Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,251)

Search Parameters:
Keywords = railway operations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9888 KiB  
Article
WeatherClean: An Image Restoration Algorithm for UAV-Based Railway Inspection in Adverse Weather
by Kewen Wang, Shaobing Yang, Zexuan Zhang, Zhipeng Wang, Limin Jia, Mengwei Li and Shengjia Yu
Sensors 2025, 25(15), 4799; https://doi.org/10.3390/s25154799 - 4 Aug 2025
Abstract
UAV-based inspections are an effective way to ensure railway safety and have gained significant attention. However, images captured during complex weather conditions, such as rain, snow, or fog, often suffer from severe degradation, affecting image recognition accuracy. Existing algorithms for removing rain, snow, [...] Read more.
UAV-based inspections are an effective way to ensure railway safety and have gained significant attention. However, images captured during complex weather conditions, such as rain, snow, or fog, often suffer from severe degradation, affecting image recognition accuracy. Existing algorithms for removing rain, snow, and fog have two main limitations: they do not adaptively learn features under varying weather complexities and struggle with managing complex noise patterns in drone inspections, leading to incomplete noise removal. To address these challenges, this study proposes a novel framework for removing rain, snow, and fog from drone images, called WeatherClean. This framework introduces a Weather Complexity Adjustment Factor (WCAF) in a parameterized adjustable network architecture to process weather degradation of varying degrees adaptively. It also employs a hierarchical multi-scale cropping strategy to enhance the recovery of fine noise and edge structures. Additionally, it incorporates a degradation synthesis method based on atmospheric scattering physical models to generate training samples that align with real-world weather patterns, thereby mitigating data scarcity issues. Experimental results show that WeatherClean outperforms existing methods by effectively removing noise particles while preserving image details. This advancement provides more reliable high-definition visual references for drone-based railway inspections, significantly enhancing inspection capabilities under complex weather conditions and ensuring the safety of railway operations. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

33 pages, 8443 KiB  
Article
Model for Planning and Optimization of Train Crew Rosters for Sustainable Railway Transport
by Zdenka Bulková, Juraj Čamaj and Jozef Gašparík
Sustainability 2025, 17(15), 7069; https://doi.org/10.3390/su17157069 - 4 Aug 2025
Abstract
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a [...] Read more.
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a focus on the operational setting of the train crew depot in Česká Třebová, a city in the Czech Republic. The seven-step methodology includes identifying available train shifts, defining scheduling constraints, creating roster variants, and calculating personnel and time requirements for each option. The proposed roster reduced staffing needs by two employees, increased the average shift duration to 9 h and 42 min, and decreased non-productive time by 384 h annually. These improvements enhance sustainability by optimizing human resource use, lowering unnecessary energy consumption, and improving employees’ work–life balance. The model also provides a quantitative assessment of operational feasibility and economic efficiency. Compared to existing rosters, the proposed model offers clear advantages and remains applicable even in settings with limited technological support. The findings show that a well-designed rostering system can contribute not only to cost savings and personnel stabilization, but also to broader objectives in sustainable public transport, supporting resilient and resource-efficient rail operations. Full article
Show Figures

Figure 1

24 pages, 6558 KiB  
Article
Utilizing Forest Trees for Mitigation of Low-Frequency Ground Vibration Induced by Railway Operation
by Zeyu Zhang, Xiaohui Zhang, Zhiyao Tian and Chao He
Appl. Sci. 2025, 15(15), 8618; https://doi.org/10.3390/app15158618 (registering DOI) - 4 Aug 2025
Abstract
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer [...] Read more.
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer method is employed to derive an explicit Green’s function corresponding to a har-monic point load acting on a layered half-space, which is subsequently applied to couple the foundation with the track system. The forest trees are modeled as surface oscillators coupled on the ground surface to evaluate the characteristics of multiple scattered wavefields. The vibration attenuation capacity of forest trees in mitigating railway-induced ground vibrations is systematically investigated using the proposed method. In the direction perpendicular to the track on the ground surface, a graded array of forest trees with varying heights is capable of forming a broad mitigation frequency band below 80 Hz. Due to the interaction of wave fields excited by harmonic point loads at multiple locations, the attenuation performance of the tree system varies significantly across different positions on the surface. The influence of variability in tree height, radius, and density on system performance is subsequently examined using a Monte Carlo simulation. Despite the inherent randomness in tree characteristics, the forest still demonstrates notable attenuation effectiveness at frequencies below 80 Hz. Among the considered parameters, variations in tree height exert the most pronounced effect on the uncertainty of attenuation performance, followed sequentially by variations in density and radius. Full article
Show Figures

