A Multi-Objective Optimization Method for Carbon–REC Trading in an Integrated Energy System of High-Speed Railways
Abstract
1. Introduction
1.1. Literature Review
1.2. Motivation and Main Contributions
2. Optimized Hybrid Energy System for High-Speed Rail Integrating Carbon–REC Trading
2.1. Problem Description
2.2. Models of System Components
2.2.1. PV Model and ESS Model
2.2.2. Load Model
2.2.3. Carbon Model
2.2.4. REC Model
3. Problem Formulation
3.1. Objective Function
3.2. Constraints
4. Multi-Objective Optimization Framework
4.1. Algorithmic Process of EDMOA
4.2. Chaotic Mapping-Driven Population Initialization and Updating Mechanism
4.3. Hybrid-Driven Position Updating Strategy
4.4. Dynamic Trust-Region Local Search Framework
4.5. Multimodal Adaptive Parameter Control Strategy
4.6. Elite-Guided Parallel Computing Architecture
5. Simulation Results and Discussion
5.1. Algorithm Performance Analysis
Ablation Study of EDMOA
5.2. Simulation Analysis
5.3. Economic Benefit Analysis
5.4. Environmental Benefit Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, J.; Peng, L.; Zhou, H.; Gan, D.; Qu, K. Recent research progress and application of energy storage system in electrified railway. Electr. Power Syst. Res. 2024, 226, 109893. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, X.; Xiong, Y.; Tan, X. AutoGRN: An adaptive multi-channel graph recurrent joint optimization network with Copula-based dependency modeling for spatio-temporal fusion in electrical power systems. Inf. Fusion 2025, 117, 102836. [Google Scholar] [CrossRef]
- Ministry of Transport of China. The 14th Five-Year Plan for Green Transportation Development; Technical Report; Ministry of Transport of China: Beijing, China, 2022.
- Feng, C.; Gao, Z.; Sun, Y.; Chen, P. Electric Railway smart microgrid system with integration of multiple energy system and power-quality improvement. Electr. Power Syst. Res. 2021, 199, 107459. [Google Scholar] [CrossRef]
- Fan, H.; Cui, X.; Lin, Y.; Jin, T. Research on Multi-port Large Capacity Energy Router Technologies for Urban Rail Transit. In Proceedings of the 2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE 2023), Guangzhou, China, 12–14 May 2023; pp. 867–872. [Google Scholar]
- Yang, H.; Xie, L.; Guo, C.; Qin, Y.; Liang, G. Influence of New Energy Access to Power System on Current Transformer Aging. In Proceedings of the 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE 2022), Chongqing, China, 25–29 September 2022. [Google Scholar]
- Muhammad, T.; Huawei, L.; Abdul, Q.; Arif, H. Design of Hybrid Energy System of CRH2 Train Passing Through Neutral Section. In Proceedings of the 2022 IEEE 4th Global Power, Energy and Communication Conference (GPECOM 2022), Nevsehir, Turkey, 14–17 June 2022; pp. 117–123. [Google Scholar]
- Guo, S.; Cai, L.; Wu, H.; Song, G.; Lin, L.; Chen, Y. Optimal PV-storage capacity planning for rail transit self-consistent energy system considering extreme weather conditions. IET Renew. Power Gener. 2024, 18, 3753–3764. [Google Scholar] [CrossRef]
- Pupin, P.C.; Perazzini, M.T.B.; Grillo Reno, M.L.; Perazzini, H.; Haddad, J.; Yamachita, R.A. Life cycle assessment for producing monocrystalline photovoltaic panels: A case study of Brazil. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 45, 12924–12937. [Google Scholar] [CrossRef]
- Quek, A.; Abbas, A.R.; Zaman, N.Z.I.S.; Ata, W.N.S.W.; Zainal, M.F.; Yapandi, F.K.M.; Ibrahim, Z.F.; Suhardi, A. Life Cycle Assessment of Large-Scale Solar Photovoltaic Plant based in Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2024, 1372, 012055. [Google Scholar] [CrossRef]
