd pegmatite dykes and further predicted two new exploration target areas. The approaches used in this study could be easily extended to other potential mineralization areas to discover new rare metal pegmatite deposits on the Tibetan Plateau. Full article
(This article belongs to the Special Issue New Trends on Remote Sensing Applications to Mineral Deposits-II)
Show Figures

Graphical abstract

26 pages, 13742 KiB  
Article
Geochemical Characteristics and Metallogenic Significance of the X03 Vein Tourmaline in the Jiajika Rare Metal Deposit, West Sichuan
by Yan Qin, Yang Li, Chenghui Wang, Lijun Liu, Kejun Hou and Qian Wang
Minerals 2023, 13(6), 805; https://doi.org/10.3390/min13060805 - 13 Jun 2023
Cited by 4 | Viewed by 2368
Abstract
The Jiajika rare metal deposit contains the largest area of granitic pegmatite-type rare metal deposits in China. The X03 vein is an immense rare metal deposit dominated by lithium, which was found in the deposit in recent years. The contact metamorphic belt of [...] Read more.
The Jiajika rare metal deposit contains the largest area of granitic pegmatite-type rare metal deposits in China. The X03 vein is an immense rare metal deposit dominated by lithium, which was found in the deposit in recent years. The contact metamorphic belt of tourmalinization and petrochemistry is widely developed in its wall rocks, and the altered rocks formed contain Li and other rare metal mineralization. In this paper, the tourmaline found in the different rocks of the Jiajika X03 vein is divided into four types: two-mica quartz schist (Tur-Ⅰ), tourmaline hornfels (Tur-Ⅱ), tourmaline-bearing granite pegmatite (Tur-Ⅲ) and spodumene-bearing granite pegmatite (Tur-Ⅳ); their in situ major element, trace element and boron isotope data are systematically studied. The results show that all tourmalines in the Jiajika X03 vein deposit belong to the alkali group, and are schorl–Oxy/Fluor–schorl, dravite–Hydroxy-dravite and foitite–Oxy foitite solid solutions, among which Tur-Ⅰ are dravite, Tur-Ⅱ are foitite of hydrothermal origin and Tur-Ⅲ and Tur-Ⅳ are schorl of magmatic origin. The boron isotope values show that the boron involved the formation process of tourmaline mainly originates from the Majingzi S-type granite, and the boron isotope variations in tourmaline are controlled by melt fluid and Rayleigh fractionation. Moreover, there is a clear correlation between the B isotope value of tourmaline and the Li, Mn, Zn, Mg, and V contents, showing that these contents in tourmaline are good indicators of the mineralization type of pegmatite. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

17 pages, 9100 KiB  
Article
Petrogenesis of Shihuiyao Rare-Metal Granites in the Southern Great Xing’an Range, NE China
by Deyou Sun, Shicheng Wang, Jun Gou, Duo Zhang, Changzhou Deng, Dongguang Yang and Li Tian
Minerals 2023, 13(5), 701; https://doi.org/10.3390/min13050701 - 21 May 2023
Cited by 2 | Viewed by 2218
Abstract
Shihuiyao Rb–Nb–Ta-rich granites from the Late Jurassic period are newly discovered rare-metal-bearing granites found in the southern Great Xing’an Range, NE China. Further research of these granites may contribute to better understanding the petrogenesis of rare-metal granites and their associated mineralization mechanisms. The [...] Read more.
Shihuiyao Rb–Nb–Ta-rich granites from the Late Jurassic period are newly discovered rare-metal-bearing granites found in the southern Great Xing’an Range, NE China. Further research of these granites may contribute to better understanding the petrogenesis of rare-metal granites and their associated mineralization mechanisms. The granites are high-silica (SiO2 = 73.66–77.08 wt%), alkali-rich (K2O + Na2O = 8.18–9.49 wt%) and weakly to mildly peraluminous with A/CNK values (molar ratios of Al2O3/(CaO + Na2O + K2O)) ranging from 1.06 to 1.16. High differentiation indexes (DI = 95–97) and low P2O5 contents demonstrate that Shihuiyao rocks are low-P and peraluminous rare-metal granites. Mineral chemistry and whole-rock geochemistry can be used to obtain the following lithological sequence: zinnwaldite granite, muscovite–zinnwaldite granite, amazonite-bearing granite and amazonite pegmatite. The effect of the rare-earth element tetrad; low K/Rb (18.98–32.82), Nb/Ta (2.41–4.64) and Zr/Hf (5.99–8.80) ratios; and the occurrence of snowball-textured quartz suggest that extreme magmatic fractionation might be the key factor that causes Rb–Nb–Ta enrichment. Full article
(This article belongs to the Special Issue Mineralization in Subduction Zone)
Show Figures

Figure 1

18 pages, 8417 KiB  
Article
Characteristics and Geological Significance of CO2-Rich Fluid Inclusions in Dakalasu No. 1 Pegmatite Dyke, Altay
by Jiehao Zhou, Hui Zhang, Yong Tang, Zhenghang Lv and Shenjin Guan
Minerals 2023, 13(3), 365; https://doi.org/10.3390/min13030365 - 6 Mar 2023
Cited by 2 | Viewed by 2271
Abstract
The fluids in of pegmatite rare metal deposits are generally rich in rare metal elements and volatiles (B, P, F, H2O, CO2, etc.), and they have a high capacity for dissolving and migrating rare metals. The Dakalasu No. 1 [...] Read more.
The fluids in of pegmatite rare metal deposits are generally rich in rare metal elements and volatiles (B, P, F, H2O, CO2, etc.), and they have a high capacity for dissolving and migrating rare metals. The Dakalasu No. 1 rare metal pegmatite vein is located in northwest China’s Altay orogenic belt. Previous studies have indicated that it is a small- to medium-sized beryllium-niobium-tantalum deposit. It showed significant mineral assemblage zonations from the rim to the core, and the mineralizing fluids define a volatile-rich NaCl-H2O-CO2 ± CH4 system. In this contribution, beryl and quartz, which are widely developed in each mineral association and textural zone, were selected for fluid inclusion research through detailed petrographic investigation, microthermometry, and LA-ICP-MS analysis. Petrographic results show that at least three types of fluid inclusions are developed in each mineral textural zone. They are CO2-rich inclusions (type I), gas-liquid two-phase inclusions (type II), and daughter mineral-bearing inclusions (type III), respectively. Additionally, minor melt inclusions (type IV) are visible in the beryl from the rim zone. Microthermometric measurements showed that the homogenization temperature of fluid inclusions in the rim zone was concentrated between 242 °C and 293 °C, with an average of 267 °C, and the salinity was between 7.2–10.3 wt% NaCleqv, with an average of 8.6 wt% NaCleqv. In comparison, the temperature of the core zone was in the range of 225–278 °C, with an average of 246 °C, and the salinity focused between 6.0–7.7 wt% NaCleqv, with an average of 7.1 wt% NaCleqv. The quantitative analysis of individual inclusions by LA-ICP-MS revealed that Li, B, K, Zn, Rb, Sb, Cs, and As were relatively enriched in the rim zone. In contrast, the core zone showed a decreasing trend in trace elements such as Li, B, K, Rb, and Cs. The CO2 content in the fluid exhibited the same decreasing trend from the rim to the core zone, indicating that volatile components such as CO2 played an essential role in the migration and enrichment of rare metal elements. The melt-fluid immiscibility is likely to be a necessary mechanism for significantly enriching rare metals in the Dakalasu No. 1 pegmatite dyke. Full article
(This article belongs to the Special Issue Rare Metal Ore Formations and Rare Metal Metallogeny)
Show Figures

Figure 1

Back to TopTop