Figure 1

21 pages, 5609 KiB  
Article
Carbonation and Corrosion Durability Assessment of Reinforced Concrete Beam in Heavy-Haul Railways by Multi-Physics Coupling-Based Analytical Method
by Wu-Tong Yan, Lei Yuan, Yong-Hua Su, Long-Biao Yan and Zi-Wei Song
Materials 2025, 18(15), 3622; https://doi.org/10.3390/ma18153622 - 1 Aug 2025
Viewed by 201
Abstract
The operation of heavy-haul railway trains with large loads results in significant cracking issues in reinforced concrete beams. Atmospheric carbon dioxide, oxygen, and moisture from the atmosphere penetrate into the beam interior through these cracks, accelerating the carbonation of the concrete and the [...] Read more.
The operation of heavy-haul railway trains with large loads results in significant cracking issues in reinforced concrete beams. Atmospheric carbon dioxide, oxygen, and moisture from the atmosphere penetrate into the beam interior through these cracks, accelerating the carbonation of the concrete and the corrosion of the steel bars. The rust-induced expansion of steel bars further exacerbates the cracking of the beam. The interaction between environmental factors and beam cracks leads to a rapid decline in the durability of the beam. To address this issue, a multi-physics field coupling durability assessment method was proposed, considering concrete beam cracking, concrete carbonation, and steel bar corrosion. The interaction among these three factors is achieved through sequential coupling, using crack width, carbonation passivation time, and steel bar corrosion rate as interaction parameters. Using this method, the deterioration morphology and stiffness degradation laws of 8 m reinforced concrete beams under different load conditions, including those of heavy and light trains in heavy-haul railways, are compared and assessed. The analysis reveals that within a 100-year service cycle, the maximum relative stiffness reduction for beams on the heavy train line is 20.0%, whereas for the light train line, it is only 7.4%. The degree of structural stiffness degradation is closely related to operational load levels, and beam cracking plays a critical role in this difference. Full article
Show Figures

Figure 1

21 pages, 8015 KiB  
Article
Differential Mechanism of 3D Motions of Falling Debris in Tunnels Under Extreme Wind Environments Induced by a Single Train and by Trains Crossing
by Wei-Chao Yang, Hong He, Yi-Kang Liu and Lun Zhao
Appl. Sci. 2025, 15(15), 8523; https://doi.org/10.3390/app15158523 (registering DOI) - 31 Jul 2025
Viewed by 99
Abstract
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that [...] Read more.
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that alter debris trajectories from free fall. To systematically investigate the aerodynamic differences and underlying mechanisms governing falling debris behavior under these two distinct conditions, a three-dimensional computational fluid dynamics (CFD) model (debris–air–tunnel–train) was developed using an improved delayed detached eddy simulation (IDDES) turbulence model. Comparative analyses focused on the translational and rotational motions as well as the aerodynamic load coefficients of the debris in both single-train and trains-crossing scenarios. The mechanisms driving the changes in debris aerodynamic behavior are elucidated. Findings reveal that under single-train operation, falling debris travels a greater distance compared with trains-crossing conditions. Specifically, at train speeds ranging from 250–350 km/h, the average flight distances of falling debris in the X and Z directions under single-train conditions surpass those under trains crossing conditions by 10.3 and 5.5 times, respectively. At a train speed of 300 km/h, the impulse of CFx and CFz under single-train conditions is 8.6 and 4.5 times greater than under trains-crossing conditions, consequently leading to the observed reduction in flight distance. Under the conditions of trains crossing, the falling debris is situated between the two trains, and although the wind speed is low, the flow field exhibits instability. This is the primary factor contributing to the reduced flight distance of the falling debris. However, it also leads to more pronounced trajectory deviations and increased speed fluctuations under intersection conditions. The relative velocity (CRV) on the falling debris surface is diminished, resulting in smaller-scale vortex structures that are more numerous. Consequently, the aerodynamic load coefficient is reduced, while the fluctuation range experiences an increase. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