- de Wild, P.; de Wild-Scholten, M.; Goudswaard, I. Life cycle assessment of photovoltaic module backsheets. Prog. Photovolt. Res. Appl. 2025, 33, 27–39. [Google Scholar] [CrossRef]
- Prabhu, V.S.; Shrivastava, S.; Mukhopadhyay, K. Life Cycle Assessment of Solar Photovoltaic in India: A Circular Economy Approach. Circ. Econ. Sustain. 2022, 2, 507–534. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Gu, Y.; Cai, K.; He, X.; Song, Q.; Yuan, W.; Duan, H. Unveiling lifecycle carbon emissions and its mitigation potentials of distributed photovoltaic power through two typical case systems. Sol. Energy 2024, 269, 112360. [Google Scholar] [CrossRef]
- Zaiqiang, J.; Yao, C.; Xingguo, Y.; Yaoling, Z.; Qi, Y. Study on Carbon Emissions Throughout the Entire Lifecycle of Photovoltaic Power Station Projects. China Resour. Compr. Util. 2023, 41, 158–160. [Google Scholar]
- Mandade, P.; Weil, M.; Baumann, M.; Wei, Z. Environmental life cycle assessment of emerging solid-state batteries: A review. Chem. Eng. J. Adv. 2023, 13, 100439. [Google Scholar] [CrossRef]
- Dieterle, M.; Fischer, P.; Pons, M.N.; Blume, N.; Minke, C.; Bischi, A. Life cycle assessment (LCA) for flow batteries: A review of methodological decisions. Sustain. Energy Technol. Assess. 2022, 53, 102457. [Google Scholar] [CrossRef]
- Wickerts, S.; Arvidsson, R.; Nordelöf, A.; Svanström, M.; Johansson, P. Prospective Life Cycle Assessment of Lithium–Sulfur Batteries for Stationary Energy Storage. ACS Sustain. Chem. Eng. 2024, 12, 6035–6036. [Google Scholar] [CrossRef]
- Ager-Wick Ellingsen, L.; Jayne Thorne, R.; Wind, J.; Figenbaum, E.; Romare, M.; Nordelöf, A. Life cycle assessment of battery electric buses. Transp. Res. Part D Transp. Environ. 2022, 112, 103498. [Google Scholar] [CrossRef]
- Hammond, G.P.; Hazeldine, T. Indicative energy technology assessment of advanced rechargeable batteries. Appl. Energy 2015, 138, 559–571. [Google Scholar] [CrossRef]
- Lam, D.H.C.; Lim, Y.S.; Wong, J.; Sapihie, S.N.M. Life-cycle assessment of batteries for peak demand reduction. J. Electron. Sci. Technol. 2023, 21, 100226. [Google Scholar] [CrossRef]
- Peters, J.F. Best practices for life cycle assessment of batteries. Nat. Sustain. 2023, 6, 614–616. [Google Scholar] [CrossRef]
- Liu, B.; Ding, C.J.; Hu, J.; Su, Y.; Qin, C. Carbon trading and regional carbon productivity. J. Clean. Prod. 2023, 420, 138395. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, L.; Tsang, A.; Zhang, Y. Carbon emission trading scheme and carbon performance: The role of carbon management system. Br. Account. Rev. 2024, 57, 101492. [Google Scholar] [CrossRef]
- Wang, Y.; Shu, J.; Su, J.; Zhen, L. Inventory placement with carbon cap-and-trade in guaranteed service supply chains. Transp. Res. Part E Logist. Transp. Rev. 2025, 193, 103813. [Google Scholar] [CrossRef]
- Xi, B.; Jia, W. Research on the impact of carbon trading on enterprises’ green technology innovation. Energy Policy 2025, 197, 114436. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, X.; Song, M.; Li, X.; Shen, Z. Impacts of renewable electricity standard and Renewable Energy Certificates on renewable energy investments and carbon emissions. J. Environ. Manag. 2022, 306, 114495. [Google Scholar] [CrossRef]
- Bjørn, A.; Lloyd, S.M.; Brander, M.; Matthews, H.D. Renewable energy certificates allow companies to overstate their emission reductions. Nat. Clim. Change 2022, 12, 508–509. [Google Scholar] [CrossRef]
- Baamonde-Seoane, M.A.; del Carmen Calvo-Garrido, M.; Vázquez, C. Pricing renewable energy certificates with a Crank–Nicolson Lagrange–Galerkin numerical method. J. Comput. Appl. Math. 2023, 422, 114891. [Google Scholar] [CrossRef]
