Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = rare-earth iron garnet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1953 KiB  
Article
Planar Hall Effect and Magnetoresistance Effect in Pt/Tm3Fe5O12 Bilayers at Low Temperature
by Yukuai Liu, Jingming Liang, Zhiyong Xu, Jiahui Li, Junhao Ruan, Sheung Mei Ng, Chuanwei Huang and Chi Wah Leung
Electronics 2025, 14(15), 3060; https://doi.org/10.3390/electronics14153060 - 31 Jul 2025
Viewed by 221
Abstract
Spin transport behaviors in heavy metal/ferromagnetic insulator (HM/FI) bilayers have attracted considerable attention due to various novel phenomena and applications in spintronic devices. Herein, we investigate the planar Hall effect (PHE) in Pt/Tm3Fe5O12 (Pt/TmIG) heterostructures at low temperatures; [...] Read more.
Spin transport behaviors in heavy metal/ferromagnetic insulator (HM/FI) bilayers have attracted considerable attention due to various novel phenomena and applications in spintronic devices. Herein, we investigate the planar Hall effect (PHE) in Pt/Tm3Fe5O12 (Pt/TmIG) heterostructures at low temperatures; moment switching in the ferrimagnetic insulator TmIG is detected by using electrical measurements. Double switching hysteresis PHE curves are found in Pt/TmIG bilayers, closely related to the magnetic moment of Tm3+ ions, which makes a key contribution to the total magnetic moment of TmIG film at low temperature. More importantly, a magnetoresistance (MR) curve with double switching is found, which has not been reported in this simple HM/FI bilayer, and the sign of this MR effect is sensitive to the angle between the magnetic field and current directions. Our findings of these effects in this HM/rare earth iron garnet (HM/REIG) bilayer provide insights into tuning the spin transport properties of HM/REIG by changing the rare earth. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

36 pages, 16597 KiB  
Article
Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye)
by Erkan Yılmazer and Mustafa Haydar Terzi
Minerals 2025, 15(5), 528; https://doi.org/10.3390/min15050528 - 15 May 2025
Viewed by 600
Abstract
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to [...] Read more.
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to partially peraluminous properties. Sr-Nd isotope data and the geochemical characteristics of the Kesikköprü granitoid indicate a metasomatized mantle origin, with its ultimate composition arising from crustal contamination and magma mixing along with fractional crystallization in a post-collisional setting. The 40Ar/39Ar geochronology reveals a total fusion age of 73.41 ± 0.32 Ma for the biotite of the Kesikköprü granitoid. The alteration pattern in the deposit is characterized by an endoskarn zone comprising garnet–pyroxene (±phlogopite ± epidote) and an exoskarn zone displaying a zoning of garnet (±pyroxene ± phlogopite), pyroxene (±garnet ± phlogopite ± epidote), epidote–garnet, and epidote-rich subzones. Magnetite is extracted from massive lenses within the exoskarn zones and shows vein, disseminated, banded, massive, and brecciated textures. The low potassium content of phlogopites which are associated with magnetite mineralization prevents the determination of a reliable alteration age. δ18O thermometry reveals a temperature range between 462 and 528 °C for the magnetite mineralization. According to geochemical (trace and rare earth elements), stable (δ18O, δ2H, δ34S, and δ13C), and radiogenic (87Sr/86Sr and 143Nd/144Nd) isotope data, the hydrothermal fluid responsible for the alteration and mineralization is related to the Kesikköprü granitoid, from which a significant magmatic component originates initially, followed by meteoric fluids at lower temperatures (123 °C) during the late-stage formation of calcite–quartz veins. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

9 pages, 2404 KiB  
Article
PLD Growth of Ferrimagnetic Tm3Fe5O12 Thin Film with Perpendicular Magnetic Anisotropy on GGG
by Zezhong Li, Xin Wang, Yinan Xiao, Yuxiao Zou, Donghui Wang, Huaiwen Yang, Hui Zhang, Yunliang Li and Ying Liu
Crystals 2025, 15(3), 234; https://doi.org/10.3390/cryst15030234 - 28 Feb 2025
Viewed by 647
Abstract
Thulium Iron Garnet (TIG), as an emerging hotspot in rare-earth iron garnet systems, possesses a large magnetostriction constant (λ111) and a low damping coefficient. Therefore, it is possible to induce perpendicular magnetic anisotropy (PMA) through stress, which makes it more desirable [...] Read more.
Thulium Iron Garnet (TIG), as an emerging hotspot in rare-earth iron garnet systems, possesses a large magnetostriction constant (λ111) and a low damping coefficient. Therefore, it is possible to induce perpendicular magnetic anisotropy (PMA) through stress, which makes it more desirable for interfacial magnetic proximity or spin–orbit torque effects than Yttrium Iron Garnet (YIG). For achieving a high-quality TIG thin film and regulating its properties accordingly, understanding the effect of growth parameters on the film properties is essential. Using the Pulsed Laser Deposition (PLD) technique, we prepared TIG film on a Gadolinium Gallium Garnet (GGG) substrate. The correlations of its structural properties to the growth conditions are systematically studied, including the oxygen pressure and laser energy. With the annealing, a ferrimagnetic TIG thin film with PMA is successfully obtained. Our work provides a platform for achieving high-quality TIG thin films by experimentally regulating the growth factors. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

11 pages, 2005 KiB  
Article
Non-Collinear Phase in Rare-Earth Iron Garnet Films near the Compensation Temperature
by Dmitry A. Suslov, Petr M. Vetoshko, Alexei V. Mashirov, Sergei V. Taskaev, Sergei N. Polulyakh, Vladimir N. Berzhansky and Vladimir G. Shavrov
Crystals 2023, 13(9), 1297; https://doi.org/10.3390/cryst13091297 - 23 Aug 2023
Cited by 1 | Viewed by 1644
Abstract
The experimental discovery of the suppression effect of the non-collinear phase in strong magnetic fields near the compensation point in ferrimagnetic structures was made. The observations were carried out using the magneto-optical method by creating a lateral temperature gradient in the plane of [...] Read more.
The experimental discovery of the suppression effect of the non-collinear phase in strong magnetic fields near the compensation point in ferrimagnetic structures was made. The observations were carried out using the magneto-optical method by creating a lateral temperature gradient in the plane of the epitaxial films of iron garnets. The non-collinear phase is absent in weak magnetic fields. If an external magnetic field exceeds the first critical value, the non-collinear phase arises near the compensation point. The temperature range of the non-collinear phase expands due to the field increase up to the second critical value. Further field increases conversely reduce the temperature range of the non-collinear phase so that the field above the second critical value causes the disappearance of the non-collinear phase. The effect of the occurrence and suppression of the non-collinear phase is demonstrated on samples of two types of iron garnet films with two and three magnetic sublattices. Phase diagrams of the magnetic states in the vicinity of the critical point are constructed, and it is shown that the region of existence of the non-collinear phase in a two-sublattice magnet is smaller than in a three-sublattice one. Full article
Show Figures

Figure 1

23 pages, 8382 KiB  
Article
Cr-Containing Rare-Earth Substituted Yttrium Iron Garnet Ferrites: Catalytic Properties in the Ethylbenzene Oxidation
by José Vitor C. do Carmo, Rita de Cássia F. Bezerra, Y. Guerra, R. Peña-Garcia, Alcineia C. Oliveira, E. Padron-Hernandez, Gilberto D. Saraiva, João M. Soares, Antonio Joel R. Castro, Samuel Tehuacanaero-Cuapa, Elena Rodríguez-Aguado and Enrique Rodríguez-Castellón
Catalysts 2022, 12(9), 1033; https://doi.org/10.3390/catal12091033 - 11 Sep 2022
Cited by 6 | Viewed by 2350
Abstract
A series of the Cr-containing erbium substituted yttrium iron garnet ferrites (ECYIG) was synthesized with distinct Cr amounts, herein referred to as Y3(Er0.02Fe5Cr1−x)O12, where x refers to Cr amounts from 0 to 0.05. [...] Read more.
A series of the Cr-containing erbium substituted yttrium iron garnet ferrites (ECYIG) was synthesized with distinct Cr amounts, herein referred to as Y3(Er0.02Fe5Cr1−x)O12, where x refers to Cr amounts from 0 to 0.05. The catalytic performance of the solids was investigated in ethylbenzene oxidation in the presence of hydrogen peroxide to assess the role of Cr and Er present in the YIG garnet lattice for fine chemistry compound production. Raman spectroscopy, HRTEM, EPR and FTIR revealed that the insertion of Er (at a fixed amount of 2%) in dodecahedral sites had a great impact on the catalytic activity of the garnets. Both Er3+ and Y3+ in the lattice simultaneously provided structural stability to the garnet structure in any harsh environment. XPS and EPR indicated that the Cr3+ ions replaced those of Fe3+ located in both octahedral and tetrahedral sites of the YIG garnets. The Cr3+ ions acted as electronic promoter to increase the oxidation rate of the Fe3+ active species responsible for activating the EB molecule. SEM-EDS demonstrated that the solids having Cr amounts lower than 4% experienced the most severe deactivation due to the Cr leaching and strong carbon species adsorption on the surface of the catalysts, which decreased their efficiency in the reaction. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

17 pages, 4396 KiB  
Article
Anatomy of Garnet from the Nanminghe Skarn Iron Deposit, China: Implications for Ore Genesis
by Chen-Tao Ruan, Xiao-Yan Yu, Shang-Guo Su, M. Santosh and Li-Jie Qin
Minerals 2022, 12(7), 845; https://doi.org/10.3390/min12070845 - 30 Jun 2022
Cited by 6 | Viewed by 3589
Abstract
Garnet is a common constituent of skarn type iron deposits and can be used to derive potential information on the genesis of skarn type deposits. Here, we investigate the petrologic, spectroscopic, and geochemical characteristics of garnet from the Nanminghe skarn iron deposit in [...] Read more.
Garnet is a common constituent of skarn type iron deposits and can be used to derive potential information on the genesis of skarn type deposits. Here, we investigate the petrologic, spectroscopic, and geochemical characteristics of garnet from the Nanminghe skarn iron deposit in China to elucidate the formation process, growth environment, and genesis. We employ a combination of multiple techniques including petrography, Infrared spectroscopy (IR), X-ray powder diffraction (XRD), Raman spectrum, electron microprobe, and LA-ICP-MS. The primary mineral assemblage in the skarn is garnet–diopside–magnetite–quartz–calcite–pyrite. The garnet occurs as granular aggregates or veins, and generally shows a combination form bounded by dodecahedral faces {110} and trapezohedron faces {211}. Oscillatory zoning and abnormal extinction of garnet are also noted. We identify at least three stages of garnet growth, with a gradual decrease in the iron content from early to late stage, accompanied by the precipitation of magnetite. Regarding the rare earth distribution model, the Nanminghe garnet is generally in the right-dipping mode enriched in LREE and depleted in HREE, which may be mainly controlled by adsorption. Major and trace elements of different generations of garnet suggest that the garnet in the iron skarn crystallized under high oxygen fugacity and is of hydrothermal origin. Full article
Show Figures

Figure 1

11 pages, 2869 KiB  
Article
Reactive Sintering of Dysprosium-Iron Garnet via a Perovskite-Hematite Solid State Reaction and Physical Properties of the Material
by Magdalena Stan, Radosław Lach, Paweł A. Krawczyk, Wojciech Salamon, Jakub Haberko, Jacek Nizioł, Anita Trenczek-Zając, Łukasz Gondek, Błażej Kowalski and Antoni Żywczak
Materials 2022, 15(7), 2356; https://doi.org/10.3390/ma15072356 - 22 Mar 2022
Cited by 5 | Viewed by 2307
Abstract
In this paper, we report on a successful synthesis of dysprosium iron garnet Dy3Fe5O12 (DyIG) by a reactive synthesis method involving dysprosium iron perovskite and hematite. Phase formation was traced using dilatometry, and XRD measurements attested to the [...] Read more.
In this paper, we report on a successful synthesis of dysprosium iron garnet Dy3Fe5O12 (DyIG) by a reactive synthesis method involving dysprosium iron perovskite and hematite. Phase formation was traced using dilatometry, and XRD measurements attested to the formation of the desired structure. Samples with relative density close to 97% were fabricated. The samples were characterized using vibrating sample magnetometry, dielectric spectroscopy, and UV-Vis-NIR spectroscopy. Magnetic properties were probed in temperatures between 80 and 700 K with a maximum applied field of 1 kOe. The measurements revealed several effects: the compensation of magnetic moments at a certain temperature, the inversion of the magnetocaloric effect, and the ability to measure the Curie temperature of the material. Activation energy was determined from UV-Vis-NIR and dielectric spectroscopy measurements. Characteristic magnetic temperatures and activation energy values of the samples were similar to bulk DyIG obtained using other methods. Full article
(This article belongs to the Special Issue Electronic Structure, Properties and Application of Novel Materials)
Show Figures

Figure 1

29 pages, 25550 KiB  
Article
Garnet as Indicator of Pegmatite Evolution: The Case Study of Pegmatites from the Oxford Pegmatite Field (Maine, USA)
by Lorena Hernández-Filiberto, Encarnación Roda-Robles, William B. Simmons and Karen L. Webber
Minerals 2021, 11(8), 802; https://doi.org/10.3390/min11080802 - 23 Jul 2021
Cited by 14 | Viewed by 8231
Abstract
Almandine-spessartine garnets, from the Oxford County pegmatites and the Palermo No. 1 pegmatite, record significant compositional variations according to the degree of evolution of their hosting rock. Garnets from the most fractionated pegmatites (Mt. Mica, Berry-Havey, and Emmons) show the highest Mn, Nb, [...] Read more.
Almandine-spessartine garnets, from the Oxford County pegmatites and the Palermo No. 1 pegmatite, record significant compositional variations according to the degree of evolution of their hosting rock. Garnets from the most fractionated pegmatites (Mt. Mica, Berry-Havey, and Emmons) show the highest Mn, Nb, Ta, Zr, and Hf values, followed by those from the intermediate grade pegmatites (Palermo No. 1) and, finally, garnets from the barren pegmatites show the lowest values (Perham and Stop-35). Iron, Ca, and Mg contents follow an inverse order, with the highest contents in the latter pegmatites. Major element zoning shows increasing Mn values from core to rim in most garnet samples, while trace element zoning is not systematic except for some crystals which show a core to rim depletion for most of these elements. Chondrite normalized HREE (Heavy Rare Earth Elements) spectra show positive slopes for garnets from barren pegmatites, both positive and negative slopes for those associated with the intermediate pegmatite, and negative or flat slopes in garnets from the highly fractionated pegmatites. Ion exchange mechanisms, including Fe2+−1Mn2+1, (Fe2+, Mn2+)−1Si−1Li1P1; and, (Y, Ho3+)2(vac)1(Fe2+, Mn2+)−3, could explain most of the compositional variations observed in these garnets. These compositional variations are the reflection of the composition of the pegmatitic magma (barren pegmatites originate from a more ferromagnesian magma than fractionated pegmatites); and of the coexisting mineral phases competing with garnets to host certain chemical elements, such as biotite, schorl, plagioclase, apatite, Fe-Mn phosphates, Nb-Ta oxides, zircon, xenotime, and monazite. Full article
(This article belongs to the Special Issue Accessory Minerals in Earth Sciences: Contemporary Trends)
Show Figures

Figure 1

11 pages, 8094 KiB  
Article
Hydrothermal Synthesis of Various Magnetic Properties of Controlled Micro/Nanostructured Powders and Films of Rare-Earth Iron Garnet
by Natalia Tsidaeva, Ahsarbek Nakusov, Spartak Khaimanov and Wei Wang
Nanomaterials 2021, 11(4), 972; https://doi.org/10.3390/nano11040972 - 10 Apr 2021
Cited by 5 | Viewed by 2492
Abstract
In this study, the synthesis and magnetic properties of the rare-earth iron garnets Sm3Fe5O12, Pr3Fe5O12, and Er3Fe5O12 (in the form of powders and thin films) are [...] Read more.
In this study, the synthesis and magnetic properties of the rare-earth iron garnets Sm3Fe5O12, Pr3Fe5O12, and Er3Fe5O12 (in the form of powders and thin films) are reported. According to the composition, shape, and size of particles, the optimal precipitant for the synthesis of Sm3Fe5O12, Pr3Fe5O12, and Er3Fe5O12 films is an aqueous solution. The parameters for the synthesis of powders and films of the rare-earth iron garnets with micro- and nano-particles have been investigated and selected. The magnetic properties of these materials were studied; field dependencies of the magnetic moment (hysteresis loops) of nanostructured powders of iron garnets of samarium, praseodymium, and erbium in the range of +20 kOe to −20 kOe were obtained. The structural features of the Al2O3 substrate on which the films were formed are also shown. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

25 pages, 9543 KiB  
Article
Chemical Composition and Genesis Implication of Garnet from the Laoshankou Fe-Cu-Au Deposit, the Northern Margin of East Junggar, NW China
by Pei Liang, Yu Zhang and Yuling Xie
Minerals 2021, 11(3), 334; https://doi.org/10.3390/min11030334 - 23 Mar 2021
Cited by 8 | Viewed by 4998
Abstract
In order to reveal the formation mechanism of different garnets and its implications for the fluid evolution in the Laoshankou Fe-Cu-Au deposit in the northern margin of East Junggar (NW China), three types of garnet have been investigated in detail in this study. [...] Read more.
In order to reveal the formation mechanism of different garnets and its implications for the fluid evolution in the Laoshankou Fe-Cu-Au deposit in the northern margin of East Junggar (NW China), three types of garnet have been investigated in detail in this study. (1) Type 1 grossular, formed at Ca-silicate stage (stage I, the pre-mineralization stage), was replaced by Type 2 garnet and magnetite, and displays a compositional range of Grs44–53Adr44–53, which has relatively lower total REE (rare earth elements) contents (8.14–32.8 ppm) and markedly depleted LREE (light rare earth elements) with distinctive positive Eu anomaly (1.36–9.61). (2) Type 2 Al-rich andradite, formed at the early sub-stage of amphibole-epidote-magnetite stage (stage II, the main magnetite mineralization stage), can be divided into two sub-types, i.e., Type 2a and Type 2b. Type 2a garnets exhibit polysynthetic twinning and relatively narrow compositional variations of Adr63–66Grs31–34 with HREE-(heavy rare-earth elements) enrichment and positive Eu anomalies (3.22–3.69). Type 2b garnets own wide compositional variations of Adr55–77Grs21–43 with relatively higher REE contents (49.1–124 ppm), markedly depleted LREE and a distinctive positive Eu anomaly (2.11–4.61). (3) Type 3 andradite (Adr>91) associated with sulfide stage (stage III, the main copper-gold mineralization stage) is different from other types of garnets in Laoshankou, which are characterized by lowest total REE contents (1.66–91.1 ppm), flat HREE patterns, LREE-enrichment and the strongest positive Eu anomalies (3.31–45.48). Incorporation of REE into garnet is largely controlled by external factors, such as fluid chemistry, pH, ƒO2 and water-rock ratios as well as its crystal chemistry. Type 1 and 2 garnets mainly follow the creation of X2+ (e.g., Ca2+) site vacancy, e.g., [X2+]3VIII[]+1VIII[REE3+]+2VIII. The REE3+ substitution mechanism for Type 3 garnet is the Na+-REE3+ coupled substitutions, e.g., [X2+]2VIII[X+]+1VIII[REE3+]+1VIII, without the evaluation of the creation of site vacancy. The compositional variations from Type 1 to Type 3 garnet indicate significant differences of fluid compositions and physicochemical conditions, and can be used to trace the fluid–rock interaction and hydrothermal evolution of garnet. Type 1 grossular was formed by magmatic fluid under low water–rock ratios and ƒO2, and neutral pH environment by diffusion metasomatism in a nearly closed system with the preferential incorporation into the grossular of HREE. As the long fluid pore residence and continuing infiltration metasomatism under nearly closed-system conditions, fluids with high water/rock ratios were characterized by increased ƒO2, more active incorporation of Fe3+ and REE, and formed Type 2 Al-rich andradite. In contrast, Type 3 garnet formed by oxidizing magmatic fluid under a mildly acidic environment with highest ƒO2 and water–rock ratios, and was influenced by externally derived high salinity and Ca-rich fluids in an open system. Thus, the geochemical features of different types and generations of garnets in the Laoshankou deposit can provide important information of fluid evolution, revealing a transition from neutral magmatic fluid to oxidizing magmatic fluid with addition of external non-magmatic Ca-rich fluid from the Ca-silicate stage to the sulfide stage. The above proved the fluid evolution process further indicates that the Laoshankou deposit prefers to be an IOCG-like (iron oxide-copper-gold) deposit rather than a typical skarn deposit. Full article
Show Figures

Graphical abstract

9 pages, 3013 KiB  
Article
Experimental Study of Electromagnetic-Assisted Rare-Earth Doped Yttrium Iron Garnet (YIG) Nanofluids on Wettability and Interfacial Tension Alteration
by Zhen Yin Lau, Kean Chuan Lee, Hassan Soleimani and Hoe Guan Beh
Energies 2019, 12(20), 3806; https://doi.org/10.3390/en12203806 - 9 Oct 2019
Cited by 11 | Viewed by 2968
Abstract
Applications of nanoparticles (NPs) in the Enhanced oil recovery (EOR) method has become a major research field as nanoparticles are found to be able to interfere with the interfacial tension and wettability of multiphase fluids within the reservoir formation with or without the [...] Read more.
Applications of nanoparticles (NPs) in the Enhanced oil recovery (EOR) method has become a major research field as nanoparticles are found to be able to interfere with the interfacial tension and wettability of multiphase fluids within the reservoir formation with or without the irradiance of the electromagnetic (EM) waves. For future EOR usage, a material with high temperature stability and low losses under oscillating wave is recommended, Yttrium Iron Garnet (YIG). This paper describes the synthesis of rare-earth doped YIG (RE-YIG, RE = (Lanthanum (La), Neodymium (Nd) and Samarium (Sm)) and the roles of rare-earth in alteration of magnetic properties. These magnetic properties are believed to have direct relation with the change in wettability, viscosity and interfacial tension of YIG nanofluids. Here we prepared the Y2.8R0.2Fe5O12 (R = La, Nd, Sm) NPs using the sol-gel auto-combustion technique and further annealed at 1000 °C for 3 h. The Field Emission Scanning Electron Microscope (FESEM) images reveal the particles having grain size ranging from 100–200 nm with high crystallinity and X-ray Powder Diffraction (XRD) shows varying shift of the peak position due to the bigger size of the rare-earth ions which resulted in structural distortion. The wettability of the nanofluid for all samples shows overall reduction under the influence of EM waves. On the other hand, the interfacial tension (IFT) and viscosity of RE-YIG nanofluids has lower value than the pure YIG nanofluids and decreases when the ionic radius of rare-earth decreases. Sm-YIG has the highest magnitude in IFT and magnetization saturation of 23.54 emu/g which suggests the increase in magnetization might contribute to higher surface tension of oil-nanofluid interface. Full article
Show Figures

Figure 1

25 pages, 8458 KiB  
Article
Geology, Apatite Geochronology, and Geochemistry of the Ernest Henry Inter-lens: Implications for a Re-Examined Deposit Model
by Bradley W. Cave, Richard Lilly, Stijn Glorie and Jack Gillespie
Minerals 2018, 8(9), 405; https://doi.org/10.3390/min8090405 - 13 Sep 2018
Cited by 23 | Viewed by 9107
Abstract
The Ernest Henry Iron-Oxide-Copper-Gold deposit is the largest known Cu-Au deposit in the Eastern Succession of the Proterozoic Mount Isa Inlier, NW Queensland. Cu-Au mineralization is hosted in a K-feldspar altered breccia, bounded by two major pre-mineralization shear zones. Previous research suggests that [...] Read more.
The Ernest Henry Iron-Oxide-Copper-Gold deposit is the largest known Cu-Au deposit in the Eastern Succession of the Proterozoic Mount Isa Inlier, NW Queensland. Cu-Au mineralization is hosted in a K-feldspar altered breccia, bounded by two major pre-mineralization shear zones. Previous research suggests that Cu-Au mineralization and the ore-bearing breccia formed simultaneously through an eruption style explosive/implosive event, facilitated by the mixing of fluids at ~1530 Ma. However, the preservation of a highly deformed, weakly mineralized, pre-mineralization feature (termed the Inter-lens) within the orebody indicates that this model must be re-examined. The paragenesis of the Inter-lens is broadly consistent with previous studies on the deposit, and consists of albitization; an apatite-calcite-quartz-garnet assemblage; biotite-magnetite ± garnet alteration; K-feldspar ± hornblende alteration; Cu-Au mineralization and post-mineralization alteration and veining. Apatite from the paragenetically early apatite-calcite-quartz-garnet assemblage produce U–Pb ages of 1584 ± 22 Ma and 1587 ± 22 Ma, suggesting that the formation of apatite, and the maximum age of the Inter-lens is synchronous with D2 deformation of the Isan Orogeny and regional peak-metamorphic conditions. Apatite rare earth element-depletion trends display: (1) a depletion in rare earth elements evenly, corresponding with an enrichment in arsenic and (2) a selective light rare earth element depletion. Exposure to an acidic NaCl and/or CaCl2-rich sedimentary-derived fluid is responsible for the selective light rare earth element-depletion trend, while the exposure to a neutral to alkaline S, Na-, and/or Ca-rich magmatic fluid resulted in the depletion of rare earth elements in apatite evenly, while producing an enrichment in arsenic. We suggest the deposit experienced at least two hydrothermal events, with the first event related to peak-metamorphism (~1585 Ma) and a subsequent event related to the emplacement of the nearby (~1530 Ma) Williams–Naraku Batholiths. Brecciation resulted from competency contrasts between ductile metasedimentary rocks of the Inter-lens and surrounding shear zones against the brittle metavolcanic rocks that comprise the ore-bearing breccia, providing permeable pathways for the subsequent ore-bearing fluids. Full article
(This article belongs to the Special Issue Apatite and Ore Deposits)
Show Figures

Graphical abstract

12 pages, 7972 KiB  
Article
Enhancement in Curie Temperature of Yttrium Iron Garnet by Doping with Neodymium
by Esperanza Baños-López, Félix Sánchez-De Jesús, Claudia A. Cortés-Escobedo, Arturo Barba-Pingarrón and Ana María Bolarín-Miró
Materials 2018, 11(9), 1652; https://doi.org/10.3390/ma11091652 - 7 Sep 2018
Cited by 28 | Viewed by 5281
Abstract
The effect of the substitution of Y3+ by Nd3+ on the structural and magnetic properties of neodymium-doped yttrium iron garnet, NdxY3−xFe5O12 with x in the range of 0–2.5, is presented. Oxide powders of [...] Read more.
The effect of the substitution of Y3+ by Nd3+ on the structural and magnetic properties of neodymium-doped yttrium iron garnet, NdxY3−xFe5O12 with x in the range of 0–2.5, is presented. Oxide powders of Fe2O3, Nd2O3, and Y2O3 were mixed in a stoichiometric ratio and milled for 5 h using high-energy ball milling, before being uniaxially pressed at 900 MPa and annealed at 1373 K for 2 h to obtain NdxY3−xFe5O12 (0 ≤ x ≤ 2.5). It was found that the mechanical milling of oxides followed by annealing promotes the complete structural formation of the garnet structure. Additionally, the X-ray diffraction patterns confirm the complete introduction of Nd3+ into the garnet structure with a neodymium doping concentration (x) of 0–2.0, which causes a consistent increment in the lattice parameters with the Nd3+ content. When x is higher than 2.0, the yttrium orthoferrite is the predominant phase. Besides, the magnetic results reveal an increase in the Curie temperature (583 K) as the amount of Nd3+ increases, while there was enhanced saturation magnetization as well as modified remanence and coercivity with respect to non-doped YIG. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

29 pages, 12097 KiB  
Article
Focused Ion Beam and Advanced Electron Microscopy for Minerals: Insights and Outlook from Bismuth Sulphosalts
by Cristiana L. Ciobanu, Nigel J. Cook, Christian Maunders, Benjamin P. Wade and Kathy Ehrig
Minerals 2016, 6(4), 112; https://doi.org/10.3390/min6040112 - 20 Oct 2016
Cited by 34 | Viewed by 7901
Abstract
This paper comprises a review of the rapidly expanding application of nanoscale mineral characterization methodology to the study of ore deposits. Utilising bismuth sulphosalt minerals from a reaction front in a skarn assemblage as an example, we illustrate how a complex problem in [...] Read more.
This paper comprises a review of the rapidly expanding application of nanoscale mineral characterization methodology to the study of ore deposits. Utilising bismuth sulphosalt minerals from a reaction front in a skarn assemblage as an example, we illustrate how a complex problem in ore petrology, can be approached at scales down to that of single atoms. We demonstrate the interpretive opportunities that can be realised by doing this for other minerals within their petrogenetic contexts. From an area defined as Au-rich within a sulphosalt-sulphide assemblage, and using samples prepared on a Focused Ion Beam–Scanning Electron Microscopy (SEM) platform, we identify mineral species and trace the evolution of their intergrowths down to the atomic scale. Our approach progresses from a petrographic and trace element study of a larger polished block, to high-resolution Transmission Electron Microscopy (TEM) and High Angle Annular Dark Field (HAADF) Scanning-TEM (STEM) studies. Lattice-scale heterogeneity imaged in HAADF STEM mode is expressed by changes in composition of unit cell slabs followed by nanoparticle formation and their growth into “veins”. We report a progressive transition from sulphosalt species which host lattice-bound Au (neyite, lillianite homologues; Pb-Bi-sulphosalts), to those that cannot accept Au (aikinite). This transition acts as a crystal structural barrier for Au. Fine particles of native gold track this progression over the scale of several hundred microns, leading to Au enrichment at the reaction front defined by an increase in the Cu gradient (several wt %), and abrupt changes in sulphosalt speciation from Pb-Bi-sulphosalts to aikinite. Atom-scale resolution imaging in HAADF STEM mode allows for the direct visualisation of the three component slabs in the neyite crystal structure, one of the largest and complex sulphosalts of boxwork-type. We show for the first time the presence of aikinite nanoparticles a few nanometres in size, occurring on distinct (111)PbS slabs in the neyite. This directly explains the non-stoichiometry of this phase, particularly with respect to Cu. Such non-stoichiometry is discussed elsewhere as defining distinct mineral species. The interplay between modular crystal structures and trace element behaviour, as discussed here for Au and Cu, has applications for other mineral systems. These include the incorporation and release of critical metals in sulphides, heavy elements (U, Pb, W) in iron oxides, the distribution of rare earth elements (REE), Y, and chalcophile elements (Mo, As) in calcic garnets, and the identification of nanometre-sized particles containing daughter products of radioactive decay in ores, concentrates, and tailings. Full article
(This article belongs to the Special Issue Advances in Mineral Analytical Techniques)
Show Figures

Figure 1

Back to TopTop