19 pages, 3130 KiB  
Article
Deep Learning-Based Instance Segmentation of Galloping High-Speed Railway Overhead Contact System Conductors in Video Images
by Xiaotong Yao, Huayu Yuan, Shanpeng Zhao, Wei Tian, Dongzhao Han, Xiaoping Li, Feng Wang and Sihua Wang
Sensors 2025, 25(15), 4714; https://doi.org/10.3390/s25154714 - 30 Jul 2025
Viewed by 210
Abstract
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping [...] Read more.
The conductors of high-speed railway OCSs (Overhead Contact Systems) are susceptible to conductor galloping due to the impact of natural elements such as strong winds, rain, and snow, resulting in conductor fatigue damage and significantly compromising train operational safety. Consequently, monitoring the galloping status of conductors is crucial, and instance segmentation techniques, by delineating the pixel-level contours of each conductor, can significantly aid in the identification and study of galloping phenomena. This work expands upon the YOLO11-seg model and introduces an instance segmentation approach for galloping video and image sensor data of OCS conductors. The algorithm, designed for the stripe-like distribution of OCS conductors in the data, employs four-direction Sobel filters to extract edge features in horizontal, vertical, and diagonal orientations. These features are subsequently integrated with the original convolutional branch to form the FDSE (Four Direction Sobel Enhancement) module. It integrates the ECA (Efficient Channel Attention) mechanism for the adaptive augmentation of conductor characteristics and utilizes the FL (Focal Loss) function to mitigate the class-imbalance issue between positive and negative samples, hence enhancing the model’s sensitivity to conductors. Consequently, segmentation outcomes from neighboring frames are utilized, and mask-difference analysis is performed to autonomously detect conductor galloping locations, emphasizing their contours for the clear depiction of galloping characteristics. Experimental results demonstrate that the enhanced YOLO11-seg model achieves 85.38% precision, 77.30% recall, 84.25% AP@0.5, 81.14% F1-score, and a real-time processing speed of 44.78 FPS. When combined with the galloping visualization module, it can issue real-time alerts of conductor galloping anomalies, providing robust technical support for railway OCS safety monitoring. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

25 pages, 15607 KiB  
Article
A Multi-Objective Optimization Method for Carbon–REC Trading in an Integrated Energy System of High-Speed Railways
by Wei-Na Zhang, Zhe Xu, Ying-Yi Hong, Fang-Yu Liu and Zhong-Qin Bi
Appl. Sci. 2025, 15(15), 8462; https://doi.org/10.3390/app15158462 - 30 Jul 2025
Viewed by 132
Abstract
The significant energy intensity of high-speed railway necessitates integrating renewable technologies to enhance grid resilience and decarbonize transport. This study establishes a coordinated carbon–green certificate market mechanism for railway power systems and develops a tri-source planning model (grid/solar/energy storage) that comprehensively considers the [...] Read more.
The significant energy intensity of high-speed railway necessitates integrating renewable technologies to enhance grid resilience and decarbonize transport. This study establishes a coordinated carbon–green certificate market mechanism for railway power systems and develops a tri-source planning model (grid/solar/energy storage) that comprehensively considers the full lifecycle carbon emissions of these assets while minimizing lifecycle costs and CO2 emissions. The proposed EDMOA algorithm optimizes storage configurations across multiple operational climatic regimes. Benchmark analysis demonstrates superior economic–environmental synergy, achieving a 23.90% cost reduction (USD 923,152 annual savings) and 24.02% lower emissions (693,452.5 kg CO2 reduction) versus conventional systems. These results validate the synergistic integration of hybrid power systems with the carbon–green certificate market mechanism as a quantifiable pathway towards decarbonization in rail infrastructure. Full article
Show Figures

Figure 1

34 pages, 4827 KiB  
Article
Optimization of Passenger Train Line Planning Adjustments Based on Minimizing Systematic Costs
by Jinfei Wu, Xinghua Shan and Shuo Zhao
Inventions 2025, 10(4), 64; https://doi.org/10.3390/inventions10040064 - 30 Jul 2025
Viewed by 202
Abstract
Optimizing passenger train line planning is a complex task that involves balancing operational costs and passenger service quality. This study investigates the adjustment and optimization of train line plans to better align with passenger demand and operational constraints, while minimizing systematic costs. These [...] Read more.
Optimizing passenger train line planning is a complex task that involves balancing operational costs and passenger service quality. This study investigates the adjustment and optimization of train line plans to better align with passenger demand and operational constraints, while minimizing systematic costs. These costs include train operation expenses (e.g., line usage fees and station service fees), passenger travel costs, and hidden costs such as imbalances in station stops. Line usage fees refer to charges for using railway tracks, whereas station service fees cover services provided at train stations. The optimization process employs a Simulated Annealing Algorithm to adjust train compositions, capacity configurations, and stop patterns to better match passenger demand. The results indicate a 13.89% reduction in the objective function value, reflecting improved overall efficiency. Notably, most costs are reduced, including train operating costs and passenger travel costs. However, ticketing service fees—which are calculated as a percentage of passenger fare revenue—increased slightly due to additional backtracking in passenger travel paths, which raised the total fare collected. Overall, the optimization improves the operational performance of the train network, enhancing both efficiency and service quality. Full article
Show Figures

Figure 1

17 pages, 1978 KiB  
Article
Analysis of Acoustic Emission Waveforms by Wavelet Packet Transform for the Detection of Crack Initiation Due to Fretting Fatigue in Solid Railway Axles
by Marta Zamorano, María Jesús Gómez, Cristina Castejon and Michele Carboni
Appl. Sci. 2025, 15(15), 8435; https://doi.org/10.3390/app15158435 - 29 Jul 2025
Viewed by 184
Abstract
Railway axles are among the most safety-critical components in rolling stock, as their failure can lead to catastrophic consequences. One of the most subtle damage mechanisms affecting these components is fretting fatigue, which is a particularly challenging damage mechanism in these components, as [...] Read more.
Railway axles are among the most safety-critical components in rolling stock, as their failure can lead to catastrophic consequences. One of the most subtle damage mechanisms affecting these components is fretting fatigue, which is a particularly challenging damage mechanism in these components, as it can initiate cracks under real service conditions and is difficult to detect in its early stages, which is vital to ensure operational safety and to optimize maintenance strategies. This paper focuses on the development of fretting fatigue damage in solid railway axles under realistic service-like conditions. Full-scale axle specimens with artificially induced notches were subjected to loading conditions that promote fretting fatigue crack initiation and growth. Acoustic emission techniques were used to monitor the damage progression, and post-processing of the emitted signals, by using wavelet-based tools, was conducted to identify early indicators of crack formation. The experimental findings demonstrate that the proposed approach allows for reliable identification of fretting-induced crack initiation, contributing valuable insights into the in-service behavior of railway axles under this damage mechanism. Full article
Show Figures

Figure 1

20 pages, 5843 KiB  
Article
Accurate and Robust Train Localization: Fusing Degeneracy-Aware LiDAR-Inertial Odometry and Visual Landmark Correction
by Lin Yue, Peng Wang, Jinchao Mu, Chen Cai, Dingyi Wang and Hao Ren
Sensors 2025, 25(15), 4637; https://doi.org/10.3390/s25154637 - 26 Jul 2025
Viewed by 370
Abstract
To overcome the limitations of current train positioning systems, including low positioning accuracy and heavy reliance on track transponders or GNSS signals, this paper proposes a novel LiDAR-inertial and visual landmark fusion framework. Firstly, an IMU preintegration factor considering the Earth’s rotation and [...] Read more.
To overcome the limitations of current train positioning systems, including low positioning accuracy and heavy reliance on track transponders or GNSS signals, this paper proposes a novel LiDAR-inertial and visual landmark fusion framework. Firstly, an IMU preintegration factor considering the Earth’s rotation and a LiDAR-inertial odometry factor accounting for degenerate states are constructed to adapt to railway train operating environments. Subsequently, a lightweight network based on YOLO improvement is used for recognizing reflective kilometer posts, while PaddleOCR extracts numerical codes. High-precision vertex coordinates of kilometer posts are obtained by jointly using LiDAR point cloud and an image detection box. Next, a kilometer post factor is constructed, and multi-source information is optimized within a factor graph framework. Finally, onboard experiments conducted on real railway vehicles demonstrate high-precision landmark detection at 35 FPS with 94.8% average precision. The proposed method delivers robust positioning within 5 m RMSE accuracy for high-speed, long-distance train travel, establishing a novel framework for intelligent railway development. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

16 pages, 2523 KiB  
Article
Application of Machine Learning Algorithms for Predicting the Dynamic Stiffness of Rail Pads Based on Static Stiffness and Operating Conditions
by Isaac Rivas, Jose A. Sainz-Aja, Diego Ferreño, Víctor Calzada, Isidro Carrascal, Jose Casado and Soraya Diego
Appl. Sci. 2025, 15(15), 8310; https://doi.org/10.3390/app15158310 - 25 Jul 2025
Viewed by 193
Abstract
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material [...] Read more.
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material and geometry of the rail pad but also on the testing conditions, due to the non-linear material response. To address this issue, a methodology is proposed in this paper to estimate dynamic stiffness using static stiffness measurements. This approach enables the prediction of dynamic stiffness for different situations from a single laboratory test. This study further examines whether this correlation remains valid for different types of rail pads, even when their mechanical behavior has been degraded by temperature, wear, or chemical agents. Experiments were conducted under varying temperatures and on rail pads that underwent mechanical and chemical degradation. The analysis assesses the validity of the static-to-dynamic stiffness correlation under degraded conditions and investigates the influence of each testing condition on the ability to estimate dynamic stiffness from static stiffness and operational parameters. The findings provide insights into the reliability of this predictive model and highlight the impact of degradation mechanisms on the dynamic behavior of rail pads. This research enhances the understanding of rail pad performance and offers a practical approach for evaluating dynamic stiffness. By considering all of the variables used in the analysis, the approach achieves R2 values of up to 0.99, which carries significant implications for track design and maintenance. Full article
Show Figures

Figure 1

19 pages, 1951 KiB  
Article
System for the Acquisition and Analysis of Maintenance Data of Railway Traffic Control Devices
by Mieczysław Kornaszewski, Waldemar Nowakowski and Roman Pniewski
Appl. Sci. 2025, 15(15), 8305; https://doi.org/10.3390/app15158305 - 25 Jul 2025
Viewed by 172
Abstract
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, [...] Read more.
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, parameter measurements, and analysis of the working environment, followed by comparing the obtained information with the required parameters or permissible conditions. This activity also enables the formulation of a technical diagnosis regarding the current ability of the devices to perform its intended functions, taking into account the impact of its technical condition on railway traffic safety. This is especially important in the case of railway traffic control devices, as these devices are largely responsible for ensuring railway traffic safety. The collection of data on the condition of railway traffic control devices in the form of Big Data sets and diagnostic inference is an effective factor in making operational decisions for such devices. It enables the acquisition of complete information about the actual course of the exploitation process and allows for obtaining reliable information necessary to manage this process, particularly in the areas of diagnostics forecasting of devices conditions, renewal, and organization of maintenance and repair facilities. To support this, a service data acquisition and analysis system for railway traffic control devices (SADEK) was developed. This system can serve as a software platform for maintenance needs in the railway sector. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

23 pages, 16399 KiB  
Article
Design and Implementation of a Full SiC-Based Phase-Shifted Full-Bridge DC-DC Converter with Nanocrystalline-Cored Magnetics for Railway Battery Charging Applications
by Fatih Enes Gocen, Salih Baris Ozturk, Mehmet Hakan Aksit, Gurkan Dugan, Benay Cakmak and Caner Demir
Energies 2025, 18(15), 3945; https://doi.org/10.3390/en18153945 - 24 Jul 2025
Viewed by 243
Abstract
This paper presents the design and implementation of a high-efficiency, full silicon carbide (SiC)-based center-tapped phase-shifted full-bridge (PSFB) converter for NiCd battery charging applications in railway systems. The converter utilizes SiC MOSFET modules on the primary side and SiC diodes on the secondary [...] Read more.
This paper presents the design and implementation of a high-efficiency, full silicon carbide (SiC)-based center-tapped phase-shifted full-bridge (PSFB) converter for NiCd battery charging applications in railway systems. The converter utilizes SiC MOSFET modules on the primary side and SiC diodes on the secondary side, resulting in significant efficiency improvements due to the superior switching characteristics and high-temperature tolerance inherent in SiC devices. A nanocrystalline-cored center-tapped transformer is optimized to minimize voltage stress on the rectifier diodes. Additionally, the use of a nanocrystalline core provides high saturation flux density, low core loss, and excellent permeability, particularly at high frequencies, which significantly enhances system efficiency. The converter also compensates for temperature fluctuations during operation, enabling a wide and adjustable output voltage range according to the temperature differences. A prototype of the 10-kW, 50-kHz PSFB converter, operating with an input voltage range of 700–750 V and output voltage of 77–138 V, was developed and tested both through simulations and experimentally. The converter achieved a maximum efficiency of 97% and demonstrated a high power density of 2.23 kW/L, thereby validating the effectiveness of the proposed design for railway battery charging applications. Full article
(This article belongs to the Special Issue Advancements in Electromagnetic Technology for Electrical Engineering)
Show Figures

Figure 1

25 pages, 4047 KiB  
Article
Vulnerability Analysis of the China Railway Express Network Under Emergency Scenarios
by Huiyong Li, Wenlu Zhou, Laijun Zhao, Lixin Zhou and Pingle Yang
Appl. Sci. 2025, 15(15), 8205; https://doi.org/10.3390/app15158205 - 23 Jul 2025
Viewed by 227
Abstract
In the context of globalization and the Belt and Road Initiative, maintaining the stability and security of the China Railway Express network (CRN) is critical for international logistics operations. However, unexpected events can lead to node and edge failures within the CRN, potentially [...] Read more.
In the context of globalization and the Belt and Road Initiative, maintaining the stability and security of the China Railway Express network (CRN) is critical for international logistics operations. However, unexpected events can lead to node and edge failures within the CRN, potentially triggering cascading failures that critically compromise network performance. This study introduces a Coupled Map Lattice model that incorporates cargo flow dynamics, distributing cargo based on distance and the residual capacity of neighboring nodes. We analyze cascading failures in the CRN under three scenarios, isolated node failure, isolated edge disruption, and simultaneous node and edge failure, to assess the network’s vulnerability during emergencies. Our findings show that deliberate attacks targeting cities with high node strength result in more significant damage than attacks on cities with a high node degree or betweenness. Additionally, when edges are disrupted by unexpected events, the impact of edge removals on cascading failures depends on their strategic position and connections within the network, not just their betweenness and weight. The study further reveals that removing collinear edges can effectively slow the propagation of cascading failures in response to deliberate attacks. Furthermore, a single-factor cargo flow allocation method significantly enhances the network’s resilience against edge failures compared to node failures. These insights provide practical guidance and strategic support for the CR Express in mitigating the effects of both unforeseen events and intentional attacks. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

22 pages, 3091 KiB  
Article
Assessment of the Risk of Failure in Electric Power Supply Systems for Railway Traffic Control Devices
by Tomasz Ciszewski, Jerzy Wojciechowski, Mieczysław Kornaszewski, Grzegorz Krawczyk, Beata Kuźmińska-Sołśnia and Artur Hermanowicz
Sensors 2025, 25(14), 4501; https://doi.org/10.3390/s25144501 - 19 Jul 2025
Viewed by 382
Abstract
This paper provides a reliability analysis of selected components in the electrical power supply systems used for railway traffic control equipment. It includes rectifiers, controllers, inverters, generators, batteries, sensors, and switching elements. The study used failure data from power supply system elements on [...] Read more.
This paper provides a reliability analysis of selected components in the electrical power supply systems used for railway traffic control equipment. It includes rectifiers, controllers, inverters, generators, batteries, sensors, and switching elements. The study used failure data from power supply system elements on selected railway lines. The analysis was performed using a mathematical model based on Markov processes. Based on the findings, recommendations were made to improve safety levels. The results presented in the paper could serve as a valuable source of information for operators of power supply systems in railway traffic control, helping them optimize maintenance processes and increase equipment reliability. Full article
(This article belongs to the Special Issue Diagnosis and Risk Analysis of Electrical Systems)
Show Figures

Figure 1

Back to TopTop