- Baamonde-Seoane, M.A.; del Carmen Calvo-Garrido, M.; Vázquez, C. Model and numerical methods for pricing renewable energy certificate derivatives. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107066. [Google Scholar] [CrossRef]
- Zhang, H.; Assereto, M.; Byrne, J. Deferring real options with solar renewable energy certificates. Glob. Financ. J. 2023, 55, 100795. [Google Scholar] [CrossRef]
- Zhang, R.; Lee, M.; Huang, L. Grid parity analysis of photovoltaic systems considering feed-in tariff and renewable energy certificate schemes in Hong Kong. Renew. Sustain. Energy Rev. 2023, 181, 113326. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Ren, D. Optimal scheduling model for virtual power plant combining carbon trading and green certificate trading. Energy 2025, 318, 134750. [Google Scholar] [CrossRef]
- Águila León, J.; Vargas-Salgado, C.; Díaz-Bello, D.; Montagud-Montalvá, C. Optimizing photovoltaic systems: A meta-optimization approach with GWO-Enhanced PSO algorithm for improving MPPT controllers. Renew. Energy 2024, 230, 120892. [Google Scholar] [CrossRef]
- Araoye, T.O.; Ashigwuike, E.C.; Mbunwe, M.J.; Bakinson, O.I.; Ozue, T.I. Techno-economic modeling and optimal sizing of autonomous hybrid microgrid renewable energy system for rural electrification sustainability using HOMER and grasshopper optimization algorithm. Renew. Energy 2024, 229, 120712. [Google Scholar] [CrossRef]
- Kharrich, M.; Hassan, M.H.; Kamel, S.; Kim, J. Designing an optimal hybrid microgrid system using a leader artificial rabbits optimization algorithm for domestic load in Guelmim city, Morocco. Renew. Energy 2024, 223, 120011. [Google Scholar] [CrossRef]
- Solcast. Global Solar Irradiance Data and PV System Power Output Data; Solcast: Sydney, Australia, 2019. [Google Scholar]
- Wen, S.; Lan, H.; Yu, D.C.; Fu, Q.; Hong, Y.Y.; Yu, L.; Yang, R. Optimal sizing of hybrid energy storage sub-systems in PV/diesel ship power system using frequency analysis. Energy 2017, 140, 198–208. [Google Scholar] [CrossRef]
- Jia, Z.B. Research on the Application of Photovoltaic Power Generation in Auxiliary Power Supply System of CRH2 Rolling Stock. Master’s Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2020. [Google Scholar]
- Sun, J.F. Research on the main top-level technical indexes of traction system for 400 km/h locomotives. China Railw. Sci. 2017, 38, 70–77. [Google Scholar]
- Li, Y.; Yang, X.; Du, E.; Liu, Y.; Zhang, S.; Yang, C.; Zhang, N.; Liu, C. A review on carbon emission accounting approaches for the electricity power industry. Appl. Energy 2024, 359, 122681. [Google Scholar] [CrossRef]
- International Energy Agency. Life Cycle Carbon Emissions of Photovoltaic Systems, 2024. Photovoltaic Life Cycle Carbon Emissions. Available online: https://www.iea.org/reports/solar-pv-global-supply-chains (accessed on 1 September 2024).
- National Renewable Energy Laboratory. Life Cycle Assessment of Lithium Iron Phosphate Batteries; Technical Report; LFP Battery Carbon Footprint; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. Available online: https://www.nrel.gov/analysis/life-cycle-assessment.html (accessed on 1 September 2024).
- Shanghai Environment and Energy Exchange. China Carbon Emission Allowance (CEA) Trading Data, 2023. Average CEA Spot Price: 95 CNY/ton (Date: December 2023). Available online: https://www.cneeex.com/ (accessed on 1 September 2024).
- China Green Certificate Trading Platform. Renewable Energy Certificate (REC) Trading Data, 2024. Average REC Spot Price: 130 CNY/MWh (Date: October 2024). Available online: https://www.greenenergy.org.cn/ (accessed on 1 September 2024).
- Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Dwarf Mongoose Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2022, 391, 114570. [Google Scholar] [CrossRef]
- Kaveh, A.; Zakian, P. Improved GWO algorithm for optimal design of truss structures. Eng. Comput. 2018, 34, 685–707. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Trojovská, E.; Dehghani, M.; Trojovský, P. Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm. IEEE Access 2022, 10, 49445–49473. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Lu, L.; Liu, Y.; Zhang, H. A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. J. Exp. Theor. Artif. Intell. 2016, 28, 673–687. [Google Scholar] [CrossRef]
- Chopra, N.; Mohsin Ansari, M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Kiani, F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems. Eng. Comput. 2023, 39, 2627–2651. [Google Scholar] [CrossRef]
PV lifetime | efficiency | cost of investment | cost of replacement |
20 years | 0.25 | USD 876/kW | USD 676/kW |
Battery lifetime | ch/dis efficiency | cost of investment | cost of replacement |
5 years | 0.9/1.0 | USD 600/kWh | USD 600/kWh |
Chaotic Mapping-Driven | Trust-Region | Elite-Guided | Fitness |
---|---|---|---|
✓ | 236,102 | ||
✓ | ✓ | 235,949 | |
✓ | ✓ | ✓ | 235,760 |
Case 1 | Case 2 | Case 3 | |
---|---|---|---|
PV size (m2) | 0 | 2000 | 2000 |
ESS capacity (kwh) | 0 | 460 | 408 |
ESS power (kw) | 0 | 1430 | 1498 |
Total NPC (USD) | 3,864,852 | 3,196,558 | 2,941,700 |
Grid cost (USD) | 3,864,852 | 2,909,983 | 2,909,157 |
PV installation cost (USD) | 0 | 89,281 | 89,281 |
PV replacement cost (USD) | 0 | 68,898 | 68,898 |
ESS installation cost (USD) | 0 | 64,198 | 56,940 |
ESS replacement cost (USD) | 0 | 64,198 | 56,940 |
Carbon emission cost (USD) | 0 | 0 | 159,413 |
Carbon transaction cost (USD) | 0 | 0 | 119,109 |
Carbon incentivization (USD) | 0 | 0 | 1579 |
Carbon penalty cost (USD) | 0 | 0 | 62,968 |
REC revenue (USD) | 0 | 0 | 579,427 |
Case 1 | Case 2 | Case 3 | |
---|---|---|---|
Total CO2 emission (kg) | 2,886,213.1 | 2,194,300.6 | 2,192,760.6 |
Grid CO2 emission (kg) | 2,886,213.1 | 2,173,131.3 | 2,172,514.5 |
PV CO2 emission (kg) | 0 | 13,000.0 | 13,000.0 |
ESS CO2 emission (kg) | 0 | 8169.6 | 7246.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.-N.; Xu, Z.; Hong, Y.-Y.; Liu, F.-Y.; Bi, Z.-Q. A Multi-Objective Optimization Method for Carbon–REC Trading in an Integrated Energy System of High-Speed Railways. Appl. Sci. 2025, 15, 8462. https://doi.org/10.3390/app15158462
Zhang W-N, Xu Z, Hong Y-Y, Liu F-Y, Bi Z-Q. A Multi-Objective Optimization Method for Carbon–REC Trading in an Integrated Energy System of High-Speed Railways. Applied Sciences. 2025; 15(15):8462. https://doi.org/10.3390/app15158462
Chicago/Turabian StyleZhang, Wei-Na, Zhe Xu, Ying-Yi Hong, Fang-Yu Liu, and Zhong-Qin Bi. 2025. "A Multi-Objective Optimization Method for Carbon–REC Trading in an Integrated Energy System of High-Speed Railways" Applied Sciences 15, no. 15: 8462. https://doi.org/10.3390/app15158462
APA StyleZhang, W.-N., Xu, Z., Hong, Y.-Y., Liu, F.-Y., & Bi, Z.-Q. (2025). A Multi-Objective Optimization Method for Carbon–REC Trading in an Integrated Energy System of High-Speed Railways. Applied Sciences, 15(15), 8462. https://doi.org/10.3390/app